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Abstract

We used individual-based computer simulation models at community, regional and national levels 

to evaluate the likely impact of coordinated pre-emptive school dismissal policies during an 

influenza pandemic. Such policies involve three key decisions: when, over what geographical 

scale, and how long to keep schools closed. Our evaluation includes uncertainty and sensitivity 

analyses, as well as model output uncertainties arising from variability in serial intervals and 

presumed modifications of social contacts during school dismissal periods. During the period 

before vaccines become widely available, school dismissals are particularly effective in delaying 

the epidemic peak, typically by 4–6 days for each additional week of dismissal. Assuming the 

surveillance is able to correctly and promptly diagnose at least 5–10% of symptomatic individuals 

within the jurisdiction, dismissals at the city or county level yield the greatest reduction in 

disease incidence for a given dismissal duration for all but the most severe pandemic scenarios 

considered here. Broader (multi-county) dismissals should be considered for the most severe and 

fast-spreading (1918-like) pandemics, in which multi-month closures may be necessary to delay 

the epidemic peak sufficiently to allow for vaccines to be implemented.
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1. Introduction

Influenza pandemics occur when a novel influenza virus gains sustained human-to-human 

transmission and spreads globally, resulting in potentially high levels of morbidity and/or 

mortality. Following the emergence of a novel pandemic strain, several months are typically 

required to develop, produce, and distribute a well-matched pandemic vaccine (Gerdil, 2003; 

Centers for Disease Control and Prevention, 2010; President’s Council of Advisors on 

Science and Technology, 2010). Moreover, the use of antiviral drugs for chemoprophylaxis 

may be limited due to concerns regarding drug resistance and limited supply during an 

evolving pandemic (Lipsitch et al., 2007; Centers for Disease Control and Prevention, 2011). 

As a result, non-pharmaceutical interventions (NPIs) are essential, potentially providing time 

for pandemic vaccines to be developed and distributed, decreasing the peak demand for 

healthcare services prior to pandemic vaccine roll-out, and reducing the overall morbidity 

and mortality caused by the novel virus. Among potential NPIs, school closure/dismissal 

has long been one of the first to be implemented during previous pandemics (Markel et 

al., 2007a; Cauchemez et al., 2009), given the major role that school-aged children play in 

the transmission of influenza in the household (Longini et al., 1982; Viboud et al., 2004) 

and community (Chao et al., 2010), likely due to intense social contacts among children in 

schools (Mossong et al., 2008).

In the absence of clear evidence for the effectiveness of school closures on large geographic 

scales, it has been very difficult for public officials to make policy recommendations and 

develop national guidance. Mathematical and computational disease spread models offer 

invaluable platforms for performing “what-if” studies to assess potential future pandemic 

scenarios and intervention strategies, complementing observational or field studies that are 

necessarily limited to historical events and decisions (Germann et al., 2006; Halloran et 

al., 2008). In particular, they enable us to model a variety of school dismissal strategies 

and assess their effectiveness in slowing the spread of a hypothetical future influenza 

pandemic (Haber et al., 2007; Milne et al., 2008; Halder et al., 2010; Lee et al., 2010; 

Halder et al., 2011; Brown et al., 2011; Milne et al., 2013; Nishiura et al., 2014; Fung 

et al., 2015). However, previous pre-pandemic policy recommendations used a measure of 

pandemic severity that was based on disease severity measures, such as case fatality ratio 

and excess death rate (Centers for Disease Control and Prevention, 2007), while modeling 

studies primarily considered the effectiveness of school dismissal strategies for various 

disease transmissibility levels, usually represented by the basic reproduction number R0 

(Germann et al., 2006; Halloran et al., 2008; Harber et al., 2007; Milne et al., 2008; Halder 

et al., 2010; Lee et al., 2010; Halder et al., 2011; Brown et al., 2011; Milne et al., 2013; 

Nishiura et al., 2014; Fung et al., 2015). A recently developed two-dimensional pandemic 

severity assessment framework considers both transmissibility and clinical severity as 

two independent factors (Reed et al., 2013). This framework provides the basis for the 

development of national pre-pandemic NPI guidance, for which school closure is thought 

to be one of the most effective early mitigation measures. The purpose of the present study 

is to evaluate whether school dismissal should be recommended and, if so, when such 

dismissals should be initiated, how broadly (in geographic terms, e.g., community, county, 

or state-wide dismissals), and how long they should last. As described in the Methods, we 
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utilize simulations at three different scales to answer these questions in a computationally 

feasible manner. A single community model (~2000 people) is used for sensitivity studies, 

and a regional model (~8.6 million people in the Chicago metropolitan area) to address 

timing (“when” and “how long”) and local vs. regional dismissal policies. The insights 

gleaned from these smaller-scale simulations are then used to design the final simulation 

suite, employing a model of the continental United States (~300 million people).

