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Abstract: Inhibitors of sodium–glucose cotransporter 2 (SGLT2) have emerged as practice-changing
treatments for patients with type 2 diabetes, reducing both the risk of cardiovascular events and
kidney events. However, regarding the latter, caution is warranted, as these kidney endpoints are
defined using glomerular filtration rate estimations based on creatinine, the non-enzymatic product
of creatine residing in muscles. Creatinine-based estimations of the glomerular filtration rate are
only valid if the treatment has no effect on changes in muscle mass over time. Yet, circumstantial
evidence suggests that treatment with SGLT2 inhibitors does result in a loss of muscle mass, rendering
serum creatinine-based kidney endpoints invalid. Currently, it cannot be excluded that the described
renoprotective effect of SGLT2 inhibitors is in part or in whole the consequence of a loss of muscle
mass. Post-hoc analyses of existing trials or new trials based on kidney function markers independent
of muscle mass can provide more definitive answers on the proposed renoprotective effects of
SGLT2 inhibitors.
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1. Introduction

Diabetes mellitus is estimated to affect more than 450 million people worldwide and expectations
suggest this number to further increase to 690 million by 2045 [1]. Approximately 40% of them
will eventually develop diabetic nephropathy, posing diabetic nephropathy as the leading cause of
end-stage kidney disease (ESKD) [2]. Along with the associated high morbidity and mortality rates,
it constitutes an enormous public health burden.

The introduction of angiotensin-converting enzyme inhibitors as renoprotective treatment,
followed by angiotensin II receptor blockers signified important steps forward in the secondary
prevention of diabetic nephropathy [3–5]. Nevertheless, the global health burden has increased
incessantly, igniting the need for additional treatment alternatives. After years of draught and
failure with many first seemingly promising treatments (e.g., dual RAAS blockade, thiazolidinediones,
bardoxolone methyl), the sodium-glucose cotransporter 2 (SGLT2) inhibitors arose as a new promising
treatment option [6]. SGLT2 inhibitors were initially approved as a new class of glucose-lowering
agents in patients with type 2 diabetes enhancing the urinary glucose excretion through the inhibition
of glucose reabsorption in the proximal convoluted tubule.

2. SGLT2 Inhibitors and Kidney Events

Since 2008, the FDA has demanded that all new glucose-lowering agents undergo long-term
cardiovascular outcome trials. In these trials, SGLT2 inhibitors exhibited significant reductions
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in the risk of atherosclerotic cardiovascular events and heart failure-related hospitalizations [7–9].
Furthermore, post-hoc analyses suggested strong renoprotective effects of SGLT2 inhibitor treatments
(EMPA-REG OUTCOME, CANVAS Program) [10,11]. Importantly, this was against a background
of angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers, so it would be
renoprotection on top of existing treatment. Most participants, however, were at low risk of ESKD
and the effect of SGLT2 inhibitors on the need for dialysis or transplantation was therefore uncertain.
The recently conducted Canagliflozin and Renal Events in Diabetes with Established Nephropathy
Clinical Evaluation (CREDENCE) trial [12]—specifically designed to address this lacuna—suggests
that canagliflozin substantially reduces the risk of incident kidney failure. Furthermore, compared
to the placebo group, patients treated with canagliflozin exhibited sizable reductions in glycated
haemoglobin, blood pressure, body weight, albuminuria, and the slope of kidney function deterioration.
These findings were recently corroborated by a meta-analysis investigating the effects of SGLT2
inhibitors on kidney outcomes [13].

Notwithstanding these findings, some caution is warranted before SGLT2 inhibitors become
mainstay in treatment of diabetic nephropathy—and potentially in prevention of kidney function
deterioration in any kidney disease associated with glomerular hyperfiltration. The reason being that
the EMPA-REG OUTCOME, CANVAS, and CREDENCE trials do not unequivocally provide evidence
for renoprotection.

In each of the aforementioned trials, the kidney endpoints rest upon serum creatinine-based
estimations of the glomerular filtration rate (GFR), which applies to both the endpoint of rate of
change in estimated GFR (eGFR) and the endpoint of initiation of dialysis or transplantation [14].
Creatinine is a non-enzymatic degradation product of the creatine pools, which reside primarily in
muscle tissue. Therefore, endpoints relying on creatinine-based estimations of the glomerular filtration
rate are only valid if the treatment has no effect on changes in muscle mass over time. However,
the following circumstantial evidence suggests that treatment with SGLT2 inhibitors does result in loss
of muscle mass.

