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Abstract

Ecologists have been compiling ecological networks for over a century, detailing the interac-

tions between species in a variety of ecosystems. To this end, they have built networks for

mutualistic (e.g., pollination, seed dispersal) as well as antagonistic (e.g., herbivory, parasit-

ism) interactions. The type of interaction being represented is believed to be reflected in the

structure of the network, which would differ substantially between mutualistic and antagonis-

tic networks. Here, we put this notion to the test by attempting to determine the type of inter-

action represented in a network based solely on its structure. We find that, although it is

easy to separate different kinds of nonecological networks, ecological networks display

much structural variation, making it difficult to distinguish between mutualistic and antago-

nistic interactions. We therefore frame the problem as a challenge for the community of sci-

entists interested in computational biology and machine learning. We discuss the features a

good solution to this problem should possess and the obstacles that need to be overcome to

achieve this goal.

Author summary

In the late 1960s, Mark Kac asked, "Can one hear the shape of a drum?" challenging read-

ers to reconstruct the geometry of the drum from a provided list of overtones. Physicists

and mathematicians found that, although in general, one cannot hear the shape of a

drum, many of its properties, such as its area and perimeter, can be "heard". Here, we

ask whether the type of interaction being represented in a network can be "seen" when

inspecting its shape—for example, whether we can distinguish networks reporting inter-

actions between plants and their pollinators (mutually beneficial) from those representing

interactions between plants and their herbivores (beneficial only to the herbivores). We

show that many types of nonbiological networks can be easily separated based on struc-

tural properties, whereas determining the type of interaction represented by an ecological

networks is harder. We therefore turn this problem into a challenge for the scientific
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community. We argue that solving this problem would greatly benefit the field, and we

discuss what the consequences of a failure might be.

Introduction

Since the early days of the field, ecologists found themselves detailing the multitude of

interactions occurring between different populations, such as predation, parasitism, and her-

bivory (all "antagonistic" interactions) or pollination, seed dispersal, and symbiosis ("mutual-

istic" interactions) [1, 2]. To make sense of these data, they built networks in which nodes are

species and edges stand for interactions between species. Depending on the interaction being

depicted by the edges, we speak of food webs (the edge i! j marks consumption of species i
by j), host–parasite networks (j parasitizes i), pollination networks (animal j pollinates plant

i), herbivory networks (animal j feeds on plant i), etc. Whereas the earliest published food

web dates back more than a century [3], the past 20 years have seen a sharp increase in both

the number of networks published and their quality (i.e., higher level of detail, larger number

of species reported, and larger number of interactions, often including weighted edges).

Reducing a multidimensional object such as a network to a few numbers is a daunting task,

but paralleling the progress of network analysis in other branches of science, ecologists set out

to compute summary statistics on the empirical networks they collected; these metrics range

from very simple measures, such as the size (number of nodes) and connectance (proportion

of realized connections) of the network, to large-scale properties such as modularity (Are net-

works organized in blocks of dense connectivity loosely connected by few edges? [4]) and nest-

edness (Can interactions be organized as in a Russian doll—with specialist species choosing

interactions among those of generalist species? [5–7]). As in other branches of science, ecolo-

gists also investigated degree distributions, motif profiles [8], k-cores [9], and many other net-

work properties.

Here, we ask whether these metrics can be used to characterize the type of interaction being

depicted by a network under the hypothesis that the type of interaction would affect network

structure in a consistent and detectable way. Take a mutualistic network: both parties benefit

from interacting, and they actively seek out this relationship from an evolutionary point of

view—for example, plants reward pollinators with nectar, attract them with visual and olfac-

tory cues, etc. Contrast this with herbivory, in which plants are desperate to avoid the interac-

tion and display evolutionary strategies in the form of spines and thorns, toxic compounds,

bark, etc. Given the contrasting forces at play, we might hypothesize that these processes give

rise to networks with different structure [10, 11].

