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Abstract: The widely used rat uterotrophic assay to assess known and potential estrogenic com-
pounds only considers uterine weight gain as endpoint measurement. To complement this method
with an advanced technology that reveals molecular targets, we analyzed changes in protein ex-
pression using label-free quantitative proteomics by nanoflow liquid chromatography coupled with
high-resolution mass spectrometry and tandem mass spectrometry from uterine protein extracts
of ovariectomized rats after daily 17β-estradiol exposure for five days in comparison with those
of vehicle-treated control animals. Our discovery-driven study revealed 165 uterine proteins sig-
nificantly regulated by estrogen treatment and mapped by pathway analyses. Estrogen-regulated
proteins represented cell death, survival and development, cellular growth and proliferation, and
protein synthesis as top molecular and cellular functions, and a network found with the presence
of nuclear estrogen receptor(s) as a prominent molecular node confirmed the relevance of our find-
ings to hormone-associated events. An exploratory application of targeted proteomics to bisphenol
A as a well-known example of an estrogenic endocrine disruptor is also presented. Overall, the
results of this study have demonstrated the power of combining untargeted and targeted quantita-
tive proteomic strategies to identify and verify candidate molecular markers for the evaluation of
endocrine-disrupting chemicals to complement a conventional bioassay.

Keywords: endocrine disruption; rat uterus; estrogen-regulated proteins; 17β-estradiol; liquid
chromatography–mass spectrometry; label-free proteomics; high resolution mass spectrometry;
protein networks; targeted proteomics; bisphenol A

1. Introduction

Endocrine-disrupting chemicals (EDCs) are a class of agents that interfere with the
biological actions of hormones, and there has been significant public concern about their
adverse effect on the environment and on human health [1]. EDCs are broadly categorized
according to the hormones that they interfere with estrogens, androgens, or thyroid hor-
mone activities. The US Environmental Protection Agency (EPA) has set up the Endocrine
Disruptor Screening Program to test the tens of thousands of chemicals for suspected
endocrine disruption based on a directive from section 408(p) of the Federal Food, Drug
and Cosmetic Act, the Food Quality Protection Act and the Safe Drinking Water Act of
1996 to develop a chemical screening program using appropriately validated methods to
determine whether substances may have hormonal effects [2–4]. Agents that mimic the
effect of endogenous human estrogens are the most recognized class of EDCs.

For the vast majority of these compounds that are tested for estrogenic effects in the
uterus, the “gold standard” in vivo uterotrophic rat assay is utilized, and they may be
tested in vitro on rodent, yeast, and human cell lines as part of the complementary battery
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of assays implemented in the EPA’s two-tier testing program [2–10]. The uterotrophic
assay uses either sexually immature female rats or adult ovariectomized (OVX) female rats,
where there is no significant source of endogenous estrogens. In either version of the assay,
multiple doses of a test compound are administered over consecutive days (a minimum
of three days either orally or subcutaneously). Agents that do have estrogenic effects
cause uterotrophic response due to imbibition of water and growth of the uterine cells.
Statistically significant uterine weight increases compared to controls give a positive result.

The current in vitro and in vivo methods are not without limitations. The cell lines
are not properly able to recapitulate the in vivo environment of the uterus within the body.
On the other hand, the rat uterotrophic assay merely considers the uterine weight gain
as an endpoint of estrogenicity without taking into account all factors that play a role in
exerting an estrogenic effect on the organ and body [9–15]. The need for advanced testing
to evaluate the safety of tens of thousands of xenobiotics in the environment has been
brought to light as the traditional testing methodologies do not adequately address the
complexity of their risks on human health [4]. Therefore, complementing the uterotrophic
assay with suitable molecular-level endpoint data could diminish the chances of dismissing
potential estrogenic EDCs from further investigations because they do not meet statistical
significance criteria for organ weight gain only, especially in studies involving a small
number of animal subjects in the treatment groups. Such multiple-measure assessment that
includes biological information could also justify further targeted studies to identify specific
links between chemical interactions and toxicological effects. These targeted approaches
could not only assist screening of the already narrowed down list of candidate EDCs but
also be used in helping prioritize them for additional testing to assess their estrogenicity.

