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Abstract

Background and Purpose: Live failure can cause brain edema and aberrant brain function in cirrhotic patients. In particular,
decreased functional connectivity within the brain default-mode network (DMN) has been recently reported in overt hepatic
encephalopathy (HE) patients. However, so far, little is known about the connectivity among the DMN in the minimal HE
(MHE), the mildest form of HE. Here, we combined diffusion tensor imaging (DTI) and resting-state functional MRI (rs-fMRI)
to test our hypothesis that both structural and functional connectivity within the DMN were disturbed in MHE.

Materials and Methods: Twenty MHE patients and 20 healthy controls participated in the study. We explored the changes
of structural (path length, tracts count, fractional anisotropy [FA] and mean diffusivity [MD] derived from DTI tractography)
and functional (temporal correlation coefficient derived from rs-fMRI) connectivity of the DMN in MHE patients. Pearson
correlation analysis was performed between the structural/functional indices and venous blood ammonia levels/
neuropsychological tests scores of patients. All thresholds were set at P,0.05, Bonferroni corrected.

Results: Compared to the healthy controls, MHE patients showed both decreased FA and increased MD in the tract
connecting the posterior cingulate cortex/precuneus (PCC/PCUN) to left parahippocampal gyrus (PHG), and decreased
functional connectivity between the PCC/PCUN and left PHG, and medial prefrontal cortex (MPFC). MD values of the tract
connecting PCC/PCUN to the left PHG positively correlated to the ammonia levels, the temporal correlation coefficients
between the PCC/PCUN and the MPFC showed positive correlation to the digital symbol tests scores of patients.

Conclusion: MHE patients have both disturbed structural and functional connectivity within the DMN. The decreased
functional connectivity was also detected between some regions without abnormal structural connectivity, suggesting that
the former may be more sensitive in detecting the early abnormalities of MHE. This study extends our understanding of the
pathophysiology of MHE.
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Introduction

Minimal hepatic encephalopathy (MHE) refers to a transitional

stage between non-hepatic encephalopathy cirrhotic patients and

overt HE (OHE), which is used to classify a subpopulation of

cirrhotic patients with no obvious clinical manifestation of HE but

can be identified with neuropsychological examination [1,2,3].

MHE is considered to be associated with poor quality of life and

increased work disability, and has some propensity to develop into

OHE [3]. HE is reversible with appropriate treatment in the initial

phase, e.g., treatment with lactulose [4] or rifaximin [5] may

improve cognitive function and health-related quality of life for

MHE patients. However, how MHE leads to brain abnormality

remains unclear, the investigation of MHE therefore has great

potential to improve the understanding of disease pathophysiology

and aid accurate diagnosis.
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Imaging plays an important role in detecting structural and

functional abnormality of the brain in HE patients. Findings of

diffusion tensor imaging (DTI) [6,7,8] have established low grade

cerebral edema in cirrhosis that is otherwise difficult to detect with

conventional MR imaging, which may be resolved after liver

transplantation [8] or successful medical treatment [6]. As a recent

focused theme of study in contemporary cognitive and clinical

neuroscience, the brain default-mode network (DMN) during

‘‘rest’’ is thought to be engaged in the maintenance of the baseline

brain activities related to cognitions of self-awareness, episodic

memory and interactive modulation between the internal mind

activities and external tasks [9,10,11,12]. The DMN comprises the

posterior cingulate cortex/precuneus (PCC/PCUN), medial pre-

frontal cortex (MPFC), bilateral inferior parietal lobule (IPL),

inferior temporal cortex (ITC), and parahippocampal gyrus

(PHG). Investigating the effects of disease on the DMN may be

particularly important for understanding the impact of disease on

the brain [13], which have been used in various mental disorders

[14], even in the early stage of these diseases, such as Alzheimer’s

disease [15] and HE [16]. A recent resting-state functional MRI

(rs-fMRI) study by Zhang et al. reported decreased functional

connectivity within the DMN in OHE patients [17].

