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Abstract

Introduction

Association between elevated cytokeratin 18 (CK-18) levels and hepatocyte death has

made circulating CK-18 a candidate biomarker to differentiate non-alcoholic fatty liver from

non-alcoholic steatohepatitis (NASH). Yet studies produced variable diagnostic perfor-

mance. We aimed to provide summary estimates with increased precision for the accuracy

of CK-18 (M30, M65) in detecting NASH and fibrosis among non-alcoholic fatty liver disease

(NAFLD) adults.

Methods

We searched five databases to retrieve studies evaluating CK-18 against a liver biopsy in

NAFLD adults. Reference screening, data extraction and quality assessment (QUADAS-2)

were independently conducted by two authors. Meta-analyses were performed for five

groups based on the CK-18 antigens and target conditions, using one of two methods: linear

mixed-effects multiple thresholds model or bivariate logit-normal random-effects model.

Results

We included 41 studies, with data on 5,815 participants. A wide range of disease prevalence

was observed. No study reported a pre-defined cut-off. Thirty of 41 studies provided suffi-

cient data for inclusion in any of the meta-analyses. Summary AUC [95% CI] were: 0.75

[0.69–0.82] (M30) and 0.82 [0.69–0.91] (M65) for NASH; 0.73 [0.57–0.85] (M30) for fibrotic
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NASH; 0.68 (M30) for significant (F2-4) fibrosis; and 0.75 (M30) for advanced (F3-4) fibro-

sis. Thirteen studies used CK-18 as a component of a multimarker model.

Conclusions

For M30 we found lower diagnostic accuracy to detect NASH compared to previous meta-

analyses, indicating a limited ability to act as a stand-alone test, with better performance for

M65. Additional external validation studies are needed to obtain credible estimates of the

diagnostic accuracy of multimarker models.

Introduction

Non-alcoholic fatty liver disease (NAFLD), a condition with a complex and multifactorial eti-

ology, has rapidly emerged as the most common cause of chronic liver disease in the United

States and Europe [1, 2]. The global prevalence is approximately 25%, representing a wide his-

tological spectrum from simple steatosis (NAFL), non-alcoholic steatohepatitis (NASH) [3] to

hepatic fibrosis. Fibrosis is the strongest predictor for long-term clinical outcomes in NAFLD

patients, thereby, a key target event for patient stratification and clinical trial recruitment [4].

The clinical reference standard for detecting NASH activity and fibrosis stages is a liver

biopsy, a practice with well-established limitations [5–7]. As such, only patients at highest risk

should be pre-selected for such an invasive and resource intensive procedure. The discovery of

less invasive methods with performance comparable to liver biopsy has become essential.

Several blood-based biomarkers have been studied for their ability to identify NASH or

fibrosis. Cytokeratin 18 (CK-18) is the main intermediate filament protein in hepatocytes and

is released upon the initiation of cell death. The association between elevated CK-18 levels and

cell death in the liver [8, 9] has made circulating CK-18 (both M30 and M65 antigens) a candi-

date marker for detecting NASH and fibrosis [10], as a stand-alone test and, more recently, as

part of multimarker models.

Although the M30 and M65 antigens are of the same protein, there is a mechanistic distinc-

tion between the two. M30 measures the caspase-cleaved CK-18 revealed during apoptosis,

while M65 measures the full-length protein, including both caspase-cleaved and intact CK-18,

which is released from cells undergoing necrosis [11].

In recommendations by the EASL-EASD-EASO Clinical Practice Guidelines [12] the per-

formance of CK-18 M30 to differentiate NASH from NAFL was judged modest, as per data

from a meta-analysis of 11 studies [13]. The Asia-Pacific Working Party on NAFLD [14] simi-

larly concluded modest performance, referencing a meta-analysis of 10 studies [15]. A single

study mentioned in both guidelines criticized CK-18 for its limited performance for detecting

NASH at a threshold of 165 U/L [10]. However, it is not clear what thresholds would then

maximize the test’s sensitivity or specificity.

We found several limitations and methodological concerns in the above-mentioned meta-

analyses. One performed a meta-analysis on only the M30 antigen in detecting NASH, with

the rationale that M65 performed similarly [13]. However, it has been shown that M65 outper-

forms M30 [9]. Further, we found several methodological concerns in the systematic review by

Chen et al. such as overlapping patient populations included in the meta-analysis [15].

An updated and more methodologically robust meta-analysis would be able to generate, in

principle, summary estimates with increased precision and more general validity. To address

this need, we aimed to conduct a systematic review and meta-analysis of the accuracy of both
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CK-18 antigens (M30 and M65) in identifying NASH, fibrotic NASH, and fibrosis stages

among NAFLD adults.

Materials and methods

This systematic review was conducted as part of the evidence synthesis efforts of the LITMUS

(Liver Investigation: Testing Marker Utility in Steatohepatitis) project, funded the European

Union’s IMI2, aiming to evaluate biomarkers for use in NAFLD. The protocol of the complete

systematic review is available in PROSPERO (registration number: CRD42018106821). This

study report was prepared using the PRISMA-DTA statement, see PRISMA checklist in S1

Table in S1 File.

Search strategy

A comprehensive search strategy, containing words in the title/abstract or text words across

the record and the medical subject heading (MeSH), was developed with a search specialist.

MEDLINE (via OVID), EMBASE (via OVID), PubMed, Science Citation Index, and CEN-

TRAL (The Cochrane Library) were searched to retrieve potentially eligible studies from

inception to August 2018 (see S2 Table in S1 File). We further conducted a manual screening

of relevant systematic reviews and reference lists and contacted partners within the LITMUS

consortium. The search was updated in May 2019, and again in June 2020.

Study selection

Search results of all databases were merged and deduplicated using Endnote. Titles were

screened by one reviewer (YV); a second reviewer independently screened 10% (MHZ).

