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Abstract

We used individual-based computer simulation models at community, regional and national levels
to evaluate the likely impact of coordinated pre-emptive school dismissal policies during an
influenza pandemic. Such policies involve three key decisions: when, over what geographical
scale, and how long to keep schools closed. Our evaluation includes uncertainty and sensitivity
analyses, as well as model output uncertainties arising from variability in serial intervals and
presumed modifications of social contacts during school dismissal periods. During the period
before vaccines become widely available, school dismissals are particularly effective in delaying
the epidemic peak, typically by 4-6 days for each additional week of dismissal. Assuming the
surveillance is able to correctly and promptly diagnose at least 5-10% of symptomatic individuals
within the jurisdiction, dismissals at the city or county level yield the greatest reduction in
disease incidence for a given dismissal duration for all but the most severe pandemic scenarios
considered here. Broader (multi-county) dismissals should be considered for the most severe and
fast-spreading (1918-like) pandemics, in which multi-month closures may be necessary to delay
the epidemic peak sufficiently to allow for vaccines to be implemented.
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Introduction

Influenza pandemics occur when a novel influenza virus gains sustained human-to-human
transmission and spreads globally, resulting in potentially high levels of morbidity and/or
mortality. Following the emergence of a novel pandemic strain, several months are typically
required to develop, produce, and distribute a well-matched pandemic vaccine (Gerdil, 2003;
Centers for Disease Control and Prevention, 2010; President’s Council of Advisors on
Science and Technology, 2010). Moreover, the use of antiviral drugs for chemoprophylaxis
may be limited due to concerns regarding drug resistance and limited supply during an
evolving pandemic (Lipsitch et al., 2007; Centers for Disease Control and Prevention, 2011).
As a result, non-pharmaceutical interventions (NPIs) are essential, potentially providing time
for pandemic vaccines to be developed and distributed, decreasing the peak demand for
healthcare services prior to pandemic vaccine roll-out, and reducing the overall morbidity
and mortality caused by the novel virus. Among potential NPIs, school closure/dismissal

has long been one of the first to be implemented during previous pandemics (Markel et

al., 2007a; Cauchemez et al., 2009), given the major role that school-aged children play in
the transmission of influenza in the household (Longini et al., 1982; Viboud et al., 2004)
and community (Chao et al., 2010), likely due to intense social contacts among children in
schools (Mossong et al., 2008).

In the absence of clear evidence for the effectiveness of school closures on large geographic
scales, it has been very difficult for public officials to make policy recommendations and
develop national guidance. Mathematical and computational disease spread models offer
invaluable platforms for performing “what-if” studies to assess potential future pandemic
scenarios and intervention strategies, complementing observational or field studies that are
necessarily limited to historical events and decisions (Germann et al., 2006; Halloran et
al., 2008). In particular, they enable us to model a variety of school dismissal strategies
and assess their effectiveness in slowing the spread of a hypothetical future influenza
pandemic (Haber et al., 2007; Milne et al., 2008; Halder et al., 2010; Lee et al., 2010;
Halder et al., 2011; Brown et al., 2011; Milne et al., 2013; Nishiura et al., 2014; Fung

et al., 2015). However, previous pre-pandemic policy recommendations used a measure of
pandemic severity that was based on disease severity measures, such as case fatality ratio
and excess death rate (Centers for Disease Control and Prevention, 2007), while modeling
studies primarily considered the effectiveness of school dismissal strategies for various
disease transmissibility levels, usually represented by the basic reproduction number RO
(Germann et al., 2006; Halloran et al., 2008; Harber et al., 2007; Milne et al., 2008; Halder
etal., 2010; Lee et al., 2010; Halder et al., 2011; Brown et al., 2011; Milne et al., 2013;
Nishiura et al., 2014; Fung et al., 2015). A recently developed two-dimensional pandemic
severity assessment framework considers both transmissibility and clinical severity as

two independent factors (Reed et al., 2013). This framework provides the basis for the
development of national pre-pandemic NPI guidance, for which school closure is thought
to be one of the most effective early mitigation measures. The purpose of the present study
is to evaluate whether school dismissal should be recommended and, if so, when such
dismissals should be initiated, how broadly (in geographic terms, e.g., community, county,
or state-wide dismissals), and how long they should last. As described in the Methods, we
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utilize simulations at three different scales to answer these questions in a computationally
feasible manner. A single community model (72000 people) is used for sensitivity studies,
and a regional model (78.6 million people in the Chicago metropolitan area) to address
timing (“when” and “how long”) and local vs. regional dismissal policies. The insights
gleaned from these smaller-scale simulations are then used to design the final simulation
suite, employing a model of the continental United States (7300 million people).