In this study, we hypothesize that both structural and functional

connectivity within the DMN is disturbed in MHE, the early stage

of HE. To test our hypothesis, we combined DTI tractography

with rs-fMRI to investigate the structural and functional connec-

tivity within the DMN in MHE patients. DTI fiber tractography is

a direct way to depict the structural connectivity of brain network

[18,19]. This approach can be used to estimate the routes taken by

fiber pathways connecting different brain regions of the human

brain. Functional connectivity is based on the temporal coherence

of spontaneous blood oxygenation level-dependent (BOLD)

fluctuations within brain network that are either anatomically

connected or not [20]. It is widely accepted that the functional

connectivity reflects the direct or indirect (i.e. via a third region)

structural connectivity architecture [20,21,22], enriching our

understanding of human brain networks. Therefore, studying the

changes in functional and structural connectivity within the DMN

may improve our understanding of the neural underpinnings of

the MHE via multi-modality MRI.

Materials and Methods

Subjects
This study was approved by the Medical Research Ethics

Committee of Jinling Hospital and Clinical School of Medical

College at Nanjing University. Written informed consents were

obtained from all the participants before the study. Twenty

hospitalized MHE patients (13 male, 7 women, mean age:

55.1067.22 years) were included in this study. The inclusion

criteria for recruitment of the patients were as follows: the patients

with clinical proven hepatic cirrhosis, without clinical manifesta-

tion of HE, had abnormal neuropsychological tests scores, who

could finish the MR exam without any MRI contraindication, age

18 years or older. Exclusion criteria for the subjects included any

drug abuse history, any brain lesions such as tumor, stroke assessed

on basis of medical history and conventional MRI, or translation

more than 1.0 mm or rotation than 1.0u during MR scanning.

The diagnosis of MHE was made according to the recommen-

dation by the working party of 11th world congress of gastroen-

terology [3]. All patients underwent two neuropsychological tests:

number connecting-A (NCT-A) and digit symbol test (DST)

[23,24]. NCT-A tests for psychomotor speed, and worse perfor-

mance is indicated by a longer time for completion. DST tests for

psychomotor speed, attention, and visual memory. The number of

correctly transcribed symbols indicates performance, i.e., a low

score means poor performance. When the scores of at least one

test were beyond 2SD (standard deviation) of mean value of age-

matched healthy controls, the cirrhotic patients could be regarding

having MHE [24,25]. Laboratory parameters including prothrom-

bin time, protein metabolism tests, venous blood ammonia were

obtained from all patients to assess the severity of liver disease,

within one week before MR scanning. The grade of hepatic

function was determined according to the Child-Pugh score

[26,27]. Of these 20 MHE patients, 9 patients had Child-Pugh

grade A and 11 patients had Child-Pugh grade B. All patients were

right-handed. The etiology of cirrhosis was hepatitis B in 18

patients, hepatitis A and C in one patient each. Twenty age-and

gender-matched right-handed healthy controls from local com-

munity were recruited in this study (13 male, 7 women, and mean

age: 53.9568.09 years). All healthy controls had no diseases of the

liver and other systems, with no abnormal findings in abdominal

ultrasound scans (performed within one week before MR scan) and

conventional brain MR imaging. The healthy controls were

interviewed by the psychiatrist in our hospital to confirm that they

all had no any current and history of psychiatric illness (such as

depression, social anxiety disorder) and substance intake; further-

more, their first-degree relatives also had no any history of

psychiatric illness. All controls underwent neuropsychological tests

(NCT-A, and DST) before the MR scanning. No laboratory

tests were performed thus unavailable for them. Demographics

and clinical data for all the 40 participants were summarized

in Table 1.

MRI data acquisition
MRI data were acquired on a 3 Tesla MR scanner (TIM Trio,

Siemens Medical Solutions, Erlangen, Germany). The participants

were instructed to lie quietly and keep their eyes closed but be

awake in the MR scanner. Foam pad was used to minimize the

head motion of all subjects. First, high-resolution T1-weighted 3D

anatomical images were obtained in the sagittal orientation using a

Table 1. Demographics and clinical data of MHE patients and
healthy controls.