Abstract and full text screening was conducted by two independent reviewers (JL and YV), fol-

lowing pre-established inclusion and exclusion criteria. Any discrepancies were resolved by

discussion between the two reviewers. Title and abstract screening phases were conducted on

Rayyan QCRI (https://rayyan.qcri.org).

Inclusion and exclusion criteria

We searched for studies including adults (�18 years) with clinical suspicion or biopsy proven

NAFLD, with paired data on liver histology and CK-18 (M30 or M65). Diagnostic accuracy

studies reported in full articles in peer-reviewed journals, or as conference abstracts, in any

language were eligible. Studies with insufficient information for making decisions on inclu-

sion, for evaluating methodological quality, or for calculating diagnostic accuracy were

excluded. Study groups with a mix of conditions (e.g. viral hepatitis) were only included if out-

comes were separately reported for NAFLD patients.

The target conditions for this systematic review were NASH, fibrotic NASH, and liver fibro-

sis. The NAFLD Activity Score (NAS) [16] is the most commonly used pathologic criterion for

evaluating NASH. We considered a threshold value of NAS�4 with at least one point for each

criteria of steatohepatitis for the characterization of NASH. See S3 Table in S1 File for different

histological scoring systems developed to characterize NAFLD progression. Fibrotic NASH

was defined using the above-mentioned criteria for NASH and at least F1 or more.

A five-point scoring system (F0-F4), developed by the NASH clinical research network

(NASH CRN) [17], is the most commonly used for fibrosis staging. Studies assessing signifi-

cant (�F2) and advanced (�F3) fibrosis were included. See S4 Table in S1 File for different

scoring systems for liver fibrosis, and S5 Table in S1 File for a conversion grid of the different

scoring systems.
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Data extraction and quality assessment

The following information was extracted: study characteristics, clinical characteristics, index

test features, liver biopsy features, and data that allowed construction of a 2x2 contingency

table (true positives, true negatives, false positive and false negatives) to assess the performance

of the index test. For studies that reported accuracy data for multiple thresholds, all data were

extracted.

When pertinent data were not reported, the corresponding study author was contacted.

Data were extracted independently and cross-checked by two reviewers (JL and YV).

The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool [18] was used

to assess methodological quality of all available full text studies. Two reviewers (JL and YV)

independently evaluated the risk of bias and concerns about applicability of the included pri-

mary studies using the four domains of QUADAS-2, assigning each study with a judgement of

‘low’, ‘high’, or ‘unclear’ risk.

Statistical analysis

Included studies were classified into five groups for meta-analysis, based on the availability of

data on the CK-18 antigens and target conditions: (1) CK-18 M30 for detecting NASH, (2)

CK-18 M65 for detecting NASH, (3) CK-18 M30 for detecting fibrotic NASH, (4) CK-18 M30

for detecting significant fibrosis, and (5) CK-18 M30 for detecting advanced fibrosis.

Sensitivity and specificity estimates from each study, with respective 95% confidence inter-

vals (95% CI), were graphically illustrated as forest plots, for each reported threshold, using

RevMan.

Two different meta-analytical methods were applied for the combinations of CK-18 anti-

gens and target conditions based on the number of reported threshold values. For groups 1–3,

we applied a linear mixed effects multiple thresholds model (diagmeta package in R) as a

majority of the primary studies reported multiple threshold values. The multiple thresholds

model utilizes the number of true and false positives and true and false negatives at every

threshold to produce summary receiver operating characteristic (SROC) curves. With the

model, we could calculate estimates of sensitivity, specificity at any given threshold. We calcu-

lated the threshold value that would maximize Youden’s J statistic (also called Youden’s

index): the sum of sensitivity and specificity minus 1.

We computed estimates of positive and negative predictive values in settings with different

disease prevalence. We further assessed thresholds of the index test required to achieve pre-

specified high values of sensitivity and specificity. The minimally acceptable performance lev-

els of AUC and sensitivity and specificity for the index test was 0.80, for it to exceed that of

other NAFLD-related screening and diagnostic biomarkers.

As a majority of the primary studies in groups 4 and 5 reported only a single threshold

value, we applied a bivariate logit-normal random-effects model (mada package in R) to com-

pute summary estimates of sensitivity and specificity. SROC curves were constructed to repre-

sent the overall diagnostic accuracy of the index test.

Publication bias was not formally evaluated as no accepted statistical tests can reliably dis-

criminate publication bias from other sources of bias in diagnostic meta-analyses [19]. Hetero-

geneity between and within studies was incorporated by calculating 95% prediction intervals

[20]. The confidence interval around the summery point reflect the statistical imprecision

around the mean. The prediction region around the summary point indicates the region

where we would expect results from a new study in the future to lie. It reflects both the uncer-

tainty around the mean and the between study heterogeneity and is therefore wider than the

confidence region.
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We investigated the influence of studies with compromised methodological quality by

excluding those at high risk of bias or with applicability concerns in a sensitivity analysis. We

further evaluated the effect of pooling data from various ELISA assays by excluding studies

that either did not disclose the assay used or used one from a manufacturer that was not

PEVIVA. Sensitivity analysis was also conducted among solely biopsy-proven NAFLD

patients, excluding those with clinically suspected NAFLD.

All analyses were conducted using R for Windows (Version 3.6.0; R Foundation for Statisti-

cal Computing, Vienna, Austria).

Results

Search results

Our initial search of all biomarkers identified 6,220 studies post deduplication. Following the

pre-defined inclusion and exclusion criteria, 778 studies were eligible for abstract screening, of

which 265 underwent full-text review. A total of 46 study reports were included for CK-18.

Following the exclusion of 10 and inclusion of five studies from the two search updates, a total

of 41 studies (5,815 participants) could be included in the present systematic review (Fig 1).

Thirty studies were included in one or more of the meta-analyses.