3. Effects of SGLT2 Inhibitors on Muscle Mass

SGLT2 inhibitors intrinsically reduce the insulin to glucagon ratio through their pharmacological
mechanisms of action, thereby serving as a stimulant for hepatic gluconeogenesis [15], and as soon
as glucose molecules excreted in urine are derived from gluconeogenesis, this will inevitably lead
to loss of both fat and muscle mass. Studies reporting on changes in body weight during SGLT2
inhibitor treatment have unequivocally shown weight reductions during SGLT2 inhibitor treatment,
a topic extensively reviewed by Pereira et al. [16] and Lee et al. [17]. Network meta-analyses estimated
the reductions in body weight to be about 1.5 to 2 kg (kg) compared with placebo for all SGLT2
inhibitors [18–20], wherein the degree of weight loss depended on the drug and dosage (e.g., 1.6 kg of
weight reduction for dapagliflozin 5 mg and 2.5 kg for canagliflozin 300 mg [19]). Since it is unlikely
that SGLT2 inhibitor treatment will lead to increased physical activity, this can best be compared to
weight loss induced by dietary restrictions, an effect known to be accompanied by both loss of fat mass
and loss of muscle mass [21]. In addition, part of the weight loss of SGLT2 inhibitors may be due to
a loss of body water together with sodium. Several studies found no effect of treatment on muscle
mass [22–25], but the results of many other studies are consistent with a reduction in both fat tissue and
muscle tissue [26–32]. Though most of the weight loss during treatment usually is the consequence of
loss of fat mass, a relatively low loss of muscle mass can already be enough to materially influence
trajectories of eGFR, if based on serum creatinine (see our calculations in Box 1). A single-arm study
investigating the effects of 12-week tofogliflozin (20 mg/day) in 37 patients with type 2 diabetes on
body composition showed 0.8 kg reduction in skeletal muscle mass, which corresponds to a 2.8%
change from baseline [32]. Similarly, another single-arm study investigating the effects of 12-week
add-on tofogliflozin (20 mg/day) to DPP-4 inhibitor treatment in 16 patients with type 2 diabetes
demonstrated a muscle mass reduction of 1.4 kg [31]. Comparable changes were found after 24 weeks
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of treatment with ipragliflozin (50 mg/day) in 20 patients with type 2 diabetes [30]. Using dual-energy
X-ray absorptiometry, a 1.7 kg reduction in lean body mass and a 0.6 kg reduction in appendicular
lean mass were observed after 24 weeks, corresponding to a 3.3% and 2.8% change from baseline,
respectively [30]. In the LIGHT trial, luseogliflozin (2.5 mg/day) led to a 1.0 kg reduction in lean
body mass after 52 weeks in 37 patients with type 2 diabetes [29], corresponding to a 2.3% change
from baseline lean body mass. Unlike these single-arm studies, the CANTATA-SU trial included 1450
patients with type 2 diabetes, who were randomly assigned (1:1:1) to either canagliflozin 100 mg,
canagliflozin 300 mg, or glimepiride [28]. After 52 weeks, patients receiving canagliflozin 100 mg and
canagliflozin 300 mg displayed a 0.9 kg and 1.1 kg reduction in lean body mass, corresponding to a 1.8%
and 2.5% change from baseline lean body mass, respectively [28]. Compared to glimepiride, the mean
reductions in lean body mass were 2.0 kg and 2.2 kg for canagliflozin 100 mg and canagliflozin 300 mg,
corresponding to reductions of 4.2% and 4.9% compared to baseline, respectively [28]. Another study
investigating the effects of canagliflozin on body composition also found reductions in lean body
mass [27]. In this study, 714 patients with type 2 diabetes were randomized to placebo, canagliflozin
100 mg, or canagliflozin 300 mg for 26 weeks [27]. Compared to placebo arm, patients on canagliflozin
100 mg lost 0.6 kg lean body mass and patients on canagliflozin 300 mg arm lost 0.9 kg lean body mass,
corresponding to a 1.2% and 1.7% change from baseline lean body mass, respectively [27]. These results
were corroborated by single-arm study showing a 1.1 kg decrease in lean body mass after 24 weeks of
canagliflozin treatment (100 mg/d), corresponding to a 2.2% decrease from baseline [26]. An overview
of muscle mass changes during SGLT2 inhibitor therapy is demonstrated in Table 1. In summary,
a variety of studies investigating the effect of SGLT2 inhibitors on body composition demonstrated
that SGLT2 inhibitor therapy is associated with a significant reduction in muscle mass.
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Table 1. Overview of the effects of SGLT2 inhibitors on lean body mass and muscle mass.