Protocols HC (n = 20) MHE (n = 20) P value

Sex (M/F) 13/7 13/7 1a

Age (6SD), y 55.1067.22 56.5769.19 0.64b

Venous blood
ammonia (in
umol/L)

69.06626.13

Child-Pugh scale

A 9

B 11

C 0

NCT-A (s) 46.6867.39 72.80616.71 ,0.001b

DST 42.2968.91 23.1568.17 ,0.001b

Values are expressed as mean 6 SD. HC = healthy control; MHE = minimal
hepatic encephalopathy. NCT-A = number connecting-A; DST = digit symbol
test.
aThe P value for gender distribution in the two groups was obtained by chi-
square test.
bThe P value for age and neuropsychological tests difference between the two
patients groups was obtained by two sample t test.
doi:10.1371/journal.pone.0041376.t001
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magnetization-prepared rapid gradient-echo sequence

(TR/TE = 2300 ms/2.98 ms, flip angle = 9u, 191 slices,

FOV = 2566256 mm2, acquisition matrix = 2566256, slice thick-

ness = 1 mm). Functional images were subsequently obtained

aligned along the anterior commissure-posterior commissure line

with a single-shot, gradient-recalled echo planar imaging sequence

(TR/TE = 2000 ms/30 ms, FOV = 2406240 mm2, flip an-

gle = 90u, matrix = 64664, voxel size = 3.7563.7564 mm3). A

total of 250 brain volumes were collected, resulting in a total scan

time of 500 s. Then, the diffusion tensor images were obtained

using a spin echo-based echo planar imaging sequence in

contiguous axial planes, including 20 volumes with diffusion

gradients applied along 20 non-collinear directions (b = 1000 s/

mm2) and one volume without diffusion weighting (b = 0 s/mm2).

Each volume consisted of 30 contiguous axial slices covered the

whole brain (TR = 4100 ms, TE = 93 ms, flip angle = 90u,
FOV = 2406240 mm2, matrix size = 1286128, voxel si-

ze = 1.861.864 mm3).

Data preprocessing
For DTI images of each subject, 20 diffusion-weighted images

were first registered to B0 image (b = 0 s/mm2) using SPM 8

(http://www.fil.ion.ucl.ac.uk/spm) and then corrected for differ-

ence in spatial distortion due to eddy currents using FMRIB’s

Diffusion Toolbox (FDTv2.0) as implemented in FMRIB’s

Software Library (FSL v4.1; www.fmrib.ox.ac.uk/fsl) [28].

For fMRI images, preprocessing were performed using SPM8

software package. The first 10 images were excluded for magneti-

zation to reach equilibrium. The remaining 240 consecutive volumes

were used for data analysis. Slice-timing adjustment and realignment

for head-motion correction were performed. No translation or

rotation parameters in any given data set exceeded 1.0 mm or 1.0u.
We also evaluated the group differences in translation and rotation of

head motion according to the following formula [29]: Head Motion

/Rotation = 1
L{1

PL
i~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxi{xi{1D2zDyi{yi{1D2zDzi{zi{1D2

q
where L

is the length of the time series (L = 240 in this study), xi, yi and zi are

translations/rotations at the ith time point in the x, y and z directions,

respectively.

The results showed that the two groups had no significant

differences in image quality (two sample t test, t = 0.132, P = 0.892

for translational motion, and t = 0.592, P = 0.577 for rotational

motion). The functional images were then spatially normalized to

standard stereotaxic coordinates of the standard Montreal

Neurological Institute (MNI) and resampled into voxel size of

36363 mm3, and then smoothed by convolution with an isotropic

Gaussian kernel (FWHW = 8 mm).