Previous analysis posited that mutualistic and antagonsitic networks’ properties would

differ significantly (for example, mutualistic networks are believed to be "more nested" than

antagonistic ones) [10–14]. However, this does not necessarily imply that network types can

be separated based on these properties (even if the means of two distributions differ signifi-

cantly, the overlap could be large enough to render a classification impossible). We frame the

problem of detecting the type of interaction being represented in an ecological network by

measuring its structure as a challenge to the community of scientists interested in networks,

computational biology, and machine learning. We provide a database of networks of unprece-

dented size and completeness that can be used to test the quality of a solution, and we outline

the principal hurdles that need to be overcome in order to solve this problem.
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Before examining the details of the challenge, it is important to justify its timeliness. Classi-

fying the type of an ecological network might seem like a pointless exercise: the ecologists

that put it together knew perfectly well whether they were recording parasitism or pollination.

However, solving this challenge is important for at least three reasons. First, showing that cer-

tain properties can be used to distinguish among networks is a post hoc justification for devel-

oping these metrics in the first place, thereby proving that they truly measure salient, relevant

aspects of network structure. Second, a solution would provide a good justification for the

representation of these data as networks—by compiling networks, we can infer properties of

the system that would be difficult to assess otherwise. Third, with the advent of cheap, high-

throughput molecular techniques, associations between species can be sampled at an unprece-

dented level of detail—for example, one can sequence the root of a tree to find all its fungal

inhabitants, sequence insects to detect their endoparasites, etc. In this way, one could rapidly

and reliably build networks of interactions between species—but what type of interactions

would these species form? Some of the arbuscular mycorrhizal fungi sampled will be symbi-

onts of the plant, whereas others will be parasites; in fact, the same species could act as either,

depending on the ecological and environmental context. If we could find universal indicators

of mutualistic versus antagonistic interactions, then we could make an educated guess on the

type of interaction represented in these networks by just measuring a few of their properties.

Note that, to keep the task as simple as possible, here we ask the broad question, What type of

interaction is represented in this network? However, the same question could be asked of each

single edge, as ecological networks are typically composed of a variety of interactions [27, 30].

To illustrate the details of the computational challenge with a simple, solvable example, we

draw upon a large data set of nonecological networks we have compiled for this purpose. We

show that it is quite easy to separate these classes of networks, even using elementary methods.

We then turn to ecological networks, showing that the task is much more difficult: not only

can we not separate cleanly mutualistic from antagonistic ecological networks, but we cannot

even separate ecological networks from the remaining nonecological networks.

Materials and methods

We built undirected, unweighted bipartite networks recording the connections between actors

and movies (“actor collaboration”), authors of scientific articles and the journals in which they

have published (“authorship”), lawmakers votes on laws (“legislature”), microbial organisms

and parts of the body where they are found (“microbiome”), and city neighborhoods and

crime occurrences (“crimes”). These systems were chosen based on two characteristics: (1) for

each category, multiple (100 or more) networks could be built using the same methodology

and (2) the networks within each category would display a large range of sizes and levels of

connectivity.

We also amassed a large database of more than 500 bipartite ecological networks, represent-

ing either antagonistic (host–parasite, host–parasitoid, bacteria–phage, plant–herbivore) or

mutualistic (plant–pollinator, plant–seed disperser, ant–plant, anemone–fish) interactions.

The summary statistics on the size and connectivity for each class of networks are reported

in Table 1; the details of how the networks were constructed and the references for the pub-

lished networks are provided in the Supporting information.

Choice of metrics

Given the great interest in network analysis, there are hundreds of network metrics one could

use to attempt to characterize the different classes of networks. When it comes to ecological

networks, however, two of their most accessible properties, the size (number of nodes) and
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connectance (proportion of realized links), should not be used for this purpose. In fact, an eco-

logical network’s size and connectance mostly reflect the experimental design and sampling

effort rather than structural differences from other networks. These networks typically inte-

grate information through space (e.g., Where does my ecosystem "end"?) and time (Shall we

build a network for each day of sampling? Week? Year?)—sampling more extensively in time

and space will surely result in a larger number of species and connections.