2. Methods

2.1. Simulation platform

In the present work, we extend and apply the stochastic, individual-based EpiCast 

(“Epidemiological Forecasting”) model (Germann et al., 2006; Halloran et al., 2008) to 

evaluate a range of school dismissal policy options for five potential influenza pandemic 

strains having characteristics based upon both historical (1918, 1957, 1968, and 2009) and 

potential H5N1-like pandemics, spanning the four quadrants (with independent severity and 

transmissibility axes) of the pandemic severity assessment framework (Reed et al., 2013). 

Full details about EpiCast are provided in the SI.

2.2. Model parameters and assumptions

For each of these five pandemic scenarios and three geographical scales, four other 

parameters are varied (see Table 1) in order to span their likely ranges and ascertain their 

impact on mitigation. First, we consider two alternative disease natural histories (“Short” 

and “Long”), with serial intervals (average time between successive cases) of ~2.8 and 4 

days, respectively. These two choices have been used in several previous modeling studies 

(Halloran et al., 2008), and almost exactly span the 95% confidence interval of 2.9–4.3 days 

observed in a household study during the 2007 interpandemic influenza season in Hong 

Kong (Cowling et al., 2009)

Second, we considered different triggers for school dismissal, all involving the diagnosis 

of some threshold number of symptomatic school children within a community. Once that 

threshold is reached, all schools within that community are closed, and possibly those in 

surrounding communities, depending upon the specific policy. Since it will be impossible 

to quickly identify and accurately diagnose all symptomatic children, the surveillance 

sensitivity is an important factor. In the present study, no other actions (e.g., therapeutic 

antivirals, isolation, or quarantine) other than self-isolation (staying home when sick, as 

specified in SI section 1 F) are taken following diagnosis. Consequently, the diagnosis 

ratio (the percentage of newly symptomatic individuals correctly and promptly identified 

following illness onset) and the trigger threshold (the number of diagnosed school children 

required to activate a dismissal) can be coupled to provide a single independent parameter 

for the trigger, the number of symptomatic (but not necessarily diagnosed) school children. 

For example, if the diagnosis of a single child is sufficient to trigger intervention, then 

diagnosis ratios of 1%, 5%, 10%, and 20% require 100, 20, 10, and five symptomatic school 

children, respectively, in a community before the first symptomatic child is diagnosed, 

triggering the intervention.
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Third, the geographic scale of school dismissal can range from the individual community 

(which may be considered as a very small ~2000-person school district), to single county, 

multi-county, or even potentially state- or nation-wide closures in the most severe situation, 

as in the 1918-like scenario D. With the regional model, we consider school dismissal at 

either the individual community or region-wide levels, and at the national scale consider 

four scales of dismissal: community, county, adjoining county region, or (for the 1918-like 

scenario D only) state-wide dismissals.

Finally, in the face of a limited amount of survey and field study data on social contact 

behaviors in and out of school from the United States (Mossong et al., 2008; Gog et al., 

2014; Earn et al., 2012; Copeland et al., 2013; Chowell et al., 2011; Heymann et al., 2004; 

Markel et al., 2007; Eames et al., 2012), we utilize a range of assumed social contact pattern 

changes during school dismissal that is consistent with the available studies and span those 

used in previous modeling work (Germann et al., 2006; Halloran et al., 2008; Haber et al., 

2007; Milne et al., 2008; Halder et al., 2010; Lee et al., 2010; Halder et al., 2011; Brown 

et al., 2011; Milne et al., 2013; Nishiura et al., 2014; Fung et al., 2015). Since these contact 

rates contribute to the infection probability for each susceptible person, they have a strong 

influence on overall disease transmission, and unrealistic assumptions (e.g., “no contacts 

between children during school dismissal”) can lead to overly optimistic expectations for 

the benefits of school dismissal. To provide likely bounds on the effectiveness of school 

dismissal policies for each combination of school dismissal policy and pandemic scenario, 

we consider two assumptions, representing either a “worst-case” (with a greater amount of 

contact during closure, in which household contacts involving children are doubled, and 

child-related contacts outside the home are reduced by only 30%) and a “best-case” (with 

no change in household contacts and a 50% reduction in outside contacts) scenario. In both 

cases, all schools, preschools, daycares, and playgroups within the affected community (or 

communities) are closed during dismissal, so no transmission occurs within these mixing 

groups. Social contact surveys (Eames et al., 2012) and mathematical model-based analysis 

of virological data (Earn et al., 2012) during the 2009 summer and fall holiday breaks 

suggest that there is a reduction of at least 40–50% in contact and transmission among 

school-age children during such regularly scheduled dismissals; pre-emptive coordinated 

school dismissals undertaken as a countermeasure during an evolving pandemic would likely 

lead to additional precautions, reducing contacts even further.