DMN extraction
To extract the regions of interest (ROIs) within the DMN in

both groups, independent component analysis (ICA) was first

applied to decompose the smoothed data of each individual in

control and MHE groups into 42 and 39 independent components

(ICs) respectively with the Infomax algorithm using the GIFT

software (http://icatb.sourceforge.net/, Vision 2.0d). The number

of ICs was determined by a dimension estimation using the

minimum description length (MDL) criterion [30]. Healthy

control and MHE groups in this study were estimated separately

to avoid the specific resting-state network pattern from each group

to be mixed [31,32]. To each IC, the time courses correspond to

the waveform of a specific pattern of coherent brain activity and

the intensity of this pattern of brain activity across the voxels was

expressed by the associated spatial map [12]. Then, using the

GIFT software, the DMN component of each subject was selected

based on the largest spatial correlation with a prior DMN template

which included bilateral IPL, ITG, PHG, as well as PCC/PCUN,

MPFC. This DMN template was provided by Dr. Liao (Center for

Cognition and Brain Disorders and the Affiliated Hospital,

Hangzhou Normal University, Hangzhou, China), which has

been recruited in previous studies [29,33]. To display the voxels

that contributed most strongly to a particular IC, the intensity

values in each spatial map were converted to z values. The z-

values here reflect the degree to which the time courses of a given

voxel correlate to the time courses of each special IC [12]. After

extracting the DMN from all subjects, a second-level random-

effects statistical analysis was performed for the DMN of each

group using one-sample t test. Significant clusters were thresholded

with a false discovery rate (FDR) at P,0.01 (corrected for multiple

comparisons across the whole brain). Regions of interest (ROIs) for

the PCC/PCUN, MPFC, and bilateral IPL, PHG, and ITG were

selected from the DMN map of the control group using the xjView

toolbox [33] (see Table 2 for details of these ROIs). These eight

ROIs were used for the subsequent analyses in both the patient

and the control groups.

Structural connectivity within the DMN
Fiber tracking. Whole-brain fiber tracking was performed in

the DTI native space for each subject using the Diffusion Toolkit

and TrackVis software (http://www.trackvis.org/), with an

interpolated streamline propagation algorithm [33,34]. Path

tracing proceeded until either the FA fell below 0.15, or the

minimum angle between the current and the previous path

segment was higher than 35u [33,35].

Fiber extraction within DMN. As the eight ROIs within

DMN were derived from the normalized MNI space, inverse

transformation (T21) was applied to the eight ROIs in the

normalized MNI, resulting in the subject-specific ROIs in the

native space of DTI [20,33]. Fiber bundles connecting each pair of

ROIs were then extracted from the total collection of brain fibers.

This was done as follows: first, an initial ROI was selected, and the

tracts that reached the first ROI were chosen from all fibers;

second, another ROI was retrieved from the rest ROIs. Only those

tracts that reached the second ROI were picked from the resulting

tracts of the previous step; finally, fibers that were anatomically

implausible were identified visually and removed. The remaining

fiber bundles connecting each pair of ROIs were prepared for the

subsequent analyses. In the present study, four basic indices of

fiber connectivity obtained from TrackVis [33,36] were performed

into the structural connectivity analysis to determine whether there

were any abnormalities in patients when compared to the healthy

controls, including path length, tract count, mean fractional

anisotropy (FA) and mean diffusivity (MD) of each fiber pathways

within DMN.

Functional connectivity within the DMN. To acquire the

temporal correlation coefficients between each pair of ROIs within

the DMN in the DTI native space, first, the functional ROIs were

also inverse transformed to the native space in the same way as

DTI on the aforementioned eight ROIs within DMN; second, to

extract the time series for cerebrospinal fluid (CSF) and white

matter (WM), individual’s T1 weighted anatomical images were

segmented using SPM8, with the threshold of the segmented

probability images setting at 80% [33]. Then the segmented CSF

and WM were coregistered to the individual’s B0 images (b = 0 s/

mm2), to create subject-specific CSF and WM templates; third, the

time series were extracted from each ROI in the DTI native space,

and then removed several sources of spurious variance by linear

regression, including six head motion parameters, and average

signals from the subject-specific CSF, WM, and whole brain

Abnormalities of DMN in Hepatic Encephalopathy
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masks. By doing this regression, fluctuations unlikely to be

involved in specific regional correlation were removed; fourth,

the residuals time series were band filtered (0.01–0.08 Hz), and the

functional connectivity of brain regions within the DMN was

computed by calculating the temporal correlation coefficients

between the residuals time series in each pair of regions.

Statistical analysis
Structural and functional connectivity for each pair of ROIs was

compared between patient and control groups. Specifically,

structural connectivity (including path length, tract count,

fractional anisotropy, mean diffusivity), and functional connectiv-

ity (temporal correlation coefficient [after Fisher-z translation])

were investigated by two sample t-tests (P,0.05, corrected for

multiple comparison using the Bonferroni correction for the

number of tracts that showed both structural and functional

connectivity in all subjects, three tracts [fiber tracks which

connecting the PCC/PCUN with MPFC, and bilateral PHG]

were considered in the present study).

