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Abstract
Purpose of Review With the intention to summarize the cur-
rently available evidence on the pathophysiological relevance
of inflammation in heart failure, this review addresses the ques-
tion whether inflammation is a cause or consequence of heart
failure, or both.
Recent Findings This review discusses the diversity (sterile,
para-inflammation, chronic inflammation) and sources of inflam-
mation and gives an overview of how inflammation (local versus
systemic) can trigger heart failure. On the other hand, the review
is outlined how heart failure-associated wall stress and signals
released by stressed,malfunctioning, or dead cells (DAMPs: e.g.,
mitochondrial DNA, ATP, S100A8, matricellular proteins) in-
duce cardiac sterile inflammation and how heart failure provokes
inflammation in various peripheral tissues in a direct
(inflammatory) and indirect (hemodynamic) manner. The
crosstalk between the heart and peripheral organs (bone marrow,
spleen, gut, adipose tissue) is outlined and the importance of
neurohormonal mechanisms including the renin angiotensin

aldosteron system and the ß-adrenergic nervous system in in-
flammation and heart failure is discussed.
Summary Inflammation and heart failure are strongly intercon-
nected and mutually reinforce each other. This indicates the dif-
ficulty to counteract inflammation and heart failure once this
chronic vicious circle has started and points out the need to
control the inflammatory process at an early stage avoiding
chronic inflammation and heart failure. The diversity of inflam-
mation further addresses the need for a tailored characterization
of inflammation enabling differentiation of inflammation and
subsequent target-specific strategies. It is expected that the char-
acterization of the systemic and/or cardiac immune profile will be
part of precision medicine in the future of cardiology.
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Abbreviations
ACS Acute coronary syndrome
Ang II Angiotensin II
ANP Atrial natriuretic peptide
AT1R Angiotensin II type 1 receptor
BNP Brain natriuretic peptide
DAMP Danger-associated molecular pattern
ECM Extracellular matrix
HF Heart failure
HFmEF Heart failure with mid-range ejection fraction
HFpEF Heart failure with preserved ejection fraction
HFrEF Heart failure with reduced ejection fraction
LOX Lysyloxidase
LPS Lipopolysaccharide
LV Left ventricular
MΦ Macrophage
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MI Myocardial infarction
MSC Mesenchymal stromal cell
NADPH Nicotinamide adenine dinucleotide phosphate
NLRP3 Nucleotide-binding oligomerization domain-like

receptor with a pyrin domain 3
NOX NADPH oxidase
PAMP Pathogen-associated molecular pattern
PRR Pattern recognition receptors
RAGE Receptor for advanced glycation endproducts
RAAS Renin angiotensin aldosteron system
ROS Reactive oxygen species
SIRS Systemic inflammatory response syndrome
TLR Toll-like receptor
TNF Tumor necrosis factor
TGF Transforming growth factor

Introduction

Heart failure (HF) is one of the most common disorders in
Western societies, and its prevalence is still rising.
Approximately 50% of all HF patients suffer from HF with
reduced ejection fraction (HFrEF; typically considered as EF
<40%), whereas the other half suffers from HFwith preserved
ejection fraction (HFpEF; ≥EF50). Patients with a left ventric-
ular ejection fraction in the range of 40–49% represent a “gray
area,” which is newly defined as HF with mid-range ejection
fraction (HFmEF) [1]. The HF epidemic can be explained by
the paradox of clinical success, leading to a decrease in mor-
tality due to myocardial infarction (MI) and consequential
raise in surviving HF patients, as well as by the increasing
prevalence of diabetes mellitus and obesity, which are besides
hypertension and COPD, the main comorbidities associated
with HFpEF [2].

Our understanding regarding the development and progres-
sion of HF has changed over the last decades. Physicians have
traditionally considered HF to be a hemodynamic disorder. The
inability of the so-called hemodynamic hypothesis to explain
the progression of HF and the evidence that activation of the
sympathetic nervous system and renin angiotensin aldosteron
system (RAAS) exerts a direct deleterious effect on the heart
that is independent of the hemodynamic actions of these en-
dogenous mechanisms has then given rise to the notion that HF
may progress as a result of the overexpression of neurohor-
mones (neurohormonal hypothesis) [3]. In the 1990s, it has
become apparent that in addition to neurohormones, cytokines
play an important role in the pathogenesis of HF (cytokine
hypothesis) [4]. The last decade, inflammation has more and
more been recognized to play an important role in the patho-
genesis of both main forms of HF [5, 6•, 7••, 8] and as a
consequence, to be an important therapeutic target for the treat-
ment of HF [9, 10]. Common to both forms of HF is the cor-
relation between elevated serum concentrations of pro-