Given these limitations, one should choose metrics that either are not influenced by size

and connectance or can be rescaled to remove their effects. For the illustrative example we use

to detail the computational challenge, we are going to follow the latter approach, though the

former would be superior, if we were to find network properties that are insensitive to size and

connectivity.

For each network, we measure the two largest eigenvalues of the adjacency matrix, which

are associated with important network properties: it is well known that the first eigenvalue

(spectral radius) of the adjacency matrix is maximized in perfectly nested networks [15],

whereas the second eigenvalue will separate from the bulk of the spectrum in strongly modular

networks [16]. Because both eigenvalues are expected to grow whenever we add nodes and

Table 1. Summary statistics on the size and fill of collected networks.

Type Metric Minimum Maximum Mean Median

Actor Collaboration (155) Connectance 0.0002 0.072 0.005 0.0026

Links 258 78,145 12,658.652 6,753

Rows 15 6,675 1,116.394 568

Columns 239 43,872 7,808.723 4,832

Antagonism (197) Connectance 0.0078 0.9301 0.27 0.2361

Links 14 5,203 165.472 82

Rows 5 749 38.67 18

Columns 5 888 34.274 21

Authorship (109) Connectance 0.0303 0.0588 0.04 0.0388

Links 2,186 16,611 9,479.532 9,939

Rows 86 712 389.349 396

Columns 438 681 623.138 639

Crimes (1,816) Connectance 0.0457 0.6053 0.25 0.2406

Links 12 470 153.214 120

Rows 7 77 39.834 33

Columns 5 64 22.273 21

Legislature (245) Connectance 0.1715 0.8455 0.593 0.6056

Links 277 367,956 19,162.89 7,092

Rows 16 972 167.898 138

Columns 10 1,427 151.698 87

Microbiome (203) Connectance 0.0621 0.1891 0.103 0.0982

Links 7,585 46,936 19,396.808 18,500

Rows 4,559 16,163 8,625.236 8,442

Columns 9 44 22.616 23

Mutualism (360) Connectance 0.0173 0.6875 0.202 0.1907

Links 12 15,255 183.733 58

Rows 5 1,044 47.244 27

Columns 5 647 27.294 15

For references and a detailed description, see Supporting information.

https://doi.org/10.1371/journal.pcbi.1007076.t001
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connections, we normalize them by computing their expectation under two null models: an

Erdős–Rényi, random bipartite graph (in which the number of nodes and connections are pre-

served, but nodes are connected at random, [17]), and a configuration model (in which the

nodes’ degrees are preserved, but again, wiring is random [18, 19]). By computing the relative

error we make when using these expectations rather than the observed values, we attempt to

remove the trivial effect of size and connectance (Table 2).

Mapping networks

Several methods of classifying objects have been developed in the literature on statistics and

machine learning, and picking a single method from such an embarrassment of riches is hard.

To keep the illustration of the challenge as simple as possible, here we measure the three spectral

quantities introduced previously, thereby representing each network as a single point in a three-

dimensional space. To better visualize the position of the networks in this space, we perform a

principal component analysis (PCA), projecting the network positions on the plane defined by

the first two components. Metaphorically, we are mapping out the "network space" such that, if

we were to have chosen meaningful quantities, two networks belonging to the same class should

be close, and the various network classes should form clusters that are well separated.

The use of a PCA facilitates the illustration of the three properties we believe any good solu-

tion to this challenge should possess:

Generality. Having trained on a specific data set, the method should be capable of classify-

ing new networks without the need of repeating the calculation.