Transcriptome-level changes that take place early after exposure to 17β-estradiol
(E2, the main human estrogen) and estrogenic EDCs have been investigated [16–19]. How-
ever, the focus of these studies has been on, e.g., the understanding of developmental
changes in the uterus and the effects on fertility [20,21], or exploration of systemic effects
due to environmental contaminants [22,23]. A limited number of reports are available
about the identification of estrogen-regulated proteins in the rodent uterus using pro-
teomics [24,25], and only one of them has presented tangible results focusing on uterine
proteins regulated by E2 exposure in a mouse model [24]. Critical data in this regard have
not been available for potential use in the context of the rat uterotrophic assay. Proteomics,
the large-scale study of a proteome (proteins in a cell or tissue) of an organism, has become
an increasingly mature methodology relying mostly on mass spectrometry and its ad-
vances [26–32]. Mass spectrometry-based proteomics has two branches: discovery-driven
(or untargeted “shotgun”) proteomics and targeted proteomics [33], which is commonly
performed sequentially.

Here, we report the identification of proteins regulated by E2 using a quantitative pro-
teomic investigation in the rat uterus first by an untargeted label-free discovery approach
based on high resolution (Orbitrap) mass spectrometry (MS) and tandem mass spectrom-
etry (MS/MS) in combination with online nanoflow liquid chromatography (LC). Then,
verification of selected markers of estrogenicity is presented along with an exploratory
application of targeted proteomics methods to bisphenol A (BPA) as a well-known example
of estrogenic EDCs [34]. BPA represents 2,2-bis(4-hydroxyphenyl)propane, a synthetic
chemical used to make polycarbonates and epoxy resins on an industrial scale. Biomonitor-
ing studies show that human and animal exposure to BPA is rapid and continuous from the
environment [34]. Altogether, this compound is a proven endocrine disruptor that mimics
estrogens as a ligand at the cognate receptors thereby altering hormone concentrations and
its metabolism.

2. Results and Discussion

Discovery-driven proteomic analysis was performed using an adult OVX female rat
model, as described for the testing of EDCs using the EPA’s uterotrophic assay [14,15]. We
adapted a rapid tissue proteomics-based approach used previously for a quantitative survey
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of the impact of E2 on the OVX rat retina [35]. Using the Mascot database search algorithm
within Proteome Discoverer (version 2.3), 2683 total protein identifications including
1547 high confidence protein identifications were obtained at the desired false discovery
rate (FDR) set to ≤1%. However, only 774 proteins (representing 615 protein clusters)
passed Scaffold’s rigorous validation criteria relying on both Peptide Prophet [36] and
Protein Prophet [37] with at least two unique tryptic peptides identified for each protein
(Table S1). For label-free quantification (LFQ), we used spectral counting (SC) [24,35]
to detect uterine protein expression differences between the E2-treated versus vehicle
control groups of OVX rats. Spectral counting is a quantitative method that counts and
compares the number of fragment spectra identifying peptides of any protein. Although
the technique has been capable of providing reasonable estimates about the extent of
changes in protein abundances, they are generally not quantitatively accurate compared
to targeted proteomics. Nevertheless, trends (i.e., up- and down-regulation of proteins)
can be reliably identified through such label-free quantification [38]. Altogether, spectral
counts of 165 proteins were affected significantly by E2 exposure of the uterus; among these
143 were up-regulated and 22 were down-regulated by the hormone (Table S2).