Study characteristics

Characteristics of the included studies can be found in Table 1. A majority of the studies (32/

41) had included NAFLD patients with mean BMI<35. A relatively wide range of disease

prevalence was observed; 21% to 85% for NASH, 21% to 62% for fibrotic NASH, 18% to 59%

for significant fibrosis and 19% to 36% for advanced fibrosis. The publication year spanned

from 2006 to 2020; 27 studies were published after 2012.

Thirty-two studies investigated the accuracy of M30 in detecting NASH, and three for

fibrotic NASH. The accuracy of M30 in detecting significant and advanced fibrosis was studied

in six and seven studies, respectively. We further identified eight diagnostic accuracy studies of

M65 for NASH and one study of M65 for significant fibrosis.

Quality assessment

The methodological quality of the 41 studies, assessed with QUADAS-2, is summarized in S1

and S2 Figs in S1 File. Ten studies were scored as high risk of bias in the patient selection

domain [9, 10, 29, 31, 36, 37, 40, 47, 50, 58]. No study had low risk of bias in the index test

domain, with 22 judged as high risk, due to the lack of a pre-established threshold value for

CK-18.

Seven studies were scored as unclear risk of bias in the reference standard domain, for fail-

ing to report whether biopsy reviewers were blinded to clinical data [8, 9, 29, 32, 40, 49, 57].

Only three studies were classified as at high risk of bias for flow and timing [10, 25, 40]. We

further graded four studies with high concern regarding applicability in the patient selection

domain [30, 46, 54, 57].

NASH

Accuracy of CK-18 M30 in detecting NASH. A total of 22 studies (3,503 participants,

2,010 with NASH) were included in the meta-analysis of the diagnostic accuracy of M30 in

detecting NASH (S3 Fig in S1 File). Ten studies reported multiple threshold values, resulting

in 47 thresholds (41 unique values) included in our model. The thresholds spanned from 111

to 670 U/L. The multiple thresholds model produced a summary area under the receiver
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Fig 1. PRISMA flow diagram of included primary studies.

https://doi.org/10.1371/journal.pone.0238717.g001
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Table 1. Characteristics of all included studies.

Study ID Country N
(female)

Target

condition

Prev

(%)

Population BMI,

mean

(SD)

ALT,

median

(IQR)

AST,

median

(IQR)

Comorbidities (%)

1. Aida 2014 [21] Japan 116 (75) NASH 44 Biopsy proven NAFLD 27.2

(18.8–

45.9)†

52 (31–

266)

42 (13–

256)

NR

2. Cao 2013 [22] China 95 (73) NASH 46 Biopsy proven or clinical

suspicion of NAFLD

28.5

(2.8)

57.0 (48.0–

71.0)

48.0 (44.0–

54.0)

DM: 24 HTN: 48 DL: 86

3. Chan 2014 [23] Malaysia 93 (48) NASH 42 US diagnosed NAFLD 29.4

(3.8)

70 (44–

109)

41 (28–64) DM: 59 HTN: 88 DL: 97

4. Chuah 2019 [24] Malaysia 196 (99) Fibrotic NASH 21 US diagnosed NAFLD 29.8

(4.5)

67 (44-

105)

39 (29-61) T2DM: 46 HTN: 58 DL:

80 Obesity: 86

5. Cusi 2013 [10] USA 318

(113)

NASH 63 Obese patients with biopsy

proven NAFLD

33.3

(0.9)

40 (1)‡ 55 (2) ‡ NR

6. Darweesh 2019

[25]

Egypt 25 (55.6) Steatosis NR Biopsy proven NAFLD 33.52

(4.56)

50.57

(31.06)

48.29

(46.51)

NR

7. Dvorak 2014

[26]

Czech

Republic

56 (NR) NASH 68 Biopsy proven NAFLD 29.6

(4.3)

120 (90) ‡ 66 (60) ‡ NR

8. Ergelen 2015

[27]

Turkey 87 (44) Sig. fibrosis 39 Biopsy proven NAFLD 30.6

(5.4)

77.8 (56.1)
‡

49.6 (30.5)
‡

NR

Adv. fibrosis 22

9. Feldstein 2009

[8]

USA 139 (88) NASH 50 Biopsy proven NAFLD 34.2

(30.3–

37.8) †

43.0 (31.0–

62.0)

66.0 (46.0–

109.0)

DM: 19 HTN: 43 HL: 60

10. Grigorescu

2012 [28]

NR 79 (23) NASH 75 Biopsy proven NAFLD 30 (3.8) 76.8 (39.3)
‡

35.9 T2DM: 16 HTN: 19

11. Hasegawa 2015

[29]

Japan 41 (7) NASH 49 US and CT diagnosed

NAFLD

NR 75.3 (68.4)
‡

53.6 (46.8)
‡

NR

12. Huang 2017

[30]

Taiwan 76 (22) Sig. fibrosis 18 Biopsy proven NAFLD 28.7

(4.4)

117 (87.9)
‡

63.1 (33.3)
‡

DM: 54 HTN: 65

Adv. fibrosis 9

13. Joka 2011 [9] Germany 22 (7) NASH 55 Biopsy proven NAFLD 27 (1) 75.5 (9.5) ‡ NR NR

14. Kamada 2013

[31]

Japan 126 (56) NASH 85 Biopsy proven NAFLD 27.5

(5.1)

95.8 (72.0) 62.9 (39.3) NR

15. Kawanka 2015

[32]

Japan 146 (78) NASH 71 Biopsy proven NAFLD 26.8 61 (12–

264)

38 (14–

204)

NR

16. Kazankov 2016

[33]

Australia,

Italy

331

(112)

NASH 40 Biopsy proven NAFLD 29.2

(4.5)

67.6 40.7 DM: 20

17. Kim 2013 [34] Korea 108 (35) NASH 62 Biopsy proven NAFLD 28.71

(3.77)