To illustrate this point, we defined the principal components using a set of 100 networks of

each kind among the nonecological sets and projected them on the space defined by the first

two components (Fig. A in S1 Supporting Information, left pane). The networks cluster by

type, and the two axes explain much of the variation (Table 2). When we project onto this

space all the remaining nonecological networks, we find that, despite being "out of fit", the new

networks fall exactly where they should be: the method can be used to classify new networks

based on their position in the plane.

Specificity. The method should not be able to classify the networks when the structure

has been sufficiently perturbed.

In particular, if we were to randomize the networks, they should all be classified as "random

networks" rather than retaining their identity: at its most basic level, specificity is needed to

prove that the analysis is not overly influenced by size and connectivity.

The top panel shows the empirical, nonecological networks, a subset of which were used to

construct the principal component space—which is maintained throughout the remaining

Table 2. Metrics used in a PCA.

Metric Formula PC1 PC2 PC3

Configuration model λ1 relative error 1 � l
cm
1
=l1 0.578 −0.576 0.578

Erdős–Rényi λ1 relative error 1 � l
er
1
=l1 0.646 −0.111 −0.755

Marchenko–Pastur λ2 relative error 1 � l
mp
2
=l2

0.499 0.810 0.308

Percent Explained Variance: 53.944 27.659 18.397

PCA run on the correlation of 500 nonecological bipartite networks with each of the first three principal component vectors. Here, λ is an eigenvalue of the adjacency

matrix of the network, and the subscript indicates its position when sorted in descending order; the superscript indicates that the value is an approximation of the

eigenvalue under a given randomization protocol (Supporting information). Abbreviations: PC1, principal component 1; PC2, principal component 2; PC3, principal

component 3; PCA, principal component analysis

https://doi.org/10.1371/journal.pcbi.1007076.t002
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plots. The middle panel keeps the same axes, but instead of projecting the empirical networks,

it uses the properties measured for their randomized version under the Erdős–Rényi model.

Likewise, the bottom panel shows a point for each network once randomized using a configu-

ration model; this randomization is more computationally taxing; hence, there are fewer data

points in this panel, especially for the large and sparse actor collaboration networks (Support-

ing information).

To illustrate this point, we produced two randomized versions of each original network: an

Erdős–Rényi random bipartite graph [17] with the same number of nodes in each class and

the same number of connections as in the original graph and a network built with a configura-

tion model [18, 19], preserving also the degree sequence of the original graph. When we com-

pute the three metrics illustrated above for each randomization and project the resulting

values on the PCA space, we find that almost all networks cluster together under the Erdős–

Rényi model (Fig 1); note that ideally these should collapse to a point—the remaining scatter

indicates that our approximation is not accurate for very sparse or very small networks, possi-

bly because the size of the fluctuations of these quantities around their mean is influenced by

size and connectance. When we analyze the data from the configuration model, we start seeing

a clear separation of the clusters, meaning that degree distributions differ significantly between

classes. In the same spirit, one could devise other randomizations preserving or foregoing cer-

tain properties, thereby probing whether they can be used to distinguish networks.

Scalability. There should be different levels of classification, displaying a hierarchical

structure.

Previously, we stated that the method should be able to consistently distinguish networks

of different classes—this language is intentionally imprecise. We use "class" loosely such that

it could refer to separating networks representing mutualistic interactions from those depict-

ing antagonisms, distinguishing hummingbird pollination networks from those in which the

pollinators are bees, or even just recognizing ecological networks. This ambiguity is inten-

tional in order to remain agnostic with respect to what the appropriate level of differentiation

should be or even whether there should be one primary level. Analogous to the issue of classi-

fying organisms in a taxonomy, there should be a hierarchy of differentiation that can be

used to infer relevant aspects of these systems. For this reason, a successful method should be

able to identify levels of segregation within the data according to some hierarchy of network

similarity.