To advance from this list of potential markers of estrogenicity in the rat uterus towards
targeted proteomics in the context of the uterotrophic assay, one may focus on selected find-
ings considering previous reports. For example, several of the estrogen-regulated proteins,
such as the vitamin D-dependent calcium-binding protein S100G and transglutaminase
2 (TGM2), have been previously reported from mouse transcriptomic studies [14–16]. How-
ever, our broader context justified comprehensive bioinformatics to guide the selection
of targets. Therefore, we used Ingenuity Pathway Analysis (IPA®) to find functional in-
teractions between the up- and down-regulated proteins identified in our study. Proteins
found to be significantly affected by E2 in the OVX rat uterus mapped across ten heuristic
IPA® networks (Figures S1–S10). Associated functions of these networks included gene
expression, ribonucleic acid (RNA) damage and repair, RNA post-transcriptional modifi-
cation, protein synthesis, cellular assembly and organization, cellular compromise, drug
metabolism, cell morphology, embryonic development, cellular function and maintenance,
cellular growth, and proliferation, cancer, connective tissue disorder, etc.—all with rele-
vance to estrogen biology shown, e.g., by the presence of an estrogen receptor (ER) or E2
(“beta-estradiol”) as a node in two specific networks (Figures S1 and S2). Although other
networks were not associated with ER, non-genomic mechanisms of estrogen actions have
been well documented and may operate through synergistic or additive effects involving
the activation of ER signaling in the context of endocrine disruption [39]. Three networks
also overlapped regarding the involved proteins and functions (Figure S11).

In addition, accurate (inclusion) mass screening [40] relying on the acquired raw
data from the untargeted shotgun experiments was performed to support the selection of
potential uterine markers from bioinformatic analyses involving the list of proteins found
to be affected significantly by E2 exposure. This approach helped bridge high-resolution
mass spectrometry-based untargeted discovery with the targeted assay development done
typically by using multiple reaction monitoring (MRM) of peptides by LC-MS/MS on triple
quadrupole instruments. The advantage of the high mass accuracy of the Orbitrap (>3 ppm
for full-scan MS acquisition even without an internal “lock mass”) to verify peptides and
sequences from an extensive list of candidate proteins is illustrated in Figure 1 and Figures
S12–S14 for the selected four rat uterine proteins (upregulated and downregulated by E2
treatment, two proteins each, respectively). When these prioritized candidate proteins were
assembled in a heuristic IPA® network shown in Figure 2, associated functions included
connective tissue development and function, organ morphology, reproductive system
development, and function highly relevant to the uterotrophic activity of estrogen.
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Figure 1. Screening from acquired high mass resolution (Orbitrap) mass spectra during the untargeted shotgun acquisitions
for transglutaminase 2 (TGM2) as a prioritized uterine protein marker for targeted assay development. (a) Locating a
proteotypic tryptic peptide of TGM2 by accurate mass of its doubly-charged ion [M+2H]2+ (TIC: total-ion chromatogram,
brown and green traces: uterus samples from control and E2-treated rat, respectively); (b) Verifying accurate masses
and isotope peak distribution of the doubly-charged ions (R: mass resolution, inset: theoretical m/z and isotope peak
distribution); (c) Confirming the peptide sequence SEGTYC@C@GPVSVR by the acquired ion-trap tandem mass spectrom-
etry (MS/MS) scan (b and y sequence ions marked according to nomenclature by Roepstorff and Fohlman [41]; C@ is
carbamidomethylated cysteine).
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Figure 2. Molecular interaction Ingenuity Pathway Analysis (IPA®) network associated with con-
nective tissue development and function, organ morphology, reproductive system development, 
and function assembled from the E2-regulated uterine proteins TGM2, elongation factor 2 (EEF2), 
selenium binding protein 1 (SELBP1), and lumican (LUM) in the rat. The shapes (see legend in the 
blue box) represent molecular classes of the regulated proteins. In the network, red and green colors 
denote upregulation and downregulation in response to E2 treatment, respectively. The intensity of 
the color indicates the relative magnitude of fold change in protein expression pattern based on 
spectral counts. Solid and dashed lines represent direct and indirect interactions, respectively. Ab-
breviations: ABLIM1, actin binding LIM protein 1; ABCC9, adenosine triphosphate (ATP) binding 
cassette subfamily C member 9; ACTC1, actin alpha cardiac muscle 1; BLK, proto-oncogene, Src 
family tyrosine kinase; CDCA7, cell division cycle associated 7; CDK18, cyclin dependent kinase 18; 
CNBP, CCHC-type zinc finger nucleic acid binding protein; COPE, COPI coat complex epsilon; 
ESR1, estrogen receptor 1; F7, coagulation factor 7; FARSB, phenylalanyl–tRNA synthetase subunit 
beta; GDP, guanosine diphosphate; GM2A, ganglioside activator; GRM5, glutamate metabotropic 
receptor 5; HSPB2, heat shock protein family B (small) member 2; KCNQ5, potassium voltage-gated 
channel subfamily Q member 5; MCM4, minichromosome maintenance complex component 4; mir, 
microRNA; MYO9A, myosin IXa; NDRG1, N-myc downstream regulated 1; PADI4, peptidyl argi-
nine deiminase 4; PI3, peptidase inhibitor 3; PLAZR1, phospholipase A2 receptor 1; PNRC1, proline 
rich nuclear receptor coactivator; PPPP5C, protein phosphatase 5 catalytic subunit; SLC25A15, so-
lute carrier family 25 member 15; TMOD2, tropomodulin 2; WEE1, G2 checkpoint kinase. 