108.68

(82.07) ‡
63.54

(41.62) ‡†
MetS: 48

18. Kobayashi 2017

[35]

Japan 229

(107)

NASH Fibrotic

NASH

61 45 Biopsy proven NAFLD 26.6 79.2 50.7 DM: 45 HTN: 42 DL: 56

19. Liu 2016 [36] China 48 (13) NASH 65 Biopsy proven NAFLD 26.9

(0.5)

68.7 (7.4) ‡ NR NR

20. Liu 2019 [37] China 82 (23.5) NASH 47 Biopsy proven NAFLD 26.8

(3.3)

80.5 (76.4) 47.9 (31.8) DM: 32 HTN: 35

21. Malik 2009 [38] USA 95 (37) NASH 63 Biopsy proven NAFLD 31.3

(4.2)

74.5 (9.7) ‡ NR T2DM: 27 HTN: 49

22. Mohammed

2019 [39]

Egypt 62 (62) NASH 66 US proven NAFLD 30.8

(4.02)

75.53

(22.3)

69 (29.5) MetS: 59

23. Musso 2010

[40]

NR 40 (12) NASH 58 Biopsy proven NAFLD 25.1

(1.6)

120.7 (8) ‡ 48 (3) ‡ MetS: 43

24.

Papatheodoridis

2010 [41]

Greece 58 (26) NASH 52 Biopsy proven NAFLD 28.6

(4.5)

75.4 39.5 DM: 16

25. Pimentel 2016

[42]

USA 183 (73) NASH Adv.

fibrosis

49 19 Biopsy proven NAFLD 34 (7) 50.6 (32) ‡ 75.8 (50) ‡ T2DM: 36 HTN: 52

(Continued)
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operating characteristic curve (AUC) of 0.75 (95% CI: 0.69–0.82) with a mean sensitivity of

0.61 (95% CI: 0.51–0.71) and mean specificity of 0.81 (95% CI: 0.71–0.88). The Youden-thresh-

old value was 304 U/L (Fig 2A).

Using the multiple thresholds model, we calculated the positive predictive value (PPV) and

the negative predictive value (NPV) under different clinical settings (5% to 70% NASH preva-

lence) for desired levels of sensitivity and specificity (Table 2). Optimizing sensitivity (0.80 to

Table 1. (Continued)

Study ID Country N
(female)

Target

condition

Prev

(%)

Population BMI,

mean

(SD)

ALT,

median

(IQR)

AST,

median

(IQR)

Comorbidities (%)

26. Rosso 2016 [43] Italy 105 (29) Sig. fibrosis 59 Biopsy proven NAFLD 28.1

(3.9)

65 (57–79) 36 (33–41) NR

Adv. fibrosis 36

27. Shen 2012 [44] China 147 (65) NASH 47 Biopsy proven NAFLD 27.4

(3.9)

73 (45) ‡ NR T2DM: 48 HTN: 43

28. Tada 2018 [45] Japan 170 (91) NASH 76 Biopsy proven NAFLD 27.6

(24.9–

30.7) †

79 (49–

126)

52 (35–82) DM: 51 HTN: 28 DL: 44

29. Tamimi 2011

[46]

USA 95 (47) NASH 43 Clinically suspected NASH 31.4

(5.1)

53.5 (32–

87)

54 (38–75) DM: 27 HTN: 45 MetS:

50 HL: 53

30. Valva 2018 [47] Argentina 34 (15) Sig. fibrosis 18 Biopsy proven NAFLD NR 81.5 (31–

279)

52.5 (22–

208)

Obesity: 25

31. Wieckowska

2006 [48]

USA 39 (21) NASH 31 Biopsy proven NAFLD 31.5

(4.0)

73.0 (54.0–

104.0)

58.0 (46.0–

76.0)

DM: 31 HTN: 46 HL: 46

32. Yang 2015 [49] China 179 (93) NASH 38 Biopsy proven NAFLD NR 116 (30.2)
‡

60 (22.1) ‡ NR

33. Yilmaz 2007

[50]

Turkey 83 (38) Sig. fibrosis 20 Suspected NAFLD 30.3

(4.8)

60 (10–

184)

42 (16–

102)

DM: 15 HTN: 34 MetS:

35

34. Younes 2018

[51]

Italy 292 (91) NASH Adv.

fibrosis

77 25 Biopsy proven NAFLD 28.9

(4.1)

66 (61–71) 36 (35–38) MetS: 32 DM: 20

35. Younossi 2008

[52]

USA 69 (46) NASH 32 Biopsy proven NAFLD NR 27.1 (18.4)
‡

36.6 (27.3)
‡

NR

36. Zheng 2020

[53]

China 38 (36.2) NASH 53 Biopsy proven NAFLD

(ALT� 35 (men),� 23

(women))

26.05

(3.33)

27.70

(7.77)

25.77

(6.75)

DM: 36 MetS: 55 HTN:

35

37. Anty 2010 [54] France 310

(267)

NASH NR Morbidly obese, bariatric

surgery patients

44.7

(5.5)

35.3 (35.7)
‡

NR NAS<5 DM: 19.6 MetS:

47.6 NAS�5 DM: 43.6

MetS: 82.1

38. Boursier 2018

[55]

France,

Belgium

846

(525)

NASH Fibrotic

NASH

54 23 Biopsy proven NAFLD, obese

patients, morbidly obese

patients referred for bariatric

surgery

38.5

(7.6)

49.7 (31.7)
‡

35.5 (19.6)
‡

MetS: 68 DM: 27

Sig. fibrosis 51

Adv. Fibrosis 17

39. Diab 2008 [56] USA 55 (68) NASH 40 Bariatric surgery patients 48 (43–

54) †
23.0 (18.0–

29.0)

21.5 (16.0–

33.0)

DM: 41 HTN: 67 DL: 57

40. Pirvulescu 2012

[57]

Romania 59 (42) NASH (incl.

borderline

NASH)

22 Overweight, obese and

morbidly obese patients

referred for bariatric surgery

47.3

(8.1)

37.8

(13.6)‡
29.3 (10.1)
‡

NR

41. Younossi 2011

[58]

USA 79 (61) NASH 51 Biopsy proven NAFLD 47.56

(8.07)

36.44

(28.05) ‡
27.22

(19.39) ‡
DM: 24

† Median and interquartile range.
‡ Mean and standard deviation.