We also assume that a well-matched vaccine will be available 6 months after the first U.S. 

index case. The assumed vaccine efficacy for susceptibility VEs = 0.70 (VEs = 0.50 for age 

65+) represents the reduced susceptibility to infection and influenza illness of vaccinated 

individuals, while the vaccine efficacy for infectiousness VEi = 0.80 (for all age groups) 

represents the reduced infectiousness to others (Longini et al., 2000). Full details about 

vaccine assumption are described in the SI. To separate the effects of school dismissal alone 

from that coupled with a vaccination campaign, we will measure cumulative attack rates 

both before (on day 180) and after (on day 240) vaccine introduction.
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2.3. Sensitivity analysis

A model of a single community of 2000 persons is used to identify the key model 

parameters and quantify their impact on the mitigation of disease spread (Blower and 

Dowlatabadi, 1994). We consider six contact settings: households, household clusters, 

neighborhoods, communities, schools, and workplaces. Latin hypercube sampling is used 

to sample the contact probability in each setting, then partial rank correlation coefficients are 

calculated as the outcome measure for sensitivity analysis. Full details are presented in the 

SI.

2.4. Model parameter calibration

The model of a small community was also used to develop an initial set of model parameters 

for each of the five pandemic scenarios under consideration (Table 1). The specified age­

specific attack-rate patterns, basic reproduction number R0, and case fatality ratios were 

fit by adjusting the baseline EpiCast model contact rates (Germann et al., 2006) to give 

age-specific and overall attack rates within 1% of the specified values. For instance, in order 

to increase the childhood attack rate, the corresponding school contact rate is increased. 

Similarly, to increase the working-age adult attack rate, the workplace contact rate is raised.

2.5. Scoping studies

The regional (Chicago-area) model was used for an earlier study involving EpiCast and two 

other individual-based, stochastic simulation models (Halloran et al., 2008). Here, we use it 

for scoping studies to evaluate the impact of the trigger and duration of school dismissal, 

which will then be used to down-select to a smaller number of scenarios to be evaluated 

using the more computationally expensive national-scale model. The baseline parameters for 

each pandemic scenario are adjusted slightly from their single-community values (reflecting 

the more dispersed and heterogeneous population structure of the larger-scale model), 

giving the model parameters listed in Table S1 and baseline epidemic curves shown in 

Fig. S2. School dismissal options are then systematically studied by considering all possible 

combinations of the model parameters listed in Table 1. With regard to the geographic scale, 

this model considers either community-by-community or simultaneous region-wide school 

dismissals. Furthermore, for the most severe and transmissible 1918-like scenario D, longer 

durations of closure (e.g., 16–24 weeks) are also explored.

2.6. National-scale simulation studies

For simulations of pandemic spread across the continental United States, the manner of 

introduction of a pandemic influenza strain must be considered. In particular, a human­

transmissible strain may emerge either domestically or overseas, in both cases most likely 

in a rural area. As discussed in the SI, the subsequent epidemic will slowly spread through 

the more dispersed rural population before reaching a dense urban population where it can 

thrive, and it is during this early, rural, spread, whether in the U.S. or overseas, that early 

characterization and vaccine development can begin. One plausible domestic emergence 

scenario is modeled by the introduction of 10 infected individuals into Sussex County, 

Delaware, a large poultry-farming region on the Delaware-Maryland-Virginia (DelMarVa) 

peninsula. Previous studies (Germann et al., 2006) have found that introduction via air 

Germann et al. Page 5

Epidemics. Author manuscript; available in PMC 2020 January 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



travel into major metropolitan areas, or point source introductions into large cities (either 

New York or Los Angeles), result in nearly identical national-level incidence rates, with 

only a difference in the details of the spatiotemporal spread. Consequently, we assume 

an introduction via arriving international air passengers (2 per 10,000) for this overseas 

scenario, a rate comparable with that used for the regional model.