Figure 2. Molecular interaction Ingenuity Pathway Analysis (IPA®) network associated with connective tissue development
and function, organ morphology, reproductive system development, and function assembled from the E2-regulated uterine
proteins TGM2, elongation factor 2 (EEF2), selenium binding protein 1 (SELBP1), and lumican (LUM) in the rat. The shapes
(see legend in the blue box) represent molecular classes of the regulated proteins. In the network, red and green colors
denote upregulation and downregulation in response to E2 treatment, respectively. The intensity of the color indicates the
relative magnitude of fold change in protein expression pattern based on spectral counts. Solid and dashed lines represent
direct and indirect interactions, respectively. Abbreviations: ABLIM1, actin binding LIM protein 1; ABCC9, adenosine
triphosphate (ATP) binding cassette subfamily C member 9; ACTC1, actin alpha cardiac muscle 1; BLK, proto-oncogene, Src
family tyrosine kinase; CDCA7, cell division cycle associated 7; CDK18, cyclin dependent kinase 18; CNBP, CCHC-type zinc
finger nucleic acid binding protein; COPE, COPI coat complex epsilon; ESR1, estrogen receptor 1; F7, coagulation factor 7;
FARSB, phenylalanyl–tRNA synthetase subunit beta; GDP, guanosine diphosphate; GM2A, ganglioside activator; GRM5,
glutamate metabotropic receptor 5; HSPB2, heat shock protein family B (small) member 2; KCNQ5, potassium voltage-gated
channel subfamily Q member 5; MCM4, minichromosome maintenance complex component 4; mir, microRNA; MYO9A,
myosin IXa; NDRG1, N-myc downstream regulated 1; PADI4, peptidyl arginine deiminase 4; PI3, peptidase inhibitor 3;
PLAZR1, phospholipase A2 receptor 1; PNRC1, proline rich nuclear receptor coactivator; PPPP5C, protein phosphatase
5 catalytic subunit; SLC25A15, solute carrier family 25 member 15; TMOD2, tropomodulin 2; WEE1, G2 checkpoint kinase.
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TGM2 is in a class of enzymes that catalyze the crosslinking of proteins by epsilon-
gamma glutamyl lysine isopeptide bonds. This protein was shown to be activated in
bovine uteruses and mouse livers [18,42]. TGM2, while being involved in Ca2+-dependent
transamidation of proteins, is also involved in roles that are non-enzymatic and not
Ca2+-dependent. TGM2 also participates in ATP and GTP hydrolysis, as well as in signal
transduction through G-protein coupled receptors. Altogether, this protein potentially
plays a critical role in remodeling the cytoskeletal structure and maintaining structural
integrity, and variation in its abundance could contribute to the major morphological
changes involved with the growth of the uterus upon E2 exposure. In addition to all these
enzymatic roles, it also has multiple interactions with protein scaffolds [43]. In vivo using
proteomics, TGM2 has not been identified previously as estrogen-regulated. Therefore,
our finding is significant given the protein’s physiological importance and presence in the
interaction networks we show in Figure 2 and Figure S8.