NR: not reported, DM: diabetes mellitus, T2DM: type 2 diabetes mellitus, HTN: hypertension, DL: dyslipidemia, MetS: metabolic syndrome, US: ultrasound, CT:

computerized tomography scan.

https://doi.org/10.1371/journal.pone.0238717.t001
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0.90), we found corresponding specificity values, ranging from 0.51 to 0.23 at threshold values

127 to 191 U/L (Table 2). High NPV (0.91–0.96) values were observed at lower prevalence set-

ting of 10% and 20%. The corresponding PPV ranged from 0.12 to 0.29.

When fixing specificity values (0.80 to 0.90), the corresponding sensitivity ranged from 0.48

to 0.61 (Table 2) with threshold values between 304 and 399 U/L. High NPV (0.87 to 0.95)

were again seen for low prevalence settings (10 to 20%). A graphical representation of the pre-

dictive values in different prevalence settings can be seen in Fig 3A and 3B.

Accuracy of CK-18 M65 in detecting NASH. In the meta-analysis of M65 in detecting

NASH, we analyzed six studies with a total of 414 participants (220 with NASH) (S4 Fig in S1

File). Eleven unique threshold values were included in the model, ranging from 340 to 1183 U/

L. The combined AUC was 0.82 (95% CI: 0.69–0.91) with a mean sensitivity of 0.75 (95% CI:

0.51–0.90) and mean specificity of 0.76 (95% CI: 0.49–0.91) at Youden-threshold of 478 U/L

(Fig 2C).

We again investigated the PPV and NPV in various clinical settings (Table 3, Fig 3C and

3D). Fixing sensitivity from 0.80 to 0.90, the specificity ranged from 0.70 to 0.51 at threshold

Fig 2. Multiple threshold SROC and ROC curves for detecting NASH. Multiple threshold SROC and ROC curves

for CK-18 M30 (A-B) and M65 (C-D) in detecting NASH. Each point represents a reported threshold value, points of

the same color represent thresholds reported within the same study. The x-axis indicates 1 –specificity, and the y-axis,

sensitivity. The cross in the SROC curve indicates the Youden-based threshold value: A. Youden-threshold: 304 U/L,

sensitivity: 0.61 (95% CI: 0.51–0.71), specificity: 0.81 (95% CI: 0.71–0.88), AUC: 0.75 (95% CI: 0.69–0.82) for CK-18

M30. C. Youden-threshold: 478 U/L, sensitivity: 0.75 (95% CI: 0.51–0.90), specificity: 0.76 (95% CI: 0.49–0.91), AUC:

0.82 (95% CI: 0.69–0.91) for CK-18 M65.

https://doi.org/10.1371/journal.pone.0238717.g002
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values of 337 to 437 U/L (Table 3). NPV in lower prevalence settings (10–20%) ranged from

0.93 to 0.98 with corresponding PPV from 0.17 to 0.40. Similar patterns were observed for

optimizing specificity over sensitivity (Table 3). Within a NASH prevalence of 10% or 20% we

found PPV and NPV ranged from 0.28 to 0.56 and from 0.88 to 0.96, respectively.

Accuracy of CK-18 M30 in detecting fibrotic NASH. Three studies provided sufficient

data for analysis of M30 in detecting fibrotic NASH, with a combined total of 1,271 partici-

pants (343 with fibrotic NASH) (S5 Fig in S1 File). Two studies investigated M30 as part of a

multimarker models; authors of both studies [24, 55] provided accuracy data for M30 at seven

threshold values we selected based on the data from the present meta-analysis (133, 200, 248,

292, 356, 395, and 464 U/L). This allowed us to apply the multiple thresholds model (15 thresh-

olds), to calculate an AUC of 0.73 (95% CI: 0.57–0.85), mean sensitivity of 0.63 (95% CI: 0.39–

0.82) and mean specificity of 0.73 (95% CI: 0.51–0.88) at a Youden-threshold value of 371 U/L.

Fibrosis

Accuracy of CK-18 M30 in detecting significant and advanced fibrosis. We identified

several studies that investigated CK-18 for fibrosis staging. For significant fibrosis, we included

a single threshold value (ranging from 122 to 285 U/L) from five studies [27, 43, 47, 55, 59]

with a total of 1,155 participants (554 had significant fibrosis) (S6 Fig in S1 File). The resulting

AUC was 0.68. See S7A Fig in S1 File for SROC curve and corresponding 95% CI and predic-

tion region. One study [50] assessed the ability of M65 to detect significant fibrosis; at a thresh-

old of 244 U/L, sensitivity was 0.71 for a specificity of 0.71 (AUC: 0.74).

For advanced fibrosis, five studies [27, 42, 43, 51, 55] were included in the meta-analysis

(1,513 participants, 313 with advanced fibrosis) (S8 Fig in S1 File). We calculated an AUC of

0.75, with included threshold values ranging from 216 to 396 U/L (see S7B Fig in S1 File). One

Table 2. Performance of M30 in detecting NASH: Positive and negative predictive values for different settings of NASH prevalence.