Given the greatly increased computational cost of the national-scale model, the 

comprehensive set of regional model results is used to identify the most useful set of 

larger-scale simulations. As the two scenarios with the highest clinical severity and the 

least and most transmissible spread, pandemic scenarios C and D are both included in the 

national-scale study. School dismissal is unlikely to be invoked for the low-transmissibility, 

low-severity scenario A, so it is not considered further. While there are subtle differences 

in results for scenarios B1 and B2, we focus on B2 due to its higher severity and 

transmissibility than B1. We consider three geographic scales of school dismissal for each of 

these scenarios: community, county, multi-county region (including the affected county and 

all immediately adjacent counties), and additionally a coordinated (simultaneous) state-wide 

dismissal for the worst-case scenario D.

3. Results

3.1. Single community model

By attributing each new infection to a single source based on relative contributions 

of contacts to the overall transmission probability, we find that household transmission 

dominates (~40%), followed by the age-appropriate daytime mixing group (school or 

work) (~30%) and non-specific contact settings (also ~30%), both for the original contact 

parameters and for the modified contact parameters calibrated for the five pandemic 

scenarios (Fig. S3 in the Supplementary information (SI)). This is consistent with the pattern 

used in other modeling work, with perhaps a slightly increased household transmission. 

In accord with this finding, sensitivity analyses performed on the single-community model 

confirm that the assumed household, school, and workplace contacts (in that order) have 

the greatest impact on the resulting cumulative attack rate, with non-specific community 

transmission (which contributes to roughly a quarter of all cases) following closely behind. 

The relationship between these contact matrix elements and the epidemic timing is even 

more interesting. The partial rank correlation coefficient (PRCC) shown in Fig. S4, which 

measures the sensitivity of output variables to inputs, indicates that school transmission has, 

by far, the largest impact on the number of days from initial outbreak to peak incidence 

(a PRCC of −0.55), followed by household transmission (−0.27) (The negative values 

simply indicate that for increasing contact rates, the time to peak incidence decreases.). 

Interestingly, the workplace contact rate PRCC (+0.11) has the opposite (positive) sign, but 

its small magnitude may indicate that this is merely a statistical fluke.

3.2. Regional model

The impacts of school dismissal policies for the regional model are summarized in Table 

2, which presents the cumulative attack rate (averaged over five stochastic realizations) and 

its reduction from its baseline value (without any school dismissal) under each simulation 
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scenario. The results in Table 2 are for a shorter serial interval and “best-case” contact 

rates (i.e., the least plausible amount of person-to-person contact) during school dismissal 

(see Methods); corresponding tables for the longer serial interval and/or worst-case contact 

patterns are provided in the SI, Tables S2–S4. From Table 2, if we compare community­

wide and region-wide school dismissals of the same duration, pandemic scenarios and 

diagnosis ratio, the reductions of overall clinical attack rate for community-wide closures 

are usually higher than for region-wide closures for pandemic scenarios A, B1, B2, and 

D (see Methods for a description of pandemic scenarios). In pandemic scenario C, with 

longer school dismissals (> 4 weeks), region-wide dismissals most often have a greater 

attack rate reduction than the community-wide closures. Similar trends are observed whether 

the cumulative incidence is measured before (at day 180, Tables S5–S8) or after (at day 

240, Tables 2 and S2–S4) the onset of an assumed vaccination campaign, particularly for 

the more transmissible scenarios B2 and D. Consequently, we will limit our subsequent 

discussion to the post-vaccination results based on the full 240-day simulation.

Further insight is provided by the epidemic curves for different dismissal scenarios, such 

as those shown in Fig. 1 for the region-wide dismissal, shorter serial interval, worst-case 

contact patterns, and trigger of 20 symptomatic children (i.e., dismissal upon the first 

diagnosed case for a 5% diagnosis ratio). Here we can see that the primary benefit of 

dismissals are to delay the epidemic peak, by 5–6 days per week of dismissal for most 

pandemic scenarios, until the peak is postponed long enough for vaccines to be introduced 

and reduce the spread. These delays are comparable with the ~5 days per week of dismissal 

recently found with a compartmental model for more severe epidemics (with a 30% baseline 

attack rate) (Fung et al., 2015). For the mildest pandemic scenario C, the spread is so slow 

and the peak so late that it is only delayed by 3–4 days per week of dismissal.