Study SGLT2
Inhibitor

Dosage
(mg/Day)

Time
(Weeks) Design Participants Measurement Technique Baseline

Value Change * Significance Percentual
Change **

Canagliflozin

Blonde et al. [27] Canagliflozin 100
300 26

Double-blind
randomized

placebo controlled
parallel group

166 Lean body mass DXA 51.2 kg
53.2 kg

−0.6 kg
−0.9 kg Yes −1.2% (−2.4%)

−1.7% (−3.4%)

Cefalu et al. [28] Canagliflozin 100
300 52

Double-blind
randomized,

active controlled
parallel group

208 Lean body mass DXA 47.7 kg
44.6 kg

−2.0 kg
−2.2 kg Yes −4.2% (−4.2%)

−4.9% (−4.9%)

Koike et al. [26] Canagliflozin 100 24 Single-arm
open-label 38 Lean body mass DXA 49.6 kg −1.1 kg Yes −2.2% (−4.8%)

Inoue et al. [33] Canagliflozin 100 52 Single-arm
open-label 20 Lean body mass BIA 51.5 kg −0.2 kg No −0.4% (−0.4%)

Seko et al. [34] Canagliflozin
and Ipragliflozin

100 (Cana)
50 (Ipra)

24 Single-arm
open-label 24 Skeletal muscle

mass BIA 25.4 kg −0.6 kg Yes −2.3% (−5.1%)

Ipragliflozin

Inoue et al. [24] Ipragliflozin 50 24

Open-label
randomized

controlled parallel
group

49 Muscle mass and
lean mass

BIA
DXA

47.1 kg
41.0 kg

−0.38 kg
−0.60 kg

No
No

−0.8% (−1.7%)
−1.5% (−3.2%)

Ohta et al. [30] Ipragliflozin 50 24 Single-arm
open-label 20

Lean body mass
and appendicular

lean mass
DXA 52.2 kg

21.8 kg
−1.7 kg
−0.6 kg

Yes
Yes

−3.3% (−7.1%)
−2.7% (−6.0%)

Kato et al. [35] Ipragliflozin 50 12 Single-arm
open-label 20 Muscle mass BIA n.r. −0.92 kg Yes n.a

Miyake et al. [36] Ipragliflozin 50 24 Single-arm
open-label 12 Skeletal muscle

mass BIA 22.75 kg −0.50 kg No −2.2% (−4.8%)

Yamamoto et al. [37] Ipragliflozin 50 16 Single-arm
open-label 24 Skeletal muscle

index BIA 7.5 kg/m2
−0.2 kg/m2 Yes −2.7% (8.7%)

Luseogliflozin

Bouchi et al. [38] Luseogliflozin 2.5 to 5 12 Single-arm
open-label 19 Skeletal muscle

index DXA 7.81 kg/m2 −0.23
kg/m2 Yes −2.9% (−12.8%)

Seino et al. [39] Luseogliflozin 2.5 to 5 52 Single-arm
open-label 22 Lean body mass BIA 45.25 kg −0.44 kg No −1.0% (−1.0%)

Sasaki et al. [29] Luseogliflozin 2.5 to 5 52 Single-arm
open-label 36 Skeletal muscle

mass index DXA 7.74 kg/m2 −0.155
kg/m2 Yes −2.0% (−2.0%)
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Table 1. Cont.

Study SGLT2
Inhibitor

Dosage
(mg/Day)

Time
(Weeks) Design Participants Measurement Technique Baseline

Value Change * Significance Percentual
Change **

Dapagliflozin

Bolinder et al. [40] Dapagliflozin 10 24

Double-blind
randomized

placebo controlled
parallel group

182 Lean body mass DXA 56.2 kg −0.60 kg Yes −1.1% (−2.3%)

Kosugi et al. [41] Dapagliflozin 5 12 Single-arm
open-label 26 Lean body mass DXA 52.0 kg −0.50 kg No −1.0% (−4.2%)

Fadini et al. [42] Dapagliflozin 10
Single-blind

placebo controlled
parallel group

31 Lean body mass BIA n.r. −2.9 kg Yes n.a.

Tobita et al. Dapagliflozin 5 24 Single-arm
open-label 11 Skeletal muscle

mass BIA 24.6 kg +0.1 kg No +0.4% (+0.9%)