A. Fixed sensitivity values (0.80, 0.85, 0.90)

Prev Fixed 0.80 sensitivity Fixed 0.85 sensitivity Fixed 0.90 sensitivity

Cut-off Sp PPV NPV Mis% Cut-off Sp PPV NPV Mis% Cut-off Sp PPV NPV Mis%

0.05 191 0.51 0.08 0.98 48 161 0.38 0.07 0.98 59 127 0.23 0.06 0.98 72

0.10 0.15 0.96 46 0.13 0.96 56 0.12 0.96 69

0.20 0.29 0.91 43 0.26 0.91 52 0.23 0.91 62

0.30 0.41 0.85 40 0.37 0.86 47 0.34 0.86 56

0.40 0.52 0.79 37 0.48 0.79 43 0.45 0.79 49

0.50 0.62 0.72 35 0.58 0.72 38 0.55 0.72 43

0.70 0.79 0.52 29 0.76 0.52 29 0.74 0.52 30

B. Fixed specificity values (0.80, 0.85, 0.90)

Prev Fixed 0.80 specificity Fixed 0.85 specificity Fixed 0.90 specificity

Cut-off Se PPV NPV Mis% Cut-off Se PPV NPV Mis% Cut-off Se PPV NPV Mis%

0.05 304 0.61 0.14 0.98 21 340 0.56 0.17 0.97 17 399 0.48 0.21 0.97 12

0.10 0.25 0.95 22 0.28 0.94 18 0.33 0.94 15

0.20 0.42 0.89 24 0.47 0.88 21 0.52 0.87 19

0.30 0.56 0.82 26 0.60 0.81 25 0.65 0.79 24

0.40 0.66 0.75 28 0.70 0.73 28 0.75 0.71 28

0.50 0.75 0.66 31 0.78 0.64 31 0.82 0.62 33

0.70 0.87 0.46 35 0.89 0.43 37 0.91 0.41 42

Prev: prevalence, Sp: specificity, Se: sensitivity, PPV: positive predictive value, NPV: negative predictive value, Mis%: percent misclassified.

https://doi.org/10.1371/journal.pone.0238717.t002
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study had to be excluded from the meta-analysis of both significant and advanced fibrosis due

to discrepancies in the 2x2 contingency table [30].

Multimarker models including CK-18

Thirteen studies additionally used CK-18 as an ingredient of a multimarker model (Table 4).

There was greatest interest in detecting NASH (8/13 studies), with AUCs among the eight

models ranging from 0.79 to 0.96. The highest performance was observed in NASH-score

(BMI, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phospha-

tase (ALP), HOMA-IR, M65 and adiponectin), which produced an AUC of 0.96 [57].

One model was developed with the aim of detecting fibrotic NASH [55]. Composed of

three ingredients (HOMA, AST and CK-18) the AUC from the validation group (n = 846) was

0.85. MACK-3 had an AUC of 0.80 when evaluated in a separate study [24].

Two studies [27, 43] investigated the combined use of M30 with transient elastography

(TE) (FibroScan) to detect fibrosis. One study found combining TE and M30 to detect signifi-

cant (AUC: 0.89) and advanced fibrosis (AUC: 0.93) did not significantly improve the diagnos-

tic ability from either TE or CK-18 as a stand-alone test [27]. Another study, however, found

some improvement in AUC by combining M30 to TE compared to TE alone; in adding M30

they found an improvement in AUC by 0.03 for significant fibrosis, and 0.05 for advanced

fibrosis [43].

Fig 3. Positive and negative predictive values and thresholds for detecting NASH. Plots illustrating the negative and

positive predictive values of M30 (A-B) and M65 (C-D) in detecting NASH at corresponding threshold values,

projected by the multiple thresholds model. Each colored line represents a different prevalence setting, ranging from

5% to 70%. The y-axis indicates the predictive value and the x-axis indicated the threshold values for CK-18.

https://doi.org/10.1371/journal.pone.0238717.g003
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Table 3. Performance of M65 in detecting NASH: Positive and negative predictive values for different settings of NASH prevalence.

A. Fixed sensitivity values (0.80, 0.85, 0.90)

Prev Fixed 0.80 sensitivity Fixed 0.85 sensitivity Fixed 0.90 sensitivity

Cut-off Sp PPV NPV Mis% Cut-off Sp PPV NPV Mis% Cut-off Sp PPV NPV Mis%

0.05 437 0.70 0.13 0.99 30 391 0.63 0.11 0.99 36 337 0.51 0.09 0.99 47

0.10 0.23 0.97 29 0.20 0.97 35 0.17 0.98 45

0.20 0.40 0.93 28 0.36 0.94 33 0.32 0.95 41

0.30 0.54 0.89 27 0.49 0.91 30 0.44 0.95 37

0.40 0.64 0.84 26 0.60 0.86 28 0.55 0.88 33

0.50 0.73 0.78 25 0.69 0.81 26 0.65 0.84 30

0.70 0.86 0.60 23 0.84 0.64 22 0.81 0.67 22

B. Fixed specificity values (0.80, 0.85, 0.90)

Prev Fixed 0.80 specificity Fixed 0.85 specificity Fixed 0.90 specificity

Cut-off Se PPV NPV Mis% Cut-off Se PPV NPV Mis% Cut-off Se PPV NPV Mis%

0.05 515 0.71 0.16 0.98 20 575 0.63 0.18 0.98 16 665 0.52 0.22 0.97 12

0.10 0.28 0.96 21 0.32 0.95 17 0.37 0.94 14

0.20 0.47 0.92 22 0.51 0.90 19 0.56 0.88 18

0.30 0.60 0.86 23 0.64 0.84 22 0.69 0.81 21

0.40 0.70 0.80 24 0.74 0.76 24 0.78 0.74 25

0.50 0.79 0.73 25 0.81 0.70 26 0.84 0.65 29

0.70 0.89 0.53 26 0.91 0.50 30 092 0.45 37

Prev: prevalence, Sp: specificity, Se: sensitivity, PPV: positive predictive value, NPV: negative predictive value, Mis%: percent misclassified.

https://doi.org/10.1371/journal.pone.0238717.t003

Table 4. Summary of studies that additionally included CK-18 in multimarker model.