3.3. National model

For national-scale simulations, different manners of introduction of the pandemic influenza 

strain resulted in different disease spread dynamics. For instance, the emergence of a 

domestic strain from a rural area in the U.S. would likely take longer to result in widespread 

transmission than the importation of a novel virus from overseas which was already 

spreading from human to human before arriving at an urban area (where international 

airports are located) in the U.S. (see Figs. S7 and S8 in the SI). In addition to this, our 

simulation indicated that emergence of a domestic strain in a rural area had a finite prob- 

ability of extinction, and its peak transmission may lag behind 1–3 months compared to that 

of a novel virus introduction into an urban area. For these reasons, we focus hereinafter on 

the results from the national-scale models that assume an overseas emergence of the novel 

virus with entry into the United States via air travel.

National-scale model outcomes, in terms of (symptomatic) cases averted for two pandemic 

scenarios (B2 and D) for different dismissal triggers, durations, and geographic scales, are 

presented in Fig. 2. A different view of the impacts of varying spatial extent of school dis- 

missal is shown in Fig. 3 for pandemic scenarios B2 and D, with a 4-week closure after 

20 symptomatic children appear in a community (i.e., dismissing schools upon the first 

detected child at a 5% diagnosis ratio). Epidemic curves are compared in the top panels 
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for the two considered contact rate changes upon school dismissal. In the bottom panels, 

we show the number of schools closed over time. (These results are for the worst-case 

contact-rate assumption; those for the best-care contact rates are shown in Fig. S6.) As 

shown in Figs. S9 and S10, the reduced transmissibility of scenario C, combined with the 

slower spread across the dispersed U.S. population, causes it to have not yet reached its 

epidemic peak by the assumed availability date of an effective vaccine, six months after the 

first introduction. As subsequent vaccination slows and ultimately stamps out the outbreak, 

the effect of vaccination dominates the impact of any school dismissal and precludes any 

further consideration of this scenario for the national-scale model.

From Fig. 3, we observe that community-wide school dismissals reduce the peak incidence 

without significantly delaying the time-to-peak incidence. On the other hand, multi-county 

and state-wide school dismissals have more impact on delaying the time-to-peak than 

reducing the peak incidence. Furthermore, county-wide school dismissals have a similar 

time-to-epidemic-peak as multi-county and state-wide school dismissals, but with a lower 

peak incidence than either. These results (Fig. 2) for the effectiveness of community-wide 

school-dis- missal strategies are consistent with the results for the regional model (see 

Table 2). In particular, for a low (but plausible) diagnosis ratio of 1%, waiting to close 

individual schools until even the first detected case may never occur. Efficacy increases with 

both the diagnosis ratio and duration, although a diminishing return is observed for longer 

dismissal durations, in particular the extended 16- and 20-week durations for scenario D. 

However, the chief advantage of the national-scale model is that it allows us to explore 

varying geographic scales of school dismissal. We find that the optimal geographic scale 

of school dismissal depends on the duration and trigger/diagnosis ratio (see Fig. 2). More 

proactive dismissals (i.e., those over broader geographic regions) are only advantageous 

if the closure is sufficiently long to enable vaccination, which often means a month or 

longer dismissal. Additionally, more proactive school dismissals over a larger geographic 

area (multi-county, or state level) will be more appropriate (and effective, see Fig. 2) for 

settings where influenza surveillance is less sensitive (i.e., where the diagnosis ratio is likely 

to be low).

3.4. Observations

From these regional and national model results, several observations can be made. First, the 

main effect of school dismissals across wider geographic scales is to slow the spread of 

the virus, as reflected by delayed time-to-peak, which confers multiple benefits. One is to 

delay and reduce peak demand for healthcare, which is particularly important at the start of a 

pandemic when systems are not yet prepared to deal with an ever-increasing patient load. An 

even greater benefit is achieved if this delay extends sufficiently long for an effective vaccine 

to be developed, produced, and distributed to the population (see Fig. 3). Second, the effects 

of school closure are very sensitive to the ability of the local surveillance system to detect 

influenza circulation and, in turn, provide a “trigger” for closing schools. For a diagnosis 

ratio as low as 1%, which might occur if laboratory confirmation is required (Reed et al., 

2009), dismissals may not be triggered in time and, thus, will have no effect on morbidity 

(see Table 2). In contrast, when surveillance systems are able to detect 5% or more influenza 

cases in the community, school closures of any duration and on any scale start reducing 
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cumulative incidence, with the effect being particularly prominent for closures lasting 8 

weeks or longer (see Fig. 2).