2. Methods

2.1. Simulation platform

In the present work, we extend and apply the stochastic, individual-based EpiCast
(“Epidemiological Forecasting”) model (Germann et al., 2006; Halloran et al., 2008) to
evaluate a range of school dismissal policy options for five potential influenza pandemic
strains having characteristics based upon both historical (1918, 1957, 1968, and 2009) and
potential H5N1-like pandemics, spanning the four quadrants (with independent severity and
transmissibility axes) of the pandemic severity assessment framework (Reed et al., 2013).
Full details about EpiCast are provided in the SI.

2.2. Model parameters and assumptions

For each of these five pandemic scenarios and three geographical scales, four other
parameters are varied (see Table 1) in order to span their likely ranges and ascertain their
impact on mitigation. First, we consider two alternative disease natural histories (“Short”
and “Long”), with serial intervals (average time between successive cases) of “2.8 and 4
days, respectively. These two choices have been used in several previous modeling studies
(Halloran et al., 2008), and almost exactly span the 95% confidence interval of 2.9-4.3 days
observed in a household study during the 2007 interpandemic influenza season in Hong
Kong (Cowling et al., 2009)

Second, we considered different triggers for school dismissal, all involving the diagnosis
of some threshold number of symptomatic school children within a community. Once that
threshold is reached, all schools within that community are closed, and possibly those in
surrounding communities, depending upon the specific policy. Since it will be impossible
to quickly identify and accurately diagnose all symptomatic children, the surveillance
sensitivity is an important factor. In the present study, no other actions (e.g., therapeutic
antivirals, isolation, or quarantine) other than self-isolation (staying home when sick, as
specified in Sl section 1 F) are taken following diagnosis. Consequently, the diagnosis
ratio (the percentage of newly symptomatic individuals correctly and promptly identified
following illness onset) and the trigger threshold (the number of diagnosed school children
required to activate a dismissal) can be coupled to provide a single independent parameter
for the trigger, the number of symptomatic (but not necessarily diagnosed) school children.
For example, if the diagnosis of a single child is sufficient to trigger intervention, then
diagnosis ratios of 1%, 5%, 10%, and 20% require 100, 20, 10, and five symptomatic school
children, respectively, in a community before the first symptomatic child is diagnosed,
triggering the intervention.
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Third, the geographic scale of school dismissal can range from the individual community
(which may be considered as a very small ~2000-person school district), to single county,
multi-county, or even potentially state- or nation-wide closures in the most severe situation,
as in the 1918-like scenario D. With the regional model, we consider school dismissal at
either the individual community or region-wide levels, and at the national scale consider
four scales of dismissal: community, county, adjoining county region, or (for the 1918-like
scenario D only) state-wide dismissals.

Finally, in the face of a limited amount of survey and field study data on social contact
behaviors in and out of school from the United States (Mossong et al., 2008; Gog et al.,
2014; Earn et al., 2012; Copeland et al., 2013; Chowell et al., 2011; Heymann et al., 2004;
Markel et al., 2007; Eames et al., 2012), we utilize a range of assumed social contact pattern
changes during school dismissal that is consistent with the available studies and span those
used in previous modeling work (Germann et al., 2006; Halloran et al., 2008; Haber et al.,
2007; Milne et al., 2008; Halder et al., 2010; Lee et al., 2010; Halder et al., 2011; Brown
etal., 2011; Milne et al., 2013; Nishiura et al., 2014; Fung et al., 2015). Since these contact
rates contribute to the infection probability for each susceptible person, they have a strong
influence on overall disease transmission, and unrealistic assumptions (e.g., “no contacts
between children during school dismissal™) can lead to overly optimistic expectations for
the benefits of school dismissal. To provide likely bounds on the effectiveness of school
dismissal policies for each combination of school dismissal policy and pandemic scenario,
we consider two assumptions, representing either a “worst-case” (with a greater amount of
contact during closure, in which household contacts involving children are doubled, and
child-related contacts outside the home are reduced by only 30%) and a “best-case” (with
no change in household contacts and a 50% reduction in outside contacts) scenario. In both
cases, all schools, preschools, daycares, and playgroups within the affected community (or
communities) are closed during dismissal, so no transmission occurs within these mixing
groups. Social contact surveys (Eames et al., 2012) and mathematical model-based analysis
of virological data (Earn et al., 2012) during the 2009 summer and fall holiday breaks
suggest that there is a reduction of at least 40-50% in contact and transmission among
school-age children during such regularly scheduled dismissals; pre-emptive coordinated
school dismissals undertaken as a countermeasure during an evolving pandemic would likely
lead to additional precautions, reducing contacts even further.