EEF2 belongs to the GTP-binding translational elongation factor family and serves
as an important checkpoint regulator. It is essential for protein synthesis, as it catalyzes
the GTP-dependent ribosomal translocation step in translation. EEF2 is a well-known
up-regulated marker of estrogen exposure [24,44,45] shown previously in mouse uterus
and cancer cells. Its expression in the E2-challenged uterus could be explained by the need
for an increase in protein syntheses to keep up with the demands of the growth of the organ.
This is consistent with our discovery data showing the majority of the estrogen-regulated
proteins are activated.

SELENBP1, a protein that binds this trace elemental component of nonconventional
amino acids selenocysteine and selenomethionine as well as selenoproteins, may be in-
volved in the sensing of reactive xenobiotics in the cytoplasm and may be involved in
intra-Golgi protein transport [46–48]. SELENBP1 expression has been shown by transcrip-
tomics to be downregulated upon E2 exposure in the uterus and in cancer cells [17,49].
While its role is not fully understood, as a binding protein of selenium it contributes to
the maintaining of the redox state of the cell by keeping free selenium concentrations low.
Selenium is toxic to the cell in large concentrations yet it is necessary for the functioning of
antioxidant selenoproteins. E2 exposure could cause a shift in the redox state of the cell and
hence could cause a loss in the protective function of SELENBP1. This protein is another
novel finding in our study as it has not been shown previously as estrogen-regulated
in vivo in the rat uterus using proteomics.

LUM is in the family of small leucine-rich proteoglycans (SLRPs). This protein has
been shown to be constitutively expressed and deposited in the extracellular matrix of
the mouse uterus in the absence of the ovarian hormones but remodels along the estrous
cycle and early pregnancy [50]. LUM modulates synthesis, deposition, and degradation of
various molecules, and has been found among the proteins downregulated by E2 treatment
in our earlier proteomics study of the mouse uterus [24]. Overall, its biological role and
previous experimental evidence have justified the inclusion of this protein as a prioritized
candidate for targeted assay development for estrogenic ECDs.

The developed targeted assay for TGM2, EEF2, SELENBP1, and LUM using heavy-
isotope labeled peptides as internal standards are summarized in Table S3. Targeted pro-
teomics was recognized as the method of the year in 2012 [51,52]. It is a specific and
selective way to assay proteins of interest. Adapted from small-molecule methodologies
and applied to targeted protein analyses, monitoring only selected proteotypic peptides
facilitates an increase in sensitivity, reproducibility, as well as in specificity, and robustness
when applied to a complex mixture of peptides obtained from a proteomics workflow.
We developed the LC-MRM method for use with conventional high-performance liquid
chromatography (HPLC, column i.d. of 2.1 mm) to facilitate adaptation by laboratories not
equipped with nanoflow LC capabilities.

We used the developed targeted proteomics assays for relative quantification in a
study applied to BPA as a well-known example of estrogenic ECDs [34] using E2 treatment
as a positive control. BPA-based polymers such as polycarbonate plastics and epoxy resins
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are widely used [34]. BPA is a weak estrogenic EDC and has been a major target for
endocrine disruption-related studies [53,54]. BPA can leach from plastic products and
expose humans and the environment to its potentially harmful effects as an EDC [55–58].
Public concern about BPA exposure is so great because of its widespread use, and has led
to a movement to specifically label products made without it as “BPA-free.” As shown in
Table 1, our targeted proteomics method allowed for determining quantitative changes
of the chosen E2-regulated proteins in the rat uterus based on their proteotypic tryptic
peptides across samples. Overall, changes in the expression of TGM2, EEF2, SELENBP1,
and LUM replicated the trend observed from the wet uterus weight-based assessment
displayed in Figure 3.

Table 1. E2-regulated proteins in OVX rat uterus verified by targeted proteomics and applied to testing BPA [34,53–58] as a
well-known estrogenic EDC.