Finally, school closures for shorter duration of closure (1–4 weeks) generally result in a 

greater number of cases averted at the local community level, compared to simultaneous 

school closures of the same duration implemented over a larger geographic area (county, 

multi-county, or state [see Fig. 2]). However, such simultaneous (coordinated) school 

closures proactively implemented over a wider region are usually superior in terms of 

number of cases averted if the closure is sustained over a longer period of time (8 weeks 

or more [see Fig. 2]). In addition, simultaneous (proactive) school dismissal policies more 

effectively delay the spread of the disease compared to the community-wide school closures 

of the same duration, albeit at the greater cost to society due to the larger number of 

schools that must remain closed than if the closures were implemented on an individual 

community-by-community basis (see bottom panels of Fig. 3). By primarily slowing, rather 

than reducing, the disease spread, such closures are capable of reducing the peak burden 

significantly if the delay extends into the time window when vaccines become available. 

In contrast, individual school dismissals do not have a substantial impact on when the 

peak burden is reached, but if implemented promptly after the occurrence of a few initial 

cases within a school or school district, they may help reduce its magnitude and, thus, the 

transitory surge on the healthcare system (see top panels of Fig. 3).

4. Discussion

The primary benefit of pre-emptive school dismissals in mitigating the spread of a novel 

influenza virus is the delayed time-to-peak that is seen in dismissals of any duration 

considered in our study, typically by 4–6 days for each week of dismissal. Delaying local 

outbreak peaks helps to decompress the demand on the healthcare system during the initial 

pandemic wave and, under certain circumstances, it may help “buy time” to prepare and 

roll out a pandemic vaccine. That the main effect of school dismissals is delaying the 

time-to-peak is fully consistent with the nature of an intervention that does not provide 

specific protection. Overall, longer pre-emptive school dismissals (≥4 weeks) implemented 

simultaneously on a wider geographic scale (e.g., county level or wider) are most impactful 

in mitigating an influenza pandemic in its early stages, while awaiting the production and 

distribution of a pandemic vaccine. However, as Fig. 1 indicates, for highly transmissible 

strains, it may be difficult to close schools long enough to delay the epidemic peak until 

vaccines become available. Thus, efforts to increase the speed of vaccine production and 

distribution are essential to ensure that the time bought by school dismissal yields the 

optimal benefit (Biggerstaff et al., 2015).

In addition to delaying the time-to-peak, school dismissals of sufficient duration 

implemented pre-emptively on a wide-enough geographic scale may also reduce the 

cumulative attack rate. Our results suggest that shorter precisely targeted dismissals (1–4 

weeks) implemented on an individual community-by-community basis following detection 

of initial cases among students at these schools appear to be superior to dismissals of 

the same duration implemented in a coordinated county-wide, multi-county, or state-wide 

manner. However, such dismissals may not be feasible in practice, as precise targeting 
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requires prompt laboratory confirmation of initial cases in each and every community, 

coupled with quick dismissal of an affected school before virus spread occurs within the 

school and between the school and the surrounding community. For longer (multi-month) 

dismissals, we find that a greater reduction in cases is achieved by coordinated larger-scale 

dismissals (county-level or wider), being proactive rather than waiting until cases are 

detected in each individual community. Therefore, for the most severe pandemic scenarios, 

we believe that the optimal geographic unit for implementation of pre-emptive school 

closures as a pandemic countermeasure will be county-wide or beyond.

For less transmissible strains causing severe disease (e.g., a potential H5N1-like scenario) 

represented by the scenario C in our study, the effect of school dismissal on cumulative 

disease incidence is quite pronounced, even for shorter dismissals implemented on a 

narrower geographic scale. The already-low transmissibility (low R0) in such a scenario 

provides an opportunity to achieve local extinction by strategically targeted and timed school 

closure following the initial local introduction even without vaccination. In contrast, for the 

most transmissible strains associated with a high clinical disease severity considered in our 

study (i.e., scenario D comparable to 1918), a significant reduction in cumulative disease 

incidence by school closure alone may only be possible when schools are out of session 

for 16 weeks or longer, at a county-wide or wider geographic scale. It should be noted, 

how- ever, that depending on the timing of the initial pandemic waves, the effect of a long 

continuous school dismissal (16+ weeks) may be realized through a combination of planned 

school holidays and an additional dismissal (or delayed start of a semester) in response to 

the pandemic.

These results highlight an important practical issue, namely that the effectiveness of school 

dismissals is highly dependent on the local surveillance systems’ ability to quickly detect 

virus transmission in communities and, thus, implement (or “trigger”) the intervention in 

a timely fashion. Delayed detection, associated with a less-sensitive surveillance method 

(e.g., by waiting for laboratory confirmation) results in a delayed implementation of the 

intervention and, thus, a diminished effect with regard to slowing down the transmission. 