Lundkvist et al. [25] Dapagliflozin 10 24

Double-blind
randomized

placebo controlled
parallel group

50 Total lean tissue MRI 42.6 L −0.19 L No −0.4% (−1.0%)

Sugiyama et al. [23] Dapagliflozin 5 26
Open-label active
controlled parallel

group
50 Skeletal muscle

mass BIA 28.7 kg −0.2 kg No −0.7% (−1.4%)

Tofogliflozine

Kamei et al. [32] Tofogliflozin 20 12
Retrospective

single-arm
open-label

37 Muscle mass BIA 29.8 kg −0.8 kg Yes −2.7% (−11.6%)

Matsuba et al. [31] Tofogliflozin 20 12 Single-arm
open-label study 16 Muscle mass BIA n.r. −1.37 kg Yes n.a.

Iwahashi et al. [43] Tofogliflozin 20 48 Single-arm
open-label study 20 Lean body mass BIA 47.3 kg +0.2 kg No +0.4% (+0.5%)

Empagliflozin

Javed et al. [44] Empagliflozin 25 12

Open-label
randomized

placebo controlled
parallel group

39 Lean body mass BIA 54.8 kg −1.7 kg Yes −3.1% (−13.4%)

Abbreviations: n.r.: not reported; n.a.: not available; BIA: bioelectrical impedance; DXA: dual-energy x-ray absorptiometry. * For studies with a control group defined as the difference in
change vs. the control group. ** Percentage change during the study period is given first and the corresponding percentage change calculated for one year if change in muscle mass would
proceed at the same pace is given between brackets.
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Box 1. Simplified calculation explaining the effect of serum creatinine reductions, reflecting loss of
muscle mass, on changes in estimated GFR over time.

eGFR = 141 ∗ (Scr/0.9)−1.209
∗ 0.993Age (1)

∆eGFR = eGFRyear x+1 − eGFR year x (2)

∆eGFR = (141 ∗ (Scr year x+1/0.9)−1.209
∗ 0.993Age+1) − (141 ∗ (Scr year x/0.9)−1.209

∗ 0.993Age) (3)

∆eGFR = (141 ∗ (Scryear x+1/0.9)−1.209
∗ 0.99364) − (141 ∗ (1.34/0.9)−1.209

∗ 0.99363) (4)

∆eGFR = (89.9 ∗ (Scryear x+1/0.9)−1.209) − 56.0 (5)

89.9 × (Scryear x+1/0.9)−1.209 = ∆eGFR + 56.0 (6)

(Scryear x+1/0.9)−1.209 = (∆eGFR + 56.0)/89.9 (7)

Scryear x+1/0.9 = ((∆eGFR + 56.0)/89.9)−0.827 (8)

Scryear x+1 = 0.9 ∗ ((∆eGFR + 56.0)/89.9)−0.827 (9)

Scryear x+1 = 0.9 ∗ ((1.52 + 56.0)/89.9)−0.827 Scryear x+1 = 0.9 ∗ ((2.74 + 56.0)/89.9)−0.827 (10)

Scryear x+1 = 1.30 mg/dL Scryear x+1 = 1.28 mg/dL (11)

Change (%) = (1.30 − 1.34)/1.34 ∗ 100% Change (%) = (1.28 − 1.34)/1.34 ∗ 100% (12)

Change (%) = −2.8% Change (%) = −4.5% (13)

The change in serum creatinine required to explain a certain yearly difference in kidney function deterioration,
between the canagliflozin and placebo group, can be calculated. For these calculations, we used a hypothetical
example, based on the average age and eGFR at baseline of the CREDENCE trial. Therefore, calculations are
performed for a white, 63-year-old, male subject, with an eGFR of 56 mL per minute per 1.73 m2—a value which
corresponds to a serum creatinine of 1.34 mg/dL [37]. In this example, we aim to determine what change in serum
creatinine would be required to explain the between-group difference in eGFR slopes between the canagliflozin
and placebo group of the CREDENCE trial by the relative decline in muscle mass, rather than by the relative
improvement in renal function. To simplify calculations, the calculations are performed for a timeframe of one
year and we use a delta eGFR (∆eGFR) rather than a slope. ∆eGFR is defined as the difference between eGFR at
timepoint x and timepoint x + 1 year (formulas nr. 1–3) and is used to resemble the between-group difference
in eGFR slopes between the canagliflozin and placebo group of the CREDENCE trial. For our calculations we
define the age at timepoint x as 63 years and serum creatinine at timepoint x as 1.34 mg/dL (formulas nr. 4–5).
The equation is rewritten to calculate the serum creatinine value after a year (formulas nr. 6–9), assuming a
certain ∆eGFR. The formula now is written so that it can be used to calculate the serum creatinine value after
one year that is required to fully explain a certain ∆eGFR.