To investigate the potential effect of venous blood ammonia on

structural and functional connectivity within DMN in MHE

patients, and the relationship between their neuropsychological

tests scores and DMN connectivity indices, structural/functional

indices that showed difference between patients and controls were

correlated against the venous blood ammonia levels, and the

scores of NCT-A and DST, using the Pearson correlation analysis.

Correlation analysis was performed using SPSS 16.0 (SPSS Inc.,

Chicago, IL), the threshold was set at a significance level of

P,0.05, corrected for multiple comparison using the Bonferroni

correction for the number of tracts that showed either different

structural or functional connectivity between patients and controls

(two tracts were considered in the Bonferroni correction in this

study [fiber tracks which connecting the PCC/PCUN with

MPFC, and left PHG]) [33].

Results

Spatial pattern of DMN in each group
The random-effect analysis of the single-subject DMN maps

revealed a typical spatial pattern of this DMN in both groups

(P,0.01, FDR corrected) (Figure 1). The DMN pattern in the

controls (Figure 1A, Table 2) showed functional connectivity

among the PCC/PCUN, the MPFC, the bilateral IPL, PHG, and

ITG. The DMN pattern of the patients (Figure 1B, Table 2)

largely included the same brain regions as the controls.

Structural connectivity within DMN
Figure 2 showed two examples of fiber bundles connecting the

PCC/PCUN to the MPFC, and to the bilateral PHG in a healthy

control and a MHE patient, respectively. Three fiber pathways

were detected in all the healthy controls and patients: the cingulum

tracts connecting the PCC/PCUN to MPFC, and fiber tracts

connecting the PCC/PCUN to left and right PHG respectively.

The left and right superior frontal-occipital fasciculus connecting

the left and right IPL to the MPFC, respectively, were detected in

1/3 (left/right) out of 20 healthy controls and in 2/3 (left/right)

out of 20 MHE patients. The tracks that connected the PCC/

PCUN to the left and right ITG, respectively, were detected in 3/2

(left/right) of 20 controls and in 3/2 (left/right) of 20 MHE

patients. Thus, we only further compared the structural indices of

three tracts detected in all subjects (the fiber bundles located

between the PCC/PCUN and MPFC, bilateral PHG) in the same

way as performed in previous studies [33]. Values were given as

mean 6 standard deviation (SD). The results of two-sample t test

showed both decreased mean FA (mean 6 SD: 0.24060.026 and

0.27960.030 for the patients and controls respectively; t = 3.421,

P = 0.002) (Figure 4C) and increased MD [mean 6 SD:

(1.25860.152)61023 mm2/s and (1.14060.109)61023 mm2/s

for the patients and controls respectively; t = 2.839, P = 0.007]

(Figure 4D) on the fiber bundle connecting the PCC/PCUN to left

PHG in MHE patients when compared with controls. Path length

or tract count of this fiber demonstrated no significant difference

(P.0.05) (Figure 4A, 4B). In addition, no difference of any

structural connectivity indices were found in other two fibers

bundles (all P.0.05).

Functional connectivity within DMN
Figure 3 showed averaged temporal correlation coefficient r in

control (Figure 3A) and patient (Figure 3B) groups, respectively.

Based on the results from above-mentioned structural connectiv-

ity, we only examined three pairwise functional connectivity

between the PCC/PCUN and the MPFC, bilateral PHG, which

showed inter-regional structural connectivity in all subjects. The

comparison results showed that temporal correlation coefficients

between the PCC/PCUN and the MPFC (mean 6 SD:

0.10860.027 and 0.40360.030 for the patients and controls

respectively; t = 4.739, P,0.001), as well as between the PCC/

PCUN and the left PHG (mean 6 SD: 0.12160.027 and

0.25360.028 for the patients and controls respectively; t = 2.863,

P = 0.007) were decreased significantly in MHE patients when

comparing to healthy controls (Figure 4E).