We also assume that a well-matched vaccine will be available 6 months after the first U.S.
index case. The assumed vaccine efficacy for susceptibility VEs = 0.70 (VEs = 0.50 for age
65+) represents the reduced susceptibility to infection and influenza illness of vaccinated
individuals, while the vaccine efficacy for infectiousness VEi = 0.80 (for all age groups)
represents the reduced infectiousness to others (Longini et al., 2000). Full details about
vaccine assumption are described in the Sl. To separate the effects of school dismissal alone
from that coupled with a vaccination campaign, we will measure cumulative attack rates
both before (on day 180) and after (on day 240) vaccine introduction.
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2.3. Sensitivity analysis

A model of a single community of 2000 persons is used to identify the key model
parameters and quantify their impact on the mitigation of disease spread (Blower and
Dowlatabadi, 1994). We consider six contact settings: households, household clusters,
neighborhoods, communities, schools, and workplaces. Latin hypercube sampling is used

to sample the contact probability in each setting, then partial rank correlation coefficients are
calculated as the outcome measure for sensitivity analysis. Full details are presented in the
Sl

2.4. Model parameter calibration

The model of a small community was also used to develop an initial set of model parameters
for each of the five pandemic scenarios under consideration (Table 1). The specified age-
specific attack-rate patterns, basic reproduction number RO, and case fatality ratios were

fit by adjusting the baseline EpiCast model contact rates (Germann et al., 2006) to give
age-specific and overall attack rates within 1% of the specified values. For instance, in order
to increase the childhood attack rate, the corresponding school contact rate is increased.
Similarly, to increase the working-age adult attack rate, the workplace contact rate is raised.

2.5. Scoping studies

The regional (Chicago-area) model was used for an earlier study involving EpiCast and two
other individual-based, stochastic simulation models (Halloran et al., 2008). Here, we use it
for scoping studies to evaluate the impact of the trigger and duration of school dismissal,
which will then be used to down-select to a smaller number of scenarios to be evaluated
using the more computationally expensive national-scale model. The baseline parameters for
each pandemic scenario are adjusted slightly from their single-community values (reflecting
the more dispersed and heterogeneous population structure of the larger-scale model),
giving the model parameters listed in Table S1 and baseline epidemic curves shown in

Fig. S2. School dismissal options are then systematically studied by considering all possible
combinations of the model parameters listed in Table 1. With regard to the geographic scale,
this model considers either community-by-community or simultaneous region-wide school
dismissals. Furthermore, for the most severe and transmissible 1918-like scenario D, longer
durations of closure (e.g., 16—-24 weeks) are also explored.

2.6. National-scale simulation studies

For simulations of pandemic spread across the continental United States, the manner of
introduction of a pandemic influenza strain must be considered. In particular, a human-
transmissible strain may emerge either domestically or overseas, in both cases most likely
in a rural area. As discussed in the Sl, the subsequent epidemic will slowly spread through
the more dispersed rural population before reaching a dense urban population where it can
thrive, and it is during this early, rural, spread, whether in the U.S. or overseas, that early
characterization and vaccine development can begin. One plausible domestic emergence
scenario is modeled by the introduction of 10 infected individuals into Sussex County,
Delaware, a large poultry-farming region on the Delaware-Maryland-Virginia (DelMarVa)
peninsula. Previous studies (Germann et al., 2006) have found that introduction via air
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travel into major metropolitan areas, or point source introductions into large cities (either
New York or Los Angeles), result in nearly identical national-level incidence rates, with
only a difference in the details of the spatiotemporal spread. Consequently, we assume
an introduction via arriving international air passengers (2 per 10,000) for this overseas
scenario, a rate comparable with that used for the regional model.