For a low diagnosis ratio of 1%, delaying the closure of individual schools (or communities) 

until a child there is confirmed is a threshold that may never be reached. (For a 2000-person 

community in which 22% of the population is school-aged, there are only 440 school 

children; it is unlikely that 100 of them will be ill at the same time.) In these cases, more 

sensitive triggers or surveillance approaches may be needed to ensure school outbreaks are 

identified promptly. Interestingly, the opposite behavior is observed for simultaneous school 

dismissal. In that case, the greater risk is closing (and then reopening) schools too quickly 

before the epidemic reaches its peak. For a low diagnosis ratio, this is the only choice, and 

may be the most realistic in practice: if a school has so many affected students that it is 

forced to close, neighboring schools will benefit by proactively dismissing. In a way, the 

original school (which is unlikely to benefit from closing, since it may be too late) will serve 

as a sentinel event, signaling the impending risk of severity to surrounding communities. 

Given the extreme sensitivity of the effects of school dismissals to early detection of initial 

cases, an aggressive surveillance system, coupled with intense pre-pandemic planning for 

rapid implementation of community-based interventions such as school dis- missals, is 

needed in all settings. This may be particularly important in dense urban settings around 
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major international hubs, where introductions of novel influenza virus strains are most 

probable and where an extremely high population density may facilitate transmission of 

strains that may be less capable of circulating in more sparsely populated areas.

To our knowledge, this is the first study that systematically explored potential effects 

of school closures implemented on different geographic scales relevant for the U.S. 

(corresponding to local, county, regional/ state, and national governmental authorities) and 

in different pandemic severity scenarios.

Our findings are consistent with previously published studies considering school closures as 

the only intervention in response to an evolving pandemic. In particular, prior observational 

and modeling studies suggested that schools are the key community setting for pandemic 

influenza transmission (Chao et al., 2010; Gog et al., 2014). School closures have been 

found to be effective in slowing down influenza transmission, whether implemented as a 

mitigation strategy or due to other reasons (e.g., regular school breaks, teacher’s strike, 

etc.) (Earn et al., 2012; Copeland et al., 2013; Chowell et al., 2011; Heymann et al., 2004; 

Markel et al., 2007). In addition, other modeling studies have explored school closure 

as a mitigation strategy (Halloran et al., 2008; Haber et al., 2007; Milne et al., 2008; 

Halder et al., 2010; Lee et al., 2010; Halder et al., 2011; Brown et al., 2011; Milne et 

al., 2013; Fumanelli et al., 2016; De LuCa et al., 2018). However, to our knowledge, ours 

is the most comprehensive modeling study to evaluate the effectiveness of different school­

closure strategies – including the tradeoffs between local, regional, and national dismissals 

– in mitigating influenza in the United States during an evolving pandemic. Model 

adjustments and validation were undertaken to address the research question at hand using 

the best currently available empirical and observational data for model parameterization, and 

sensitivity analyses were used to test the robustness of key findings.

As has been comprehensively reviewed by (Riley 2007) and Carrasco et al (Carrasco et al., 

2013), the great flexibility of such models is also their Achilles heel, as model developers, 

users, and consumers often construct models and parameters in data-poor (or data-free) 

environments. Intentionally (as is most always the case) or not, these decisions can lead to 

greater confidence in model predictions than may be warranted, given their typically tenuous 

tie to observed truth. However, although quantitative model predictions should generally be 

viewed with a healthy appreciation for their limitations, in many cases, qualitative trends 

have been proven to be reliable and useful in pre-pandemic planning efforts (Centers for 

Disease Control and Prevention, 2007). We have endeavored to consider and address the key 

limitations that are always present in mathematical modeling studies. In the present case, the 

greatest uncertainty concerns how contact rates (within different mixing groups and ages) 

might change during the disruption accompanying an unplanned school dismissal. These 

will presumably vary with time (as a so-called “fear-based social distancing” gradually 

decays towards normal contact rate patterns), and severity (e.g., the greater case fatality 

ratio of pandemic scenarios C and D are more likely to lead to a greater acceptance of, and 

compliance with, recommended social distancing measures. Currently, to our knowledge, 

there are no empirical data to inform how contact patterns may change during a prolonged 

closure; without such data, this limitation cannot be confidently addressed. On the disease 

side, there remains a great deal of variability and uncertainty about the natural history of 
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influenza, most notably its serial interval (we considered two possibilities which bracket the 

likely range) and the role of asymptomatic individuals in transmission (we have assumed 

50% of all cases are asymptomatic; previous studies assume either 30% or 50%). As 

mentioned previously, the triggering of any mitigation measures is dependent upon a timely 

detection, while realistic diagnosis ratios for pandemic planning purposes remain uncertain 

(Biggerstaff et al., 2012).