Figure 1. Within-group DMN maps of healthy controls and
MHE patients. A: DMN in the healthy controls (t.2.59, P,0.01, FDR
corrected). B: DMN in the MHE patients (t.2.60, P,0.01, FDR corrected).
The DMN in healthy controls and MHE patients shows functional
connectivity among the PCC/PCUN, the MPFC, the bilateral IPL, PHG,
and ITG. DMN = default mode network; MHE = minimal hepatic enceph-
alopathy; FDR = false discovery rate. PCC/PCUN = posterior cingulate
cortex/precuneus; MPFC = medial prefrontal cortex; IPL = inferior parie-
tal lobule; PHG = parahippocampal gyrus; ITC = inferior temporal cortex.
doi:10.1371/journal.pone.0041376.g001
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Pearson correlation results
Pearson Correlation results (Figure 5) revealed that in MHE

patients, the MD of the fiber bundle connecting PCC/PCUN to

the left PHG positively correlated to the blood ammonia levels

(r = 0.616, P = 0.004) (Figure 5A), the temporal correlation

coefficients between PCC/PCUN and the MPFC showed positive

correlation to the DST scores (r = 0.705, P = 0.001) (Figure 5B).

Other structural and functional indices displayed no significant

correlation with blood ammonia levels or neuropsychological

performance.

Discussion

In the present study, by combining the structural and functional

connectivity to investigate the abnormalities of DMN in MHE

patients, we found that MHE patients have both disturbed

structural and functional connectivity within the DMN, and the

latter may be more sensitive in detecting the brain abnormality of

MHE. In addition, we also found that some structural and

functional connectivity indices of MHE patients had significant

correlation with the ammonia levels and neuropsychological tests

scores. This study linking connectivity at rest with brain structure

and function extends our understanding of the neuropathophy-

siology of MHE.

Figure 2. Example of DTI fiber tractography on one healthy control and one MHE patient. Only three fiber bundles connecting the PCC/
PCUN and MPFC, bilateral PHGs were detected in all the subjects. The color-coding of the obtained fibers is based on the standard RGB (Red, Green,
Blue) code applied to the vector at every segment of each fiber. Red indicates the medio-lateral plane. Green indicates the dorsoventral orientation.
Blue indicates the rostro-caudal direction. DTI = diffusion tensor imaging; MHE = minimal hepatic encephalopathy; PCC/PCUN = posterior cingulate
cortex/precuneus; MPFC = medial prefrontal cortex; PHG = parahippocampal gyrus.
doi:10.1371/journal.pone.0041376.g002

Table 2. Details on the brain regions in the DMN map (P,0.01, FDR corrected) from the healthy controls and MHE patients.

Anatomical region Hemisphere MNI coordinates (x, y, z) Brodmann’s area Cluster size (Voxels) t value

Healthy controls

PCC/PCUN L/R 0, 251, 30 7, 23, 26, 30 2212 15.32

IPL L 268, 266, 30 39, 40 359 16.17

R 57, 263, 27 39, 40 279 15.15

PHG L 227, 224, 215 35, 36 86 6.51

R 30, 230, 215 35, 36 50 4.77

ITG L 257, 221, 218 20, 21,38 522 9.50

R 54, 0, 233 20, 21,38 488 9.76

MPFC L/R 3, 42, 218 8, 9, 10, 11, 32 3183 13.64

MHE patients

PCC/PCUN L/R 6, 251, 33 7, 23, 26, 30 2389 16.09

IPL L 245, 272, 42 39, 40 304 15.11

R 51, 266, 30 39, 40 318 13.94

PHG L 227, 233, 215 35, 36 60 5.97

R 30, 227, 218 35, 36 55 6.67

ITG L 260, 29, 218 20, 21,38 424 8.91

R 60, 26, 224 20, 21,38 356 9.15

MPFC L/R 26, 48, 29 8, 9, 10, 11, 32 3141 10.46

DMN = default mode network; FDR = false discovery rate; MHE = minimal hepatic encephalopathy; PCC/PCUN = posterior cingulate cortex/precuneus; MPFC = medial
prefrontal cortex; PHG = parahippocampal gyrus; MNI = Montreal Neurological.
doi:10.1371/journal.pone.0041376.t002

Abnormalities of DMN in Hepatic Encephalopathy
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Structural and functional connectivity within DMN
Neuronal activity is transmitted via neuronal fibers. White

matter tracts are bundles of huge numbers of axons that connect

large neuronal population over long distances [37]. Although the

exact relationship between functional connectivity from resting-

state MRI and structural connectivity from DTI tractography has

not been explored in detail within DMN, some recent studies have

indicated that the structural connectivity is the material substrate

of functional connectivity [20,38,39]. Kaiser et al. also demon-

strated that a long-distance connectivity may be important for

complex neural systems [40]. DMN, which is thought to reflect the

brain intrinsic activities, is critical to brain function [41].