Given the greatly increased computational cost of the national-scale model, the
comprehensive set of regional model results is used to identify the most useful set of
larger-scale simulations. As the two scenarios with the highest clinical severity and the

least and most transmissible spread, pandemic scenarios C and D are both included in the
national-scale study. School dismissal is unlikely to be invoked for the low-transmissibility,
low-severity scenario A, so it is not considered further. While there are subtle differences

in results for scenarios B1 and B2, we focus on B2 due to its higher severity and
transmissibility than B1. We consider three geographic scales of school dismissal for each of
these scenarios: community, county, multi-county region (including the affected county and
all immediately adjacent counties), and additionally a coordinated (simultaneous) state-wide
dismissal for the worst-case scenario D.

3. Results

3.1. Single community model

By attributing each new infection to a single source based on relative contributions

of contacts to the overall transmission probability, we find that household transmission
dominates (T40%), followed by the age-appropriate daytime mixing group (school or

work) (730%) and non-specific contact settings (also “30%), both for the original contact
parameters and for the modified contact parameters calibrated for the five pandemic
scenarios (Fig. S3 in the Supplementary information (SI)). This is consistent with the pattern
used in other modeling work, with perhaps a slightly increased household transmission.

In accord with this finding, sensitivity analyses performed on the single-community model
confirm that the assumed household, school, and workplace contacts (in that order) have
the greatest impact on the resulting cumulative attack rate, with non-specific community
transmission (which contributes to roughly a quarter of all cases) following closely behind.
The relationship between these contact matrix elements and the epidemic timing is even
more interesting. The partial rank correlation coefficient (PRCC) shown in Fig. S4, which
measures the sensitivity of output variables to inputs, indicates that school transmission has,
by far, the largest impact on the number of days from initial outbreak to peak incidence

(a PRCC of -0.55), followed by household transmission (=0.27) (The negative values
simply indicate that for /ncreasing contact rates, the time to peak incidence decreases.).
Interestingly, the workplace contact rate PRCC (+0.11) has the opposite (positive) sign, but
its small magnitude may indicate that this is merely a statistical fluke.

3.2. Regional model

The impacts of school dismissal policies for the regional model are summarized in Table
2, which presents the cumulative attack rate (averaged over five stochastic realizations) and
its reduction from its baseline value (without any school dismissal) under each simulation
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scenario. The results in Table 2 are for a shorter serial interval and “best-case” contact
rates (i.e., the least plausible amount of person-to-person contact) during school dismissal
(see Methods); corresponding tables for the longer serial interval and/or worst-case contact
patterns are provided in the SI, Tables S2-S4. From Table 2, if we compare community-
wide and region-wide school dismissals of the same duration, pandemic scenarios and
diagnosis ratio, the reductions of overall clinical attack rate for community-wide closures
are usually higher than for region-wide closures for pandemic scenarios A, B1, B2, and

D (see Methods for a description of pandemic scenarios). In pandemic scenario C, with
longer school dismissals (> 4 weeks), region-wide dismissals most often have a greater
attack rate reduction than the community-wide closures. Similar trends are observed whether
the cumulative incidence is measured before (at day 180, Tables S5-S8) or after (at day
240, Tables 2 and S2-S4) the onset of an assumed vaccination campaign, particularly for
the more transmissible scenarios B2 and D. Consequently, we will limit our subsequent
discussion to the post-vaccination results based on the full 240-day simulation.

Further insight is provided by the epidemic curves for different dismissal scenarios, such

as those shown in Fig. 1 for the region-wide dismissal, shorter serial interval, worst-case
contact patterns, and trigger of 20 symptomatic children (i.e., dismissal upon the first
diagnosed case for a 5% diagnosis ratio). Here we can see that the primary benefit of
dismissals are to delay the epidemic peak, by 5-6 days per week of dismissal for most
pandemic scenarios, until the peak is postponed long enough for vaccines to be introduced
and reduce the spread. These delays are comparable with the =5 days per week of dismissal
recently found with a compartmental model for more severe epidemics (with a 30% baseline
attack rate) (Fung et al., 2015). For the mildest pandemic scenario C, the spread is so slow
and the peak so late that it is only delayed by 3-4 days per week of dismissal.