Author Target condition and population Scoring system Ingredients AUC

1. Anty 2010 NAFLD grading among morbidly obese The Nice Model Metabolic syndrome, ALT, CK-18 Training: 0.88 Validation: 0.83

2. Boursier 2018 Fibrotic NASH among NAFLD MACK-3 HOMA, AST, CK-18 Validation: 0.85

3. Cao 2013 NASH among NAFLD ALT, platelets, M30, and TG 0.92

4. Chuah 2019 Fibrotic NASH among NAFLD MACK-3 HOMA, AST, CK-18 0.80

5. Ergelen 2015 Fibrosis among NAFLD TE, M30 F�2: 0.89 F�3: 0.93

6. Grigorescu 2012 NASH among NAFLD M65, IL-6 and adiponectin 0.90

7. Pirvulescu 2012 NASH (including borderline NASH)

among morbidly obese patients

NASH-score BMI, ALT, AST, ALP, HOMA-IR,

M65, and adiponectin

0.96

8. Rosso 2016 Fibrosis among NAFLD TE, M30 F�2: 0.84 F�3: 0.87

9. Tada 2018 NASH among NAFLD FIC-22 FIB-4 and CK-18 0.82

10. Tamimi 2011 NASH among NAFLD Soluble fas and CK-18 Training: 0.93 Validation 0.79

11. Yang 2015 NASH among NAFLD M30†, FGF-21, IL-1Ra, PEDF, and

OPG

Training NPV: 0.76 and PPV: 0.85

Validation NPV: 0.80 and PPV: 0.76

12. Younossi 2008 NASH among NAFLD M30 and M65, adiponectin, resistin Training: 0.91 Validation: 0.73

13. Younossi 2011 NASH among NAFLD NAFLD

diagnostic panel

Diabetes, gender, BMI, triglycerides,

M30, and M65

NASH: 0.81

NAFLD: non-alcoholic fatty liver disease, NASH: non-alcoholic steatohepatitis, ALT: alanine aminotransferase, CK-18: cytokeratin 18, AST: aspartate aminotransferase,

TG: trigylceride, HOMA-IR: homeostatic model assessment for insulin resistance, TE: transient elastography, IL-6: interleukin 6, BMI: body max index, FGF-21:

fibroblast growth factor 21, IL-1Ra: interleukin-1 receptor antagonist, NPV: negative predictive value, PPV: positive predictive value, PEDF: pigment epithelium-derived

factor, OPG: osteoprotegerin.

† Unit of measure for M30 is ng/L.

https://doi.org/10.1371/journal.pone.0238717.t004
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Sensitivity analysis

A sensitivity analysis was conducted excluding four studies with two or more domains of high

risk of bias or applicability concerns [9, 10, 31, 40] for M30 and NASH. The AUC was 0.75

(95% CI: 0.68–0.81), with a mean sensitivity of 0.62 (95% CI: 0.51–0.72), and mean specificity

of 0.78 (95% CI: 0.66–0.86).

We identified four studies that used an ELISA assay that was not from PEVIVA [40, 42, 52,

53]. Among the 18 studies that used the M30 Apoptosense ELISA by PEVIVA, the AUC was

0.74 (95% CI: 0.67; 0.80), with paired sensitivity and specificity of 0.60 (95% CI: 0.49; 0.70) and

0.80 (95% CI: 0.70; 0.87), respectively. We additionally conducted sensitivity analysis solely

among studies that included biopsy-proven NAFLD patients (19/22 studies for M30 and

NASH), and found an AUC of 0.74 (95% CI: 0.67; 0.80). No marked differences were observed

when excluding studies with high risk of bias or applicability concerns, different ELISA assays

or cohorts with clinical suspicion of NAFLD.

Discussion

Main findings

Among NAFLD adults, the diagnostic accuracy of M30 to distinguish NASH from NAFL was

under the minimally acceptable performance level, fixed a priori at AUC of 0.80. More promis-

ing results were observed for M65 and NASH, although it is of note that only six studies could

be included in this meta-analysis, compared to 22 for M30. The superior performance of M65

should further be interpreted with caution, as its ability to detect fibrotic NASH, the most clin-

ically relevant target condition, is limited.

At lower prevalence, mirroring primary care settings, high NPVs above 0.85 were achieved

for both M30 and M65 antigens at fixed sensitivity and specificity values above 0.80 (Tables 2

and 3).

Our meta-analysis on the accuracy of M30 in detecting fibrotic NASH also showed modest

performance. MACK-3 showed more promise for detecting fibrotic NASH, but the evidence is

still limited to two studies, and the model presents with limitations such as adequate perfor-

mance among subgroups with metabolic syndrome and a large gap of patients who lie between

the high and low threshold values [24, 55].

Results for both significant and advanced fibrosis were below the minimally acceptable per-

formance level, demonstrating sub-optimal ability of M30 to function as a stand-alone test for

fibrosis staging, even more so when considering the available accurate elastography methods

and multimarker models for detecting liver fibrosis.

As expected, we observed a wide range of reported threshold values for both CK-18 anti-

gens. This can be explained by the variability of methods employed for choosing a threshold

and general lack of established recommendations. With our meta-analysis we suggest high and

low thresholds for M30 and M65, which can be selected in accordance to the intention of use

(ruling-in or ruling-out NASH). It is of note that the threshold suggestions for the M30 and

M65 antigens are strictly for results produced by the PEVIVA assays, as it is understood that

different CK-18 assays show poor inter-test reliability and majority of our studies used CK-18

assays from PEVIVIA [42].

Strengths and limitations

By employing novel meta-analytical methods, we were able to incorporate all data available in

the primary studies, eliminating arbitrary selection of a single threshold for our meta-analyses.