Rat Uterus Protein Proteotypic Tryptic Peptide Fold Change after E2 Treatment 1 Fold Change after BPA Treatment 1

Transglutaminase 2, C
polypeptide (TGM2) YSGCLTESNLIK 24.7 ± 4.6 14.3 ± 4.4

SEGTYCCGPVSVR 17.5 ± 2.3 10.2 ± 2.1
Elongation factor 2 (EEF2) EGIPALDNFLDKL 3.9 ± 0.3 3.2 ± 0.3

TFCQLILDPIFK 8.4 ± 1.1 6.5 ± 1.1
Selenium-binding protein 1

(SELENBP1) HEIIQTLQMK –2.2 ± 0.5 –2.0 ± 0.2

LILPSIISSR –2.9 ± 0.1 –2.3 ± 0.2
Lumican (LUM) NNQIDHIDEK –3.8 ± 0.8 –6.3 ± 0.8

SLEYLDLSFNQMSK –2.0 ± 0.4 –2.5 ± 0.1
1 All reported results (data given as average ± standard error) yielded statistically significant differences from OVX controls with analysis
of variance (ANOVA) followed by post hoc Dunnett’s tests, p < 0.05.
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in the reported experiment. Data are given as average ± standard error, and asterisks (*) indicate statistically significant
differences from OVX controls with ANOVA followed by post hoc Dunnett’s tests (p < 0.05).
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In conclusion, we presented differential proteome analyses focusing on estrogen-
regulated rat uterus proteins using quantitative proteomics approaches: first a label-free
shotgun method followed by targeted quantitation as a roadmap for the complementation
of the conventional uterotrophic assay. To our knowledge, this is the first study to identify
and verify in vivo rat uterine protein markers for potential screening of candidate EDCs
regarding effects that mimic those of estrogen.

3. Materials and Methods
3.1. Chemicals

All HPLC grade solvents were obtained from Fisher Scientific (Atlanta, GA, USA).
Sequencing grade trypsin was from Applied Biosystems (Foster City, CA, USA). All other
chemicals were acquired through Sigma-Aldrich (St. Louis, MO, USA) unless other-
wise stated.

3.2. Animals

Sprague Dawley rats weighing 200−250 g were obtained from Charles Rivers Labo-
ratories (Wilmington, DE, USA). They were kept under a standard 12 h light/12 h dark
cycle, and the room temperature was maintained at 21 ◦C. Ovariectomy of the rats was
done by the supplier (Charles River Laboratories). Animals were shipped approximately
one week after the procedure and allowed to adapt in the animal facility for approximately
two weeks before starting their treatment. Two animals were housed per cage with full
access to standard diet and water.

For discovery-driven proteomics, daily subcutaneous (s.c.) injections with the vehicle
control (corn oil, 60 µL per injection), or E2 (50 µg/kg body weight in corn oil vehicle) were
done on 5 consecutive days between 10:00 a.m. and 12:00 a.m., and the rats were killed for
immediate tissue collection on the sixth day after starting the experiments. The targeted
proteomics experiments were done using a separate cohort of animals with treatments
identical as above and with an added group of OVX rats that received s.c. injections of
BPA (300 mg/kg body weight in corn oil vehicle). Except for the BPA group (N = 5),
each treatment group consisted of four animals. The animals were sacrificed by cervical
dislocation, decapitated, and their brains were removed. An abdominal incision was then
made and the uterus was removed by cutting at the junction of the uterus and vagina
and at the site of the ovariectomy on each horn. Excess fat and connective tissues were
removed, and the organ was blotted and weighed. All tissues were stored at –80 ◦C until
sample preparation and analysis.