3.3. National model

For national-scale simulations, different manners of introduction of the pandemic influenza
strain resulted in different disease spread dynamics. For instance, the emergence of a
domestic strain from a rural area in the U.S. would likely take longer to result in widespread
transmission than the importation of a novel virus from overseas which was already
spreading from human to human before arriving at an urban area (where international
airports are located) in the U.S. (see Figs. S7 and S8 in the SI). In addition to this, our
simulation indicated that emergence of a domestic strain in a rural area had a finite prob-
ability of extinction, and its peak transmission may lag behind 1-3 months compared to that
of a novel virus introduction into an urban area. For these reasons, we focus hereinafter on
the results from the national-scale models that assume an overseas emergence of the novel
virus with entry into the United States via air travel.

National-scale model outcomes, in terms of (symptomatic) cases averted for two pandemic
scenarios (B2 and D) for different dismissal triggers, durations, and geographic scales, are
presented in Fig. 2. A different view of the impacts of varying spatial extent of school dis-
missal is shown in Fig. 3 for pandemic scenarios B2 and D, with a 4-week closure after
20 symptomatic children appear in a community (i.e., dismissing schools upon the first
detected child at a 5% diagnosis ratio). Epidemic curves are compared in the top panels
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for the two considered contact rate changes upon school dismissal. In the bottom panels,
we show the number of schools closed over time. (These results are for the worst-case
contact-rate assumption; those for the best-care contact rates are shown in Fig. S6.) As
shown in Figs. S9 and S10, the reduced transmissibility of scenario C, combined with the
slower spread across the dispersed U.S. population, causes it to have not yet reached its
epidemic peak by the assumed availability date of an effective vaccine, six months after the
first introduction. As subsequent vaccination slows and ultimately stamps out the outbreak,
the effect of vaccination dominates the impact of any school dismissal and precludes any
further consideration of this scenario for the national-scale model.

From Fig. 3, we observe that community-wide school dismissals reduce the peak incidence
without significantly delaying the time-to-peak incidence. On the other hand, multi-county
and state-wide school dismissals have more impact on delaying the time-to-peak than
reducing the peak incidence. Furthermore, county-wide school dismissals have a similar
time-to-epidemic-peak as multi-county and state-wide school dismissals, but with a lower
peak incidence than either. These results (Fig. 2) for the effectiveness of community-wide
school-dis- missal strategies are consistent with the results for the regional model (see

Table 2). In particular, for a low (but plausible) diagnosis ratio of 1%, waiting to close
individual schools until even the first detected case may never occur. Efficacy increases with
both the diagnosis ratio and duration, although a diminishing return is observed for longer
dismissal durations, in particular the extended 16- and 20-week durations for scenario D.
However, the chief advantage of the national-scale model is that it allows us to explore
varying geographic scales of school dismissal. We find that the optimal geographic scale

of school dismissal depends on the duration and trigger/diagnosis ratio (see Fig. 2). More
proactive dismissals (i.e., those over broader geographic regions) are only advantageous

if the closure is sufficiently long to enable vaccination, which often means a month or
longer dismissal. Additionally, more proactive school dismissals over a larger geographic
area (multi-county, or state level) will be more appropriate (and effective, see Fig. 2) for
settings where influenza surveillance is less sensitive (i.e., where the diagnosis ratio is likely
to be low).

3.4. Observations

From these regional and national model results, several observations can be made. First, the
main effect of school dismissals across wider geographic scales is to slow the spread of

the virus, as reflected by delayed time-to-peak, which confers multiple benefits. One is to
delay and reduce peak demand for healthcare, which is particularly important at the start of a
pandemic when systems are not yet prepared to deal with an ever-increasing patient load. An
even greater benefit is achieved if this delay extends sufficiently long for an effective vaccine
to be developed, produced, and distributed to the population (see Fig. 3). Second, the effects
of school closure are very sensitive to the ability of the local surveillance system to detect
influenza circulation and, in turn, provide a “trigger” for closing schools. For a diagnosis
ratio as low as 1%, which might occur if laboratory confirmation is required (Reed et al.,
2009), dismissals may not be triggered in time and, thus, will have no effect on morbidity
(see Table 2). In contrast, when surveillance systems are able to detect 5% or more influenza
cases in the community, school closures of any duration and on any scale start reducing
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cumulative incidence, with the effect being particularly prominent for closures lasting 8
weeks or longer (see Fig. 2).