This allowed greater freedom to investigate which clinical setting would optimize the use of
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CK-18. A more comprehensive evaluation of the clinical performance, including projections

of accuracy data (sensitivity, specificity, PPV, NPV) in various prevalence settings was possible.

The multiple thresholds model further allowed us to assess the diagnostic accuracy of CK-18 at

threshold values not investigated in the original studies. We were however limited in the sense

that the data projected by our models are based on the cumulative distribution of CK-18 in the

diseased and non-diseased populations of the primary studies, which had higher prevalence

than one would expect in a primary care setting.

The approach for selecting either a single ‘optimal’ threshold value or a set of thresholds

were very heterogeneous in our included studies. While some used the Youden or equivalent

methods, others chose to optimize either the sensitivity or specificity, and a concerning few

did not report how a threshold value was calculated. This was however anticipated as there is

no recommended threshold for CK-18. We further observed sparse reporting of the histologi-

cal procedure, including quality of biopsies and expertise of histological evaluation (S6

Table in S1 File), which raises concerns regarding the reliability of the reference standard test.

In context of published literature

For M30 and NASH (22 studies), we found lower diagnostic accuracy compared to previous

meta-analyses. He (2017) (14 studies) reported an AUC of 0.82 [60]; Kwok (2014) (seven stud-

ies) reported a summary sensitivity of 0.66, at a specificity of 0.82 [13]; Chen [15] (nine studies)

found an AUC of 0.84 [15]; and Musso (2010) (nine studies) found an AUC of 0.82 [61].

Parameters such as mean age, BMI and disease prevalence were not sources of major heteroge-

neity between the present and previously published meta-analyses [61]. Our meta-analysis did

however include a greater number of studies, incorporating more recent publications with

lower performance. Among the six studies published after 2017, the AUC ranged between 0.59

and 0.77 for M30 in detecting NASH, a noticeable drop compared to pioneering work from

2008–10 (AUC: 0.71 to 0.88). The lowest AUC (0.59) was found in the largest study (N = 846)

conducted in 2018. Interestingly, this study also found M30 to be most accurate in detecting

patients with fibrotic NASH, achieving an AUC of 0.72 [55]. In parallel with the incrementally

less impressive results, the excitement for CK-18 as a NAFLD biomarker has tempered with

each subsequent study, serving as an exemplar of the entire biomarker space.

The only other meta-analysis performed on the diagnostic ability of both M30 and M65

concluded that both antigens had similar ability to distinguish NASH from NAFL (M30 had

AUC of 0.82, M65 had AUC of 0.80) [60]. Among the three studies that investigated both M30

and M65 within the same cohort, all found better performance for M65 compared to M30 [9,

26, 57]. Although M30 has been more popularly studied as a diagnostic biomarker for NASH,

our meta-analysis demonstrates the need for more evidence to establish the performance of

M65. Further studies conducting head-to-head comparisons of M30 and M65 within the same

cohort would be valuable for assessing superior performance of either antigen.

Fibrotic NASH has become an emerging target condition of interest in NAFLD research

[17]. Despite the established role of hepatocyte apoptosis in the progression of liver damage

[11], there have been contradictory opinions regarding the usefulness of CK-18 for fibrosis

staging. Our results showed limited ability of CK-18 to function as a stand-alone test for

detecting fibrotic patients compared to existing biomarkers.

Even still, the involvement of CK-18 in the disease pathway of NAFLD indicates potential

for CK-18 to be used in combination with other biomarkers. Several promising models that

included CK-18 (M30 and/or M65) were identified in our systematic review, most of which

exceeded the minimally acceptable performance level of an AUC�0.80. Unfortunately, most

models are limited to a single validation within the original studies with the exception of M30
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with TE, and MACK-3, which raises the concern of how well the models would perform in

practice. Additional validation studies for the proposed multimarker models should be con-

ducted to ensure reliability of their performance. We do acknowledge that other studies

including CK-18 in a composite scoring system may exist, despite not being eligible for inclu-

sion in the present systematic review [62, 63]. For example, a recent study developed a model

for distinguishing NASH from NAFL, finding an AUC of 0.73 (0.66–0.81), with even better

accuracy for detecting advanced fibrosis [63].

Implications for current practice and future research

Both the EASL-EASD-EASO and Asia-Pacific Working Party guidelines suggest that CK-18

has limited ability to function as a stand-alone test for distinguishing NASH from NAFL given

its modest performance [12, 14]. However, in a setting with 20% prevalence, a sensitivity of

0.90 and a NPV of 0.91 were achieved at a threshold value of 127 U/L (M30), demonstrating

high negative values for ruling-out those without NASH. In such a scenario CK-18 could be of

value as a first-line test at a primary care level for further evaluation by a specialist, even more

so when considering the low cost and accessibility. This however comes at the cost of lower

specificity, resulting in a high number of false positive results, as well as the compromise of

62% misclassified patients in the same setting with 20% prevalence. Alternatively, should CK-

18 be used to rule-in NASH, a higher threshold of 399 U/L would be more appropriate. The

trade-off between sensitivity and specificity as well as predictive values should be considered

before selecting a threshold to be use in clinical practice, as a substantial number of patients

without NASH could be referred for further, more invasive and risky evaluation.

CK-18 can potentially improve risk stratification in combination with other synergistic

markers, such as TE or NFS, by testing for elevated M30 levels among patients under the low

threshold or in patients with intermediate TE/NFS values (between the high and low thresh-

old) [64]. In the study by Liebig et al., risk stratification was considerably improved with this

approach, showing more than 70% of patients with low TE/NFS but elevated M30 revealing

presence of NASH (mostly with fibrosis). As with CK-18, other highly validated tests also run

the risk of misclassified patients, for example, those with low or intermediate risk by TE who

would not be considered for a biopsy despite presence of NASH. In such a step-wise diagnostic

regime, a high cut-off for M30 should be selected to optimize specificity and rule-in those with

NASH.
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