We demonstrate this property in Fig 2, in which we look more closely at the cluster of

crime networks in the top panel of Fig 1. Although Fig 1 shows that crime networks cluster

more closely to one another than to networks of actor collaboration, legislature voting records,

or human microbiome networks, Fig 2 reveals substructure within this cloud of points corre-

sponding to networks collected for the same city: although all crime networks cluster together,

those in the same city cluster more tightly.

Results and discussion

Adding ecological networks to the map

Having demonstrated some level of success in achieving generality, specificity, and scalability,

we now turn to the focus of our challenge: applying the method to ecological interaction

networks.

When we project our ecological networks onto the principal component space constructed

above, we find that they span a large area of the map, overlapping many of the categories that

were previously well separated. Moreover, antagonsitic and mutualistic networks overlap sub-

stantially (Fig 3). These results persist when only highly replicated networks are used, when
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Fig 1. PCA biplots of the two most explanatory principal components. Each point indicates a single network, and

the ellipses are drawn to contain approximately 68% of the points in each network type, i.e., one standard deviation if

the points were to follow a bivariate normal distribution. PC1, principal component 1; PC2, principal component 2;

PCA, principal component analysis; var., variation.

https://doi.org/10.1371/journal.pcbi.1007076.g001
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ecological networks are utilized in the construction of the principal component space, and

when alternative metrics are used to construct the PCA (Supporting information).

The results presented in Fig 3 are somewhat surprising—Why are ecological networks hard

to classify when there have been previous publications claiming success? Using our new, larger

data set, we can reassess the proposed differences between networks of antagonistic and mutu-

alistic interactions. Using a smaller data set, Thébault and Fontaine [12] had found significant

differences in nestedess [20] and modularity [4] between mutualistic and antagonistic net-

works. We repeat and extend this analysis by looking at additional measures of nestedness,

Fig 2. Subsetting the points from the top panel of Fig 1 to include only the networks of crime locations, we now color the points

according to the city from which each crime network was collected. Note that, though all crime networks cluster together in Fig 1,

those from the same city cluster more tightly, albeit with significant overlap between cities. This indicates that there is additional

structure beyond that used to disambiguate crime networks from those of authorship, legislature, etc., and by looking at these finer

differences, more subtle distinctions can be made. PC1, principal component 1; PC2, principal component 2; var., variation.

https://doi.org/10.1371/journal.pcbi.1007076.g002
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constraining the null model to ensure connectedness, and adding a second null model (Fig 4

and Supporting information). We find conflicting support for the use of these measures in the

classification of ecological networks. Indeed, both the size and direction of these differences

can be influenced by the choice of metric. Moreover, even in the case of a significant differ-

ence, there is substantial overlap in the metric distributions, suggesting that these measures

cannot alone reliably distinguish network types (i.e., though the means could be significantly

different from a statistical standpoint, the high variance would render a classification based on

these features difficult).

Choice of method and metrics

For each potential method to solve the problem outlined here, one of the key decisions is

which (and how many) metrics to include in the analysis, and a plethora of statistics are cur-

rently available. For illustrative purposes, we kept the number of metrics to a minimum, but in

the Supporting information, we experiment with many more, obtaining the same qualitative

results.

Note that the choice of metrics is not inconsequential: including too few will provide insuf-

ficient power to distinguish between similar network types, whereas too many can lead (in

some modeling frameworks) to noise or multicollinearity that can obscure meaningful differ-

ences. There are also logistical concerns, as some metrics require much more computation

Fig 3. Left: overlaying more than 500 ecological networks representing either mutualistic or antagonistic interactions, we find that

they do not cluster as nicely as the nonecological ones did, suggesting that there is much more variation within ecological network

structure than between the classes of nonecological networks examined here. Right: this result holds when the networks are instead

labeled according to the specific type of mutualism/antagonism they describe. PC1, principal component 1; PC2, principal

component 2; var., variation.

https://doi.org/10.1371/journal.pcbi.1007076.g003
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time than others. Certain estimates of modularity, for instance, require first identifying the

appropriate clustering of the species involved—a computationally intensive problem [23].