Finally, school closures for shorter duration of closure (1-4 weeks) generally result in a
greater number of cases averted at the local community level, compared to simultaneous
school closures of the same duration implemented over a larger geographic area (county,
multi-county, or state [see Fig. 2]). However, such simultaneous (coordinated) school
closures proactively implemented over a wider region are usually superior in terms of
number of cases averted if the closure is sustained over a longer period of time (8 weeks

or more [see Fig. 2]). In addition, simultaneous (proactive) school dismissal policies more
effectively delay the spread of the disease compared to the community-wide school closures
of the same duration, albeit at the greater cost to society due to the larger number of
schools that must remain closed than if the closures were implemented on an individual
community-by-community basis (see bottom panels of Fig. 3). By primarily slowing, rather
than reducing, the disease spread, such closures are capable of reducing the peak burden
significantly if the delay extends into the time window when vaccines become available.

In contrast, individual school dismissals do not have a substantial impact on when the

peak burden is reached, but if implemented promptly after the occurrence of a few initial
cases within a school or school district, they may help reduce its magnitude and, thus, the
transitory surge on the healthcare system (see top panels of Fig. 3).

4. Discussion

The primary benefit of pre-emptive school dismissals in mitigating the spread of a novel
influenza virus is the delayed time-to-peak that is seen in dismissals of any duration
considered in our study, typically by 4-6 days for each week of dismissal. Delaying local
outbreak peaks helps to decompress the demand on the healthcare system during the initial
pandemic wave and, under certain circumstances, it may help “buy time” to prepare and
roll out a pandemic vaccine. That the main effect of school dismissals is delaying the
time-to-peak is fully consistent with the nature of an intervention that does not provide
specific protection. Overall, longer pre-emptive school dismissals (=4 weeks) implemented
simultaneously on a wider geographic scale (e.g., county level or wider) are most impactful
in mitigating an influenza pandemic in its early stages, while awaiting the production and
distribution of a pandemic vaccine. However, as Fig. 1 indicates, for highly transmissible
strains, it may be difficult to close schools long enough to delay the epidemic peak until
vaccines become available. Thus, efforts to increase the speed of vaccine production and
distribution are essential to ensure that the time bought by school dismissal yields the
optimal benefit (Biggerstaff et al., 2015).

In addition to delaying the time-to-peak, school dismissals of sufficient duration
implemented pre-emptively on a wide-enough geographic scale may also reduce the
cumulative attack rate. Our results suggest that shorter precisely targeted dismissals (1-4
weeks) implemented on an individual community-by-community basis following detection
of initial cases among students at these schools appear to be superior to dismissals of

the same duration implemented in a coordinated county-wide, multi-county, or state-wide
manner. However, such dismissals may not be feasible in practice, as precise targeting
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requires prompt laboratory confirmation of initial cases in each and every community,
coupled with quick dismissal of an affected school before virus spread occurs within the
school and between the school and the surrounding community. For longer (multi-month)
dismissals, we find that a greater reduction in cases is achieved by coordinated larger-scale
dismissals (county-level or wider), being proactive rather than waiting until cases are
detected in each individual community. Therefore, for the most severe pandemic scenarios,
we believe that the optimal geographic unit for implementation of pre-emptive school
closures as a pandemic countermeasure will be county-wide or beyond.

For less transmissible strains causing severe disease (e.g., a potential H5SN1-like scenario)
represented by the scenario C in our study, the effect of school dismissal on cumulative
disease incidence is quite pronounced, even for shorter dismissals implemented on a
narrower geographic scale. The already-low transmissibility (low Rg) in such a scenario
provides an opportunity to achieve local extinction by strategically targeted and timed school
closure following the initial local introduction even without vaccination. In contrast, for the
most transmissible strains associated with a high clinical disease severity considered in our
study (i.e., scenario D comparable to 1918), a significant reduction in cumulative disease
incidence by school closure alone may only be possible when schools are out of session

for 16 weeks or longer, at a county-wide or wider geographic scale. It should be noted,
how- ever, that depending on the timing of the initial pandemic waves, the effect of a long
continuous school dismissal (16+ weeks) may be realized through a combination of planned
school holidays and an additional dismissal (or delayed start of a semester) in response to
the pandemic.