In addition to testing the effects of school closures with regard to timing, duration, and 

geographic scale of their implementation during an evolving pandemic prior to vaccine 

rollout, we have performed several analyses to test the robustness of our key findings. A 

sensitivity and uncertainty analysis demonstrates that schools are the key community setting 

for influenza transmission, apart from households. Hence, reducing school transmission 

provides the greatest lever for slowing the disease spread before vaccination. While such 

analyses have rarely been performed for large, complex simulation models, many further 

questions remain for future research. For example, it would be important to explore to 

what extent the networking of multiple communities, as in our regional and national 

models, affects these parameter sensitivities and variability of outcomes through nonlinear 

effects. Since it is impossible to predict the precise characteristics of the next pandemic 

influenza strain, and the efficacy of potential pharmaceutical and non-pharmaceutical 

countermeasures, the results presented here are somewhat qualitative in nature. However, 

during the next pandemic, the real-time estimation of these key unknowns (a challenging 

task in itself) will constrain models such as those presented here, thus yielding quantitative, 

testable predictions.

Finally, we note that the present study also identifies several areas in which further 

research should be carried out. As is often the case with modeling studies, new empirical 

data are essential to further constrain and corroborate the models, particularly with 

regard to contact rates during times of social disruption, including school closures. We 

recognize that school dismissal incurs substantial economic and societal costs (in addition 

to removing a convenient location for implementing a childhood vaccination campaign), 

and a more complete economic analysis should be performed before recommending any 

specific policies. Several economic analyses of different policy options have been reported 

(Cauchemez et al., 2009; Halder et al., 2011; Brown et al., 2011; Milne et al., 2013; Nishiura 

et al., 2014), but a more comprehensive economic analysis of school closures as a pandemic 

mitigation strategy, both on its own and in conjunction with pandemic vaccination, would be 

helpful, as well as further consideration of societal options that may mitigate the secondary 

impact of school closures.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Effect of school dismissal duration upon epidemic curves for simultaneous (region-wide) 

school dismissal for the regional model (the Chicago metropolitan area, with 8.6 M people). 

Results are shown for the shorter serial interval and nominal (worst-case) contact rate 

changes upon dismissal, activated when 20 children are symptomatic in a community (i.e., 

closure upon the first diagnosed case if the diagnosis ratio is 5%). Results are shown for five 

pandemic scenarios: four historically referenced 20th century influenza pandemics (A: 2009, 
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B1:1968, B2: 1957, D: 1918) and a fifth scenario (C) that corresponds to a clinically severe 

but less transmissible pandemic.
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Fig. 2. 
U.S. model predictions of the number of (symptomatic) influenza cases averted by a 

combination of self-isolation, school dismissals, and vaccination, for the shorter serial 

interval. School dismissal is activated when one symptomatic child is diagnosed at an 

assumed diagnosis ratio of 5%, 10%, or 20%. Two alternative assumptions for contact 

rates (CR) during school dismissal are considered: “worst-case” (filled bars: CR involving 

children in households are doubled and child-related contacts outside the home are reduced 

by 30%) and “best-case” (extensions: CR involving children in households are unchanged, 

and child-related contacts outside the home are reduced by 50%). Beginning on day 180, 1 

million people per day are vaccinated (see text and SI for details).
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Fig. 3. 
U.S. model results for pandemic scenarios B2 (left panels) and D (right panels). School 

dismissal activated when 20 children are symptomatic (closure upon first diagnosed at a 

5% diagnosis ratio) and a 4-week duration, for the shorter serial interval. (Top) Epidemic 

curves. (Bottom) Number of schools closed at any time during the outbreak. The “worst- 

case” assumption for contact rates during school dismissal is used (contact rates involving 

children in households are doubled, and child-related contacts outside the home are reduced 

by 30%). Analogous results for the “best-case” contact rates are shown in Fig. S6. Beginning 

on day 180, 1 million people per day are vaccinated (see text and SI for details). Note that 

for scenario D, the multi-county and state-wide dismissals are virtually indistinguishable, 

particularly for the epidemic curves.
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