Combining the DTI tractography and functional connectivity

MRI to investigate the DMN of brain diseases such as the mesial

temporal lobe epilepsy [33] may greatly enhance the understand-

ing of the neuro-pathophysiological mechanism [20]. However, to

our knowledge, no such studies linking structural and functional

connectivity have been performed in MHE patients.

Abnormal structural connectivity within DMN in MHE
Low-grade cerebral edema is considered to be responsible for

the neuropsychological abnormalities in cirrhotic patients, pri-

marily resulting in increased MD in the widespread cortical gray

and white matter, as well as decreased FA mainly occurred in the

bilateral frontal and occipital white matter [6,7]. To investigate

this brain edema caused by chronic liver failure, previous DTI

studies often used the hypotheses-based region of interest (ROI)

analysis method, or a three-dimensional voxel-based analysis

method [7]. To the best of our knowledge, no studies have

revealed the changes of certain white fiber bundles which are the

structural bases of information processing and transporting among

linked brain regions in MHE patients, such as the fiber pathways

between the DMN regions.

The current study mainly focused on the cingulum and the

tracts connecting the PCC/PCUN to bilateral PHG intercon-

necting the brain regions within the DMN. We found that the

tract connecting the PCC/PCUN to left PHG showed both

decreased FA and increased MD in MHE patients compared with

healthy controls, but without significantly changed path length,

tracts count. These findings further supported the theory of the

role of the low cerebral edema of extracellular origin rather than

microstructural damage in chronic liver faliure [6,7]. According,

the decreased FA and increased MD of the fiber connecting PCC/

PCUN to PHG in MHE patients in this study may be explained by

the less dense packing of axonal fibers due to the cerebral edema.

In this study, the fibers connecting PCC/PCUN to right PHG and

MPFC showed slightly higher MD and lower FA in MHE than

those in controls but without significant difference among both

groups (all P.0.05). The consistency of these asymmetric changes

of FA and MD between hemispheres in MHE in the present study

needs further investigation in a larger sample size. Increased MD

and decreased FA have been reported in many previous ROI-

based DTI studies of chronic cirrhotic patients [6,8,42], in which

the abnormalities may revert to normal following effective therapy

[43] or liver transplantation [8]. So the findings of brain fiber

bundles abnormalities but without significant microstructural

damages in MHE patients extend our understanding of the

pathophysiology of this disease.

Disturbed functional connectivity within DMN in MHE
Functional connectivity is typically interpreted as the temporal

synchronization of low-frequency fluctuations arising from spon-

taneous neuronal activities in distant brain regions [10]. In the

present study, the functional connectivity between the PCC/

PCUN and MPFC, and left PHG decreased significantly in MHE

patients. The disturbed functional connectivity within DMN of

HE patients has been reported in two previous studies [16,44].

Zhang et al. first reported a decreased functional connectivity of

MPFC, PCC/PCUN and IPL within the DMN in overt HE

patients in a 1.5 T resting-state fMRI study [17]. The second study

by Chen et al. demonstrated that in a group of cirrhotic patients,

the decreased functional connectivity of PCC to MPFC, left IPL,

and left middle temporal gyrus still persisted after clinical recovery

from previous episodes of overt HE [44]. As the effect of HE is

global, whether there is an asymmetry of left and right

hemispheric functional connectivity as suggested in the present

and a previous fMRI studies [44] needs further studies in the

future. So our findings of abnormal functional connectivity within

DMN in MHE patients fit well with previous studies, which

suggested that the DMN abnormality was already present in the

early phase of the HE.