In the CREDENCE trial, the least-squares mean change in the eGFR slope was less in the canagliflozin group
than in the placebo group (–3.19 ± 0.15 vs. –4.71 ± 0.15 mL per minute per 1.73 m2 per year). This corresponds
to a between-group difference of 1.52 mL per minute per 1.73 m2 per year. If we normalize the eGFR slope of
the canagliflozin group to the placebo group, this indicates a yearly relative increase in eGFR of 1.52 mL per
minute per 1.73 m2. Therefore, we can substitute ∆eGFR for this value and use the formula to calculate what
decrease in serum creatinine as a consequence of a putative decrease in muscle mass would be able to fully
explain this difference in slope (formulas nr. 10–11). These calculations show that a 2.8% decrease in serum
creatinine (from 1.34 to 1.30 mg/dL in the first year of the trial) is enough to fully explain a 1.52 mL per minute
per 1.73 m2 difference in kidney function deterioration between the canagliflozin and placebo group (formulas
nr. 12–13) during the first year of the trial and an additional 2.8% per year in each following years. Because there
is a proportional relationship between muscle mass and serum creatinine, this indicates that an average yearly
loss of 2.8% of muscle mass during the years of the trial can explain the seeming average of 1.52 mL per minute
per 1.73 m2 less deterioration in eGFR. This means that, for each year of the trial, even if there was no actual
renoprotection, but rather a yearly loss of muscle mass of 2.8%, a seeming difference of 1.52 mL per minute per
1.73 m2 per year (compared to the placebo group) could be explained.

Because in the CREDENCE trial a large drop in eGFR in response to the start of canagliflozin treatment
compared to placebo was observed during the first 3 weeks—which cannot be explained by effects on muscle
mass, but is very likely due to mitigation of renal hyperfiltration by canagliflozin—we also performed alternative
calculations based on reported differences in eGFR slopes between the canagliflozin and placebo group, in
which the effects on eGFR during the first three weeks of the trial were discarded. After excluding the effects
of canagliflozin and placebo on eGFR during the first three weeks of the trial, the CREDENCE investigators
reported an average between-group difference in the slope of eGFR of 2.74 mL per minute per 1.73 m2 per year.
If we use this value instead of the value of 1.52 mL per minute per 1.73 m2 per year, a 4.5% decrease in serum
creatinine (from 1.34 mg/dL to 1.28 mg/dL in the first year of the trial, if the effects on eGFR observed during the
first three weeks are adjusted for) would be required to fully explain a difference of 2.74 mL per minute per 1.73
m2 during each year of the trial.
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4. The Effect of Loss of Muscle Mass on Creatinine-Based eGFR Trajectories

The results of the aforementioned studies fuel the plausibility that treatment with SGLT2 inhibitors
will result in a loss of muscle mass and, hence, a loss of the endogenous creatine pool from which
creatinine is synthesized. On a daily basis, roughly 1.7% of the total creatine pool is converted to
creatinine through a low-grade non-enzymatic degradation reaction [45]. A decrease in muscle mass
therefore implicates a decrease in serum creatinine, which, in turn, steers towards to an underestimation
of kidney function trajectories when such estimates are derived from serum creatinine concentrations.
Compared to a stable muscle mass over time, a loss of muscle mass over time erroneously suggests
either improvement in kidney function or slower rate of kidney function deterioration.

In the CREDENCE trial, the difference in annual deterioration of eGFR between the SGTL2
inhibitor group and the placebo group was 1.52 mL per minute per 1.73 m2. Because of the proportional
relationship between muscle mass and serum creatinine, a similar difference could be achieved by
a 2.8% reduction in muscle mass in a 63-year-old white male population with a baseline eGFR of 56
mL per minute per 1.73 m2 (Box 1). This percentage reduction in muscle mass is comparable to the
relative changes in lean body mass and/or muscle mass observed in studies investigating the effects of
SGLT2 inhibitors on body composition, i.e., 2.5% lean body mass reduction (4.9% when compared
to the control group) after 52 weeks of canagliflozin (300 mg/day) treatment in the CANTATA-SU
trial [28]. It should be noted, however, that during the first 3 weeks of the CREDENCE trial, a greater
reduction in the eGFR was observed in the canagliflozin group compared with the placebo group.
After excluding the first three weeks, the annual deterioration in kidney function between the SGTL2
inhibitor group and the placebo group was 2.74 mL per minute per 1.73 m2. A similar annual difference
could be achieved by a 4.5% reduction in muscle mass per year (Box 1).