Similarly, there are a variety of methods that could be applied to this problem. Although we

used simple spectral measures and PCA to render the network space in two dimensions here, a

number of techniques, in particular those in the rapidly growing field of machine learning, are

arguably better suited to this task. However, although popular machine learning techniques

typically require the availability of a properly labeled "training set", here we achieved a good

separation between different classes of nonecological networks without supplying any label—

we simply mapped out the networks based on their spectral properties.

We used PCA to produce a two-dimensional "map" onto which we can place new networks.

Yet PCA has a number of shortcomings. Foremost is that the space constructed varies with the

data used. If we were to include more, or different, nonecological networks in the generation

Fig 4. We compared networks of ecological interactions based on their value of nestedness and modularity. We randomized

each empirical web 1,000 times according to an Erdős–Rényi (top) or configuration model (bottom), each modified slightly to

produce only connected graphs (Supporting information). For each of these randomizations, we calculated nestedness [in a variety

of ways, including NODF (N.nodf; [20]), overlap (N.olap; [21]), spectral radius (N.rho; [15]), and temperature (N.temp; [5])] and

modularity (Q; [4]). We plot here the Z-score of the empirical value for each measure with respect to the 1,000 randomizations. For

the Erdős–Rényi randomizations, the only significant (using Welch’s [22] t test; Supporting information) difference is for NODF,

showing mutualistic networks to be more nested than antagonistic ones. For the configuration null model, only the Overlap measure

of nestedness shows significant differences (Supporting information), but in this case, networks of antagonistic interactions are

deemed more nested than those depicting mutualisms. Modularity does not vary significantly between the two types of ecological

interaction networks.

https://doi.org/10.1371/journal.pcbi.1007076.g004
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phase, we would obtain a different map. Additionally, we have not run statistics on the cluster-

ing we observe in principal component space, introducing an element of subjectivity into the

analysis as stated. Alternative or additional methods could be implemented that incorporate

objective grouping to enhance the robustness of any results.

Finally, we have analyzed unweighted, undirected graphs, despite the fact that many mod-

ern ecological networks include measures of interaction strengths [24, 25]. Although weights

are likely to help with separating different classes of networks, many of the most popular net-

work properties (e.g., motif profiles) are difficult to extend to weighted networks.

Conclusion

In 1966, Mark Kac asked, "Can One Hear the Shape of a Drum?" Is it possible to infer the

shape of a drumhead from a list of the overtones it produces [26]? Although the short answer

is no, many important properties of the drum, such as its area and perimeter, can be "heard"

distinctly.

Here, we asked whether the type of interaction being represented in a network can be

"seen" from its structure. We have shown that the classification is easy for several classes of

nonecological networks: even foregoing size and fill, the structure of these networks is distinc-

tive enough to allow for a reliable classification.

Yet the same task is more complicated when examining ecological networks. In this case,

the naïve approach that successfully classified nonecological networks fails completely, and

adding more metrics or using different approaches seems not to help with the classification

(Supporting information). Because of this fact, we framed the problem as a computational

challenge to the community of scientists interested in networks and machine learning. We

have compiled a large data set that can be used to explore and validate potential solutions, and

we have detailed three important properties that need to be fulfilled.

Succeeding in this challenge would have profound implications for the field: although net-

works are surely convenient objects for storing information about species’ interactions, a posi-

tive solution would prove that, by representing ecological communities as networks, we gain

insights that would be precluded otherwise. Moreover, as for other areas of machine learning

(e.g., face recognition), with the advent of new techniques for the high-throughput production

of networks, this question could rapidly move from the purely academic to the applied side.

Although current approaches to constructing networks are often laborious, we know what

these networks represent. In the future, our ability to produce networks could surpass our abil-

ity to identify what interactions represent, leading to novel confusions and challenges. Finally,

network metrics that can capture essential aspects of the ecology of these systems would surely

deserve a special place in the hearts and minds of ecologists.