These results highlight an important practical issue, namely that the effectiveness of school
dismissals is highly dependent on the local surveillance systems’ ability to quickly detect
virus transmission in communities and, thus, implement (or “trigger”) the intervention in

a timely fashion. Delayed detection, associated with a less-sensitive surveillance method
(e.9., by waiting for laboratory confirmation) results in a delayed implementation of the
intervention and, thus, a diminished effect with regard to slowing down the transmission.
For a low diagnosis ratio of 1%, delaying the closure of individual schools (or communities)
until a child there is confirmed is a threshold that may never be reached. (For a 2000-person
community in which 22% of the population is school-aged, there are only 440 school
children; it is unlikely that 100 of them will be ill at the same time.) In these cases, more
sensitive triggers or surveillance approaches may be needed to ensure school outbreaks are
identified promptly. Interestingly, the opposite behavior is observed for simultaneous school
dismissal. In that case, the greater risk is closing (and then reopening) schools too quickly
before the epidemic reaches its peak. For a low diagnosis ratio, this is the only choice, and
may be the most realistic in practice: if a school has so many affected students that it is
forced to close, neighboring schools will benefit by proactively dismissing. In a way, the
original school (which is unlikely to benefit from closing, since it may be too late) will serve
as a sentinel event, signaling the impending risk of severity to surrounding communities.
Given the extreme sensitivity of the effects of school dismissals to early detection of initial
cases, an aggressive surveillance system, coupled with intense pre-pandemic planning for
rapid implementation of community-based interventions such as school dis- missals, is
needed in all settings. This may be particularly important in dense urban settings around
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major international hubs, where introductions of novel influenza virus strains are most
probable and where an extremely high population density may facilitate transmission of
strains that may be less capable of circulating in more sparsely populated areas.

To our knowledge, this is the first study that systematically explored potential effects

of school closures implemented on different geographic scales relevant for the U.S.
(corresponding to local, county, regional/ state, and national governmental authorities) and
in different pandemic severity scenarios.

Our findings are consistent with previously published studies considering school closures as
the only intervention in response to an evolving pandemic. In particular, prior observational
and modeling studies suggested that schools are the key community setting for pandemic
influenza transmission (Chao et al., 2010; Gog et al., 2014). School closures have been
found to be effective in slowing down influenza transmission, whether implemented as a
mitigation strategy or due to other reasons (e.g., regular school breaks, teacher’s strike,

etc.) (Earn et al., 2012; Copeland et al., 2013; Chowell et al., 2011; Heymann et al., 2004;
Markel et al., 2007). In addition, other modeling studies have explored school closure

as a mitigation strategy (Halloran et al., 2008; Haber et al., 2007; Milne et al., 2008;

Halder et al., 2010; Lee et al., 2010; Halder et al., 2011; Brown et al., 2011; Milne et

al., 2013; Fumanelli et al., 2016; De LuCa et al., 2018). However, to our knowledge, ours

is the most comprehensive modeling study to evaluate the effectiveness of different school-
closure strategies — including the tradeoffs between local, regional, and national dismissals
— in mitigating influenza in the United States during an evolving pandemic. Model
adjustments and validation were undertaken to address the research question at hand using
the best currently available empirical and observational data for model parameterization, and
sensitivity analyses were used to test the robustness of key findings.

As has been comprehensively reviewed by (Riley 2007) and Carrasco et al (Carrasco et al.,
2013), the great flexibility of such models is also their Achilles heel, as model developers,
users, and consumers often construct models and parameters in data-poor (or data-free)
environments. Intentionally (as is most always the case) or not, these decisions can lead to
greater confidence in model predictions than may be warranted, given their typically tenuous
tie to observed truth. However, although quantitative model predictions should generally be
viewed with a healthy appreciation for their limitations, in many cases, qualitative trends
have been proven to be reliable and useful in pre-pandemic planning efforts (Centers for
Disease Control and Prevention, 2007). We have endeavored to consider and address the key
limitations that are always present in mathematical modeling studies. In the present case, the
greatest uncertainty concerns how contact rates (within different mixing groups and ages)
might change during the disruption accompanying an unplanned school dismissal. These
will presumably vary with time (as a so-called “fear-based social distancing” gradually
decays towards normal contact rate patterns), and severity (e.g., the greater case fatality
ratio of pandemic scenarios C and D are more likely to lead to a greater acceptance of, and
compliance with, recommended social distancing measures. Currently, to our knowledge,
there are no empirical data to inform how contact patterns may change during a prolonged
closure; without such data, this limitation cannot be confidently addressed. On the disease
side, there remains a great deal of variability and uncertainty about the natural history of

Epidemics. Author manuscript; available in PMC 2020 January 13.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Germann et al.