3.3. Sample Preparation

Tissues were incubated in 200 µL of 8 M urea for 30 min, as reported before [24,35].
The samples were centrifuged for 5 min at 1400× g and the supernatant was collected. The
protein content of uterine extracts was determined by a microBCA assay (Bio-RAD, Her-
cules, CA, USA). Approximately 100 µg of protein from each sample was used for further
processing. Samples were reduced with 1 mM dithiothreitol (DTT) for 30 min at 65 ◦C to
reduce the disulfide bonds. Carbamidomethylation of the thiol groups was performed by
the addition of 5 mM iodoacetamide (IAA) and incubation for 30 min at room temperature
in the dark. Excess IAA was quenched by the addition of DTT for 5 min. The samples
were diluted with 50 mM ammonium bicarbonate to lower the urea concentration to less
than 2 M. Samples were digested with sequencing grade trypsin (1:50, Applied Biosystems,
Foster City, CA) overnight. The tryptic digestion was terminated by acidifying the samples
to pH < 2.0 with acetic acid and the digests were desalted using C18 Sep-Pak solid-phase
extraction cartridges (Waters, Milford, MA, USA). The desalted uterine tryptic digests
were further dried under vacuum (VacufugeTM, Eppendorf AG, Hamburg, Germany) and
subsequently reconstituted in 20 µL of 5% (v/v) acetonitrile in water containing 0.1% (v/v)
acetic acid and aliquots of 5 µL were used for LC-MS/MS analyses.
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3.4. Data-Dependent LC-MS/MS Data Acquisition for Discovery-Driven Shotgun Proteomics

The digested samples were analyzed using a hybrid ion trap–Orbitrap tandem mass
spectrometer (LTQ Velos Orbitrap Pro) coupled to an EASY nLC-1000 nanoflow liquid
chromatography system fitted with a 15 cm × 75 µm i.d. EasySpray column packed with
3 µm PepMap C18 particles (Thermo Fisher Scientific, San Jose, CA, USA) [35]. Gradient
elution was used: solvent A and solvent B were water and acetonitrile, respectively, and
each contained 0.1% (v/v) formic acid. Samples (equivalent to 100 µg protein) were
reconstituted in 100 µL of the solvent containing 5% (v/v) acetonitrile and 0.1% (v/v)
formic acid in water and transferred into 200 µL polypropylene autosampler vials closed
with an open-top screw cap and Teflon-lined silicon septum (USA Scientific, Orlando, FL,
USA). During a 20-min column equilibration at 5% B, 5 µL of the solution was injected
while maintaining constant column pressure at 600 bar. The peptides were eluted at
300 nL/min using the following gradient: (1) 5 min isocratic at 5% B; (2) linear program
to 40% B over 90 min and then (3) isocratic at 40% B for 5 min; (4) to 90% B over 5 min;
(6) isocratic at 90% B for 5 min; and (6) resetting to 5% B in 20 min. The mass spectrometer
was operated in positive-ion nanoelectrospray (nanoESI) mode with a source voltage of
2.0 kV and ion-transfer tube temperature of 275 ◦C. Full-scan mass spectra were acquired
at 60,000 resolution (m/z 400) in the Orbitrap and up to 20 MS/MS spectra were obtained in
the ion trap for each full spectrum acquired using collision-induced dissociation (CID) of
multiply-charged ions (z ≥ 2). Dynamic exclusion was set for 60 s after an ion was selected
for fragmentation. Two technical replicates were run for each sample.

3.5. Database Search, Label-Free Relative Quantification, and Pathway Analysis

MS/MS spectra were searched against the UniProt protein sequence database (species:
Rattus norvegicus, 29,938 entries) using the Mascot search engine (version 2.6.2; Matrix
Science, Boston, MA, USA) run from Proteome Discoverer (version 2.3; Thermo Fisher
Scientific). A parent ion mass tolerance and fragment ion mass tolerance were set to
25 ppm and 0.80 Da, respectively, allowing only one missed cleavage in our search filters
and limiting FDR to 0.01 (1%). Cystein carbamidomethylation was indicated as fixed
modification and methionine oxidation was designated as variable modification. We used
Scaffold software (version 4.9.0, Proteome Software Inc.; Portland, OR, USA) to validate our
search results using the Peptide Prophet [36] and Protein Prophet [37] algorithms requiring
over 95% and 99% probabilities, respectively, and at least two identified unique peptides for
each protein. Our LFQ relied on SC [23] built into the Scaffold software, and p < 0.05 was
considered significantly different using unpaired t-tests for statistical comparison between
sample categories. We also considered a twofold change in spectral counts as a threshold
of biological effect. Missing values, if any, were handled using Scaffold’s default method
and settings. The identified E2-regulated proteins were submitted to Ingenuity Pathway
Analysis® (IPA®, QIAGEN, Redwood City, CA, USA; https://www.qiagenbioinformatics.
com/products/ingenuity-pathway-analysis/) (accessed on 12 January 2021) to derive
bioinformatics annotations along with potential protein interaction networks, as well as
associated biological functions and processes. Overlaps of p-values were reported from
IPA®’s calculations using the right-tailed Fisher’s exact test.