It is important to generate investigational data to confirm or not confirm this hypothesized
scenario, since continued loss of muscle mass will comprise patients’ capability to recover from
intercurrent illnesses with increased risk of premature mortality [46–48]. If confirmation was the case,
it could even be hypothesized that protective effects of SGLT-2 inhibitors in relatively short running
long-term outcome trials could turn into adverse effects if trial periods were extended from a typical
period of 3 years to, e.g., 10 years.

Importantly, it is not only the endpoint of rate of change in eGFR which is affected by muscle
mass. It is likely that the endpoint of initiation of dialysis or transplantation is affected by changes in
muscle mass as well, since eGFR also plays a role in decisions to start with dialysis or to proceed with
transplantation [49]. Treatment regimens inducing loss of muscle mass will, by consequence, cause an
overestimation of eGFR and hence a deferral in the initiation of dialysis or transplantation when such
estimates are based on serum creatinine. Furthermore, the diuretic nature of SGLT2 inhibitors will
intrinsically prevent fluid overload—a common cause for initiating dialysis [50]—further driving the
result towards the seeming prevention of the endpoint of initiation of dialysis or transplantation.

We therefore hypothesize that the prevention of kidney function deterioration—as surmised in the
EMPA-REG OUTCOME, CANVAS, and CREDENCE trials—may at least partially be the consequence
of a treatment-induced loss of muscle mass. It would be of substantial interest to investigate whether
long-term SGLT2 inhibitor treatment truly inflicts loss of muscle mass. If so, we propose that
the potential renoprotective effects of SGLT2 inhibitors be thoroughly analyzed with muscle mass
independent measures of GFR. Muscle mass independent measures of GFR include estimation of
the GFR based on cystatin C or symmetric dimethylarginine. Alternatively, the glomerular filtration
rate can be measured by direct methods—e.g., by the assessment of inulin clearance—although these
methods are more invasive and time-consuming than the muscle mass independent methods for the
estimation of GFR.

It should be noted that our discussion and hypothesis apply to long-term changes in eGFR, and
not to changes in albuminuria. There is convincing evidence that SGLT2 inhibitors protect against the
development of albuminuria [51], which is an acknowledged risk factor for development of ESKD,
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with meta-analyses showing that a 30% reduction in albuminuria is associated with a 24% reduction in
the risk of development of ESKD [52].

Another noteworthy limitation of many of the studies that have investigated changes in body
composition during SGLT2 inhibitor therapy comprises their use of measurements of lean body
mass, rather than specific components making up lean body mass. Lean body mass does not equal
muscle mass, but also bone, skin, and other organs. More importantly, lean body weight and muscle
mass are also influenced by hydration status, while in an ideal situation, one would like to have
information on dry fat mass and dry muscle mass. Additionally, it should be noted that most of the
studies investigating the effect of SGLT2 inhibitors on body composition have used bioimpedance or
dual-energy x-ray absorptiometry, and only a few have used other techniques, including magnetic
resonance imaging, computerized tomography, or the urinary creatinine excretion rate. Lastly, it is
important to note that the precision of the serum creatinine measurements was not discussed in this
perspective, though reported inter-assay coefficients of variation of up to 2.65% may hinder detection
of relatively small differences in serum creatinine over time in individual subjects [53,54].

5. Conclusions

Overall, SGLT2 inhibitors have emerged as practice-changing treatments for patients with type
2 diabetes. However, regarding the proposed effects on eGFR based kidney events, some caution is
warranted. There are reasons to believe that SGLT2 inhibitor treatment results in the loss of muscle
mass over time, thereby rendering serum creatinine-based kidney endpoints invalid. Therefore, at this
time, it cannot be excluded that the described renoprotective effect of SGLT2 inhibitors is in whole
or in part the consequence of a loss of muscle mass. Post-hoc analyses of existing trials or new trials
based on measures of GFR independent of muscle mass can provide more definitive answers on the
proposed renoprotective effects of SGLT2 inhibitors.
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