In addition, taking into account that PCC/PCUN and MPFC

in MHE patients in the present study showed decreased functional

connectivity but no significantly changed inter-regional structural

Figure 3. Functional connectivity within the DMN in healthy control and MHE patient groups. Averaged temporal correlation coefficient
r (Blue) across all subjects in the healthy control group (A) and in the MHE patient group (B). Compared with healthy controls, MHE patients show
decreased temporal correlation coefficients between the PCC/PCUN and the MPFC, as well as between the PCC/PCUN and the left PHG. MPFC is
color-coded yellow, PCC/PCUN color-coded red, the left PHG color-coded pink, the right PHG color-coded cyan. DMN = default mode network;
MHE = minimal hepatic encephalopathy. PCC/PCUN = posterior cingulate cortex/precuneus; MPFC = medial prefrontal cortex; PHG = parahippocampal
gyrus.
doi:10.1371/journal.pone.0041376.g003
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connectivity, we speculated that functional connectivity may be

more sensitive than structural connectivity in detecting the brain

abnormality within DMN in MHE patients. In general, the

functional connectivity which measures the blood oxygenation

level-dependant fluctuations is thought to be more flexible; while

the structural connectivity is relatively stable [35,45]. The

inconsistent changes of structural and functional connectivity are

also reported in previous MRI studies, e.g., Zhang et al. reported

less affected structural connectivity but widespread impaired

functional connectivity in idiopathic generalized epilepsy patients

[35]. The findings here need to be confirmed in further studies

with more patients.

Relationship between structural and functional
connectivity indices and clinical markers of MHE

In the present study, the positive correlation between MD

values of tract connecting PCC/PCUN to left PHG and the blood

ammonia levels in MHE patients was partially in accordance with

published DTI studies in chronic cirrhotic patients with or without

HE [46,47], suggesting the blood venous ammonia plays an

important role in the pathogenesis of HE. We also found a positive

correlation between functional connectivity between PCC/PCUN

and MPFC and the DST scores. PCC/PCUN is a core hub

showed strong correlation with each other brain regions in the

DMN, which plays a pivotal role for the DMN [41]. MPFC plays

Figure 4. Comparison of structural and functional connectivity between MHE patients and healthy controls. Compared to the healthy
controls, MHE patients show both decreased FA and increased MD in the tract connecting the PCC/PCUN to left PHG, and decreased functional
connectivity between the PCC/PCUN and left PHG, and MPFC. For each connection, differences are setting at the significant level of corrected P,0.05
(marked with **) with Bonferroni correction. Error bars represent the standard deviation of the measurements. MHE = minimal hepatic
encephalopathy; PCC/PCUN = posterior cingulate cortex/precuneus; PHG = parahippocampal gyrus; MPFC = medial prefrontal cortex; FA = fractional
anisotropy; MD = mean diffusivity.
doi:10.1371/journal.pone.0041376.g004
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an important role in cognitive control [48]. DST, one of the

neuropsychological tests which were most frequently used in

defining MHE, mainly tests the domains of attention, psychomo-

tor speed, and visual memory [25]. Disturbance in these domains

is common in MHE patients. Chen et al. have demonstrated that

the DST scores in MHE patients positively correlated with the

regional brain activity in the cuneus and adjacent precuneus [16].

So, these correlation results in the present study extend our

understanding of the impact of ammonia on brain connectivity, as

well as the correlation between the neuropsychological tests and

brain connectivity.

Study limitations
The current study has some limitations. First, the selection of

the seed nodes in the network and the seed size is still an issue for

debate in functional connectivity studies. For example, possible

differences between controls and patients in network topology

should be considered. In the present study we selected the ROI

based on the DMN map from the controls, taking into account

that reduced connectivity in patients may potentially result in a

worse estimation of the ROI locations [33]. Second, in this study,

the structural and subsequent functional connectivity analyses

were restricted to the three pairs of DMN regions that showing

fiber connection in all subjects. However, functional connectivity

may exist between regions which do not show direct structural

connectivity detected by DTI. Third, in the current study, only

two neuropsychological tests were used, but these two tests have

been recommended to diagnose MHE by the working party of

11th world congress of gastroenterology [3], in the future, we could

include broader spectrum of tests to evaluate the cognition

function of cirrhotic patients. In addition, neural structural

connectivity may possibly exist between some other pairs of

DMN regions with more advanced fiber tracking techniques and

instruments. Further studies in the future are warranted to confirm

or supplement the findings of this study.

Conclusion
In summary, this study demonstrated both disturbed functional

and structural connectivity within the DMN in MHE patients,

which also showed correlation with blood ammonia levels and

neuropsychological tests. In addition, the decreased functional

connectivity was detected between some DMN regions without

abnormal inter-regional structural connectivity, suggesting that the

functional connectivity may be more sensitive in detecting the

brain abnormality of MHE.
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