Page 12

influenza, most notably its serial interval (we considered two possibilities which bracket the
likely range) and the role of asymptomatic individuals in transmission (we have assumed
50% of all cases are asymptomatic; previous studies assume either 30% or 50%). As
mentioned previously, the triggering of any mitigation measures is dependent upon a timely
detection, while realistic diagnosis ratios for pandemic planning purposes remain uncertain
(Biggerstaff et al., 2012).

In addition to testing the effects of school closures with regard to timing, duration, and
geographic scale of their implementation during an evolving pandemic prior to vaccine
rollout, we have performed several analyses to test the robustness of our key findings. A
sensitivity and uncertainty analysis demonstrates that schools are the key community setting
for influenza transmission, apart from households. Hence, reducing school transmission
provides the greatest lever for slowing the disease spread before vaccination. While such
analyses have rarely been performed for large, complex simulation models, many further
questions remain for future research. For example, it would be important to explore to
what extent the networking of multiple communities, as in our regional and national
models, affects these parameter sensitivities and variability of outcomes through nonlinear
effects. Since it is impossible to predict the precise characteristics of the next pandemic
influenza strain, and the efficacy of potential pharmaceutical and non-pharmaceutical
countermeasures, the results presented here are somewhat qualitative in nature. However,
during the next pandemic, the real-time estimation of these key unknowns (a challenging
task in itself) will constrain models such as those presented here, thus yielding quantitative,
testable predictions.

Finally, we note that the present study also identifies several areas in which further

research should be carried out. As is often the case with modeling studies, new empirical
data are essential to further constrain and corroborate the models, particularly with

regard to contact rates during times of social disruption, including school closures. We
recognize that school dismissal incurs substantial economic and societal costs (in addition

to removing a convenient location for implementing a childhood vaccination campaign),

and a more complete economic analysis should be performed before recommending any
specific policies. Several economic analyses of different policy options have been reported
(Cauchemez et al., 2009; Halder et al., 2011; Brown et al., 2011; Milne et al., 2013; Nishiura
et al., 2014), but a more comprehensive economic analysis of school closures as a pandemic
mitigation strategy, both on its own and in conjunction with pandemic vaccination, would be
helpful, as well as further consideration of societal options that may mitigate the secondary
impact of school closures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Effect of school dismissal duration upon epidemic curves for simultaneous (region-wide)
school dismissal for the regional model (the Chicago metropolitan area, with 8.6 M people).
Results are shown for the shorter serial interval and nominal (worst-case) contact rate
changes upon dismissal, activated when 20 children are symptomatic in a community (i.e.,
closure upon the first diagnosed case if the diagnosis ratio is 5%). Results are shown for five
pandemic scenarios: four historically referenced 20th century influenza pandemics (A: 2009,
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B1:1968, B2: 1957, D: 1918) and a fifth scenario (C) that corresponds to a clinically severe
but less transmissible pandemic.
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Fig. 2.
U.S. model predictions of the number of (symptomatic) influenza cases averted by a

combination of self-isolation, school dismissals, and vaccination, for the shorter serial
interval. School dismissal is activated when one symptomatic child is diagnosed at an
assumed diagnosis ratio of 5%, 10%, or 20%. Two alternative assumptions for contact
rates (CR) during school dismissal are considered: “worst-case” (filled bars: CR involving
children in households are doubled and child-related contacts outside the home are reduced
by 30%) and “best-case” (extensions: CR involving children in households are unchanged,
and child-related contacts outside the home are reduced by 50%). Beginning on day 180, 1
million people per day are vaccinated (see text and Sl for details).
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U.S. model results for pandemic scenarios B2 (left panels) and D (right panels). School
dismissal activated when 20 children are symptomatic (closure upon first diagnosed at a

5% diagnosis ratio) and a 4-week duration, for the shorter serial interval. (Top) Epidemic
curves. (Bottom) Number of schools closed at any time during the outbreak. The “worst-
case” assumption for contact rates during school dismissal is used (contact rates involving
children in households are doubled, and child-related contacts outside the home are reduced
by 30%). Analogous results for the “best-case” contact rates are shown in Fig. S6. Beginning
on day 180, 1 million people per day are vaccinated (see text and Sl for details). Note that
for scenario D, the multi-county and state-wide dismissals are virtually indistinguishable,
particularly for the epidemic curves.
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