3.6. Target Panel and Internal Standards

Two proteotypic peptides were selected and subjected to BLASTP analysis for each
protein (TGM2, EEF2, SELENBP1, and LUM) to confirm 100% homology. The selected
peptides did not have any missed cleavages and did not have extensive post-translational
modifications. Carbamidomethylated cysteine was incorporated as a fixed modification
in all peptides when required. The approach involved the use of stable-isotope labeled
internal standards (SIS) added to the tissue extracts for comparison against native tryptic
peptide (NAT) levels in the digested samples. The SIS peptides were purchased from New
England Peptide (Gardner, MA, USA). Incorporation of the 13C- and 15N-isotopes was done
at the C-terminal residue of tryptic peptides yielding mass shifts of +8 Da (from 13C6

15N2-
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lysine), +10 Da (from 13C6
15N4-arginine), and +7 Da (from 13C6

15N-leucine) compared to
their unlabeled counterparts in the samples.

3.7. MRM-Based LC–MS/MS Data Acquisition for Targeted Proteomics

Samples were analyzed in triplicate using a TSQ Quantum Ultra tripe-quadrupole
mass spectrometer (TSQ, Thermo Electron Corporation, Trace Chemical Analysis, Austin,
TX, USA) equipped with a heated electrospray ionization (H-ESI) source and operated
with Xcalibur (version 2.2) and Tune Plus (version 2.2) data acquisition software.

Gradient HPLC separations were carried out using a Surveyor MS solvent delivery
system (Thermo). The Phenomenex (Torrance, CA, USA) Aeris™ PEPTIDE XB-C18 column
(15 cm × 2.1 mm i.d., packed with 3.6-µm core-shell particles) was operated at 0.4 mL/min
flow rate and with the following gradient program: 2% B to 65% B in 30 min, then ramped
to 95% B in 0.5 min and held for 3.5 min, and finally, the column was ramped to 2% B
in 0.5 min and equilibrated for 10.5 min. The autosampler injection volume was 10 µL,
and the tray temperature was maintained at 18 ◦C. H-ESI spray voltage, H-ESI tempera-
ture, and capillary temperature were 3.5 kV, 275 ◦C, and 300 ◦C, respectively. Nitrogen
sheath gas and auxiliary gas flow rates were 30 and 20 arbitrary units (corresponding
to approximately 0.45 and 6.0 L/min according to the manufacturer’s specification), re-
spectively. CID was performed with argon at 1.5 mTorr pressure. MRM with a unit mass
resolution for the precursor and product ions was used for the quantitation of peptides.
Data acquisition and processing were controlled by the XCalibur software (version 2.1) of
the instrument. A complete list of the MRM transitions used in this study is provided in
Supplementary Table S3.

3.8. Data Processing for Targeted Proteomics and Statistical Analysis of the Results

Manual verification of the extracted ion chromatogram peak selections was performed
with XCalibur software (version 2.1). The area under the curve (AUC) of the relative abun-
dance of each peak for each transition was calculated from within the Xcalibur software.
Relative quantitation was done by first taking the average from the technical replicates of
all samples for each peptide, and then using the ratio of NAT to SIS peptide, comparing
controls and treated samples to get fold change increase or decrease. Relative ratios of SIS
internal standards to endogenous peptide, for each peptide, were normalized to the control
to get fold change differences.

Statistical analysis of the relative fold change of peptides was performed using ANOVA
followed by post hoc Dunnett’s tests. p < 0.05 was considered statistically significant.

Supplementary Materials: The Supplementary Materials are available online at https://www.mdpi.
com/1422-0067/22/4/1686/s1.
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