But what if a solution to this challenge cannot be found? This failure could be due to a num-

ber of reasons. First, unweighted, bipartite graphs representing a single type of interaction

might not carry sufficient information for this task. Many of the ecological networks currently

being published quantify interactions (e.g., measuring the number of visits a pollinator pays

to a plant), and a few started detailing the different types of interactions between the species

using multidimensional networks [27–30]. As such, the solution could present itself once one

were to extend the appropriate metrics to weighted, multidimensional networks. Second, it

could be that ecological networks have greater within-class variation than the other classes

examined here. Third, the difference between mutualistic and antagonistic relationships might

not be the main driver of network structure, and other, more-meaningful classifications could

emerge that would be easy to infer when examining ecological network structure. Ultimately,

it is likely a combination of these explanations and others not listed here, the complete
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description of which remains a topic for future investigation. In any case, there would be

much to learn from a failure, and to celebrate in case of success.

Supporting information

S1 Supporting Information. Data collection sources and procedures, detailed and addi-

tional methods, and supplementary figures and tables.

(PDF)
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Gyuri Barabás, Samraat Pawar, Elisa Thébault, and Liz Sander for discussion. This work uti-

lized the computational resources of the Center for Research Informatics’ Gardner HPC cluster

at the University of Chicago (cri.uchicago.edu). Data on authors networks were from Scopus

(scopus.com); data on actor–movie networks were from the Movie Database (themoviedb.

org); data on crime networks were from various city data portals (data.cityofchicago.org, den-

vergov.org/opendata, minneapolismn.gov/opendata, datasf.org/opendata, opendata.dc.gov);

data on human microbiomes were from the NIH Human Microbiome Project (hmpdacc.org);

and data on legislature voting rolls were from GovTrack (govtrack.us), the Harvard Dataverse

(dataverse.harvard.edu), and VoteWorld (voteworld.berkeley.edu).

References
1. Bersier LF. A history of the study of ecological networks. In: Biological networks. Singapore: World Sci-

entific; 2007. p. 365–421.

2. Ings TC, Hawes JE. The History of Ecological Networks. In: Ecological Networks in the Tropics. New

York City: Springer; 2018. p. 15–28.

3. Camerano L. Dell’equilibrio dei viventi mercè la reciproca distruzione. Accademia delle Scienze di

Torino. 1880; 15:393–414.

4. Newman ME. Modularity and community structure in networks. Proceedings of the National Academy

of Sciences. 2006; 103(23):8577–8582.

5. Wright DH, Reeves JH. On the meaning and measurement of nestedness of species assemblages.

Oecologia. 1992; 92(3):416–428. https://doi.org/10.1007/BF00317469 PMID: 28312609

6. Bascompte J, Jordano P, Melián CJ, Olesen JM. The nested assembly of plant–animal mutualistic net-

works. Proceedings of the National Academy of Sciences. 2003; 100(16):9383–9387.

7. Ulrich W, Almeida-Neto M, Gotelli NJ. A consumer’s guide to nestedness analysis. Oikos. 2009; 118

(1):3–17.

8. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks

of complex networks. Science. 2002; 298(5594):824–827. https://doi.org/10.1126/science.298.5594.

824 PMID: 12399590

9. Seidman SB. Network structure and minimum degree. Social Networks. 1983; 5(3):269–287.

10. Thrall PH, Hochberg ME, Burdon JJ, Bever JD. Coevolution of symbiotic mutualists and parasites in a

community context. Trends in Ecology & Evolution. 2007; 22(3):120–126.

11. Lewinsohn TM, Inácio Prado P, Jordano P, Bascompte J, Olesen JM. Structure in plant–animal interac-

tion assemblages. Oikos. 2006; 113(1):174–184.
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