inflammatory cytokines and adverse clinical outcomes
[11–13]. However, how inflammation contributes to the path-
ogenesis of both main forms of HF is different. For HFpEF, a
novel paradigmwas postulated which identifies a systemic pro-
inflammatory state induced by comorbidities as the origin of
microvascular endothelial cell inflammation, which triggers
HFpEF-specific, i.e., concentric, cardiac remodeling, and dys-
function [6•]. With respect to HFrEF, cardiomyocyte damage
directly induced by, e.g., myocardial infection or ischemia un-
derlies inflammation triggering eccentric cardiac remodeling
and dysfunction. Besides the different causes of inflammation,
inflammation itself is diverse and complex, which might ex-
plain the disappointing results of anti-inflammatory strategies
so far [14, 15]. Indeed, it is more and more recognized that
further insights into this diversity and complexity depending
on the specific cardiac disorder are required in view of finding
target-specific therapies. With the intention to summarize the
currently available evidence on the pathophysiological rele-
vance of inflammation in HF, this review addresses the ques-
tion whether inflammation is a cause or consequence of HF, or
both. In general, this question reflects whether inflammation
can damage tissue or tissue damage can trigger inflammation,
or both. To be able to answer this question, it is first of all
necessary to know how inflammation is defined. Therefore,
the inflammatory response, sterile inflammation, para-inflam-
mation, and chronic inflammation are briefly discussed. Next,
different sources of inflammation and their contribution to HF
are outlined, followed by how HF can induce inflammation.

Inflammation

The first century Roman doctor Cornelius Celsus described the
four cardinal signs of inflammation, rubor et tumor cum calore
et dolore (redness and swelling with heat and pain) [16]. Only
in 1858, the fifth cardinal sign, functio laesa (disturbance of
function), was added by Rudolph Virchow [17]. In contrast to
the four cardinal signs, which only apply to acute inflammation
accompanying wounds and infections, functio laesa is the only
universal sign of inflammation [16]. A typical inflammatory
response consists of four components: (1) the inflammatory
inducers, classified in exogenous (microbial inducers including
pathogen-associated molecular patterns (PAMPs), virulence
factors, and non-microbial inducers: allergens, toxic com-
pounds, irritants) and endogenous inducers (danger-associated
molecular patterns (DAMPs): cell-, tissue-, plasma-, extracel-
lular matrix (ECM)-derived products); (2) the sensors that de-
tect them including pattern recognition receptors (PRRs) or
other sensors like the nucleotide-binding oligomerization
domain-like receptor with a pyrin domain 3 (NLRP3)
inflammasome; (3) the inflammatory mediators induced by
the sensors (vasoactive amines and peptides, fragments of com-
plement components, lipid mediators, proteolytic enzymes,
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chemokines, and cytokines); and (4) the target tissues that are
affected by the inflammatory mediators [16]. With respect to
mediators, this review particularly discusses the relevance of
cytokines in HF.

Sterile Inflammation

If inflammation occurs in the absence of infection, one speaks
of sterile inflammation. Post-ischemic or toxic necrosis, mas-
sive trauma, hemorrhage, and resuscitation can each trigger an
inflammatory response. Molecules released from dying cells,
altered host cell products (breakdown products of the ECM,
oxidized lipoproteins), and abnormally released host cell prod-
ucts (e.g., heat shock proteins) are involved. Inflammatory re-
sponses induced by sterile stimuli are very similar to responses
during infection, including the recruitment of neutrophils and
macrophages (MΦs), the production of inflammatory cytokines
and chemokines, and the induction of T cell-mediated adaptive
immune responses [18]. Sterile endogenous stimuli trigger in-
flammation via (1) activation of PRRs by mechanisms similar
to those used by microorganisms and PAMPs, but weaker and
delayed as shown for a sterile signal-induced macrophage
NLRP3 inflammasome response relative to microbial signals
[19]; (2) release of intracellular cytokines which activate com-
mon pathways downstream PRRs; and (3) activation of recep-
tors which are not typically associated with microbial recogni-
tion like the receptor for advanced glycation endproducts
(RAGE) and CD36 [18].

Para-inflammation

This response is characterized by no massive tissue injury and
a limited inflammatory activation. Therefore, it is termed para-
inflammation derived from the Greek prefix παρα/para for
near [20]. This response relies mainly on tissue-resident MΦs.
If tissue malfunction is present for a sustained period, para-
inflammation can become chronic [20]. This form of inflam-
mation often accompanies obesity, the metabolic syndrome,
type 2 diabetes, atherosclerosis, aging, and other chronic in-
flammatory conditions that are associated with modern human
diseases. Para-inflammation is consequently also called “low-
grade” chronic inflammation and in case of metabolism-
triggered inflammation, “meta-inflammation” [21].
Environmental factors including caloric excess, intake of
processed foods, use of antibiotics, and physical inactivity,
common to Western lifestyle [22], as well as endocrine
disruptors and early life influences (maternal nutrition, placen-
tal function) underlie para-inflammation.

Chronic Inflammation

Chronic inflammation can be caused by persistence of the
inflammatory trigger, which disables an appropriate induction

of the resolution phase and can occur when there is a positive
feedback loop between inflammation and the pathological
process it accompanies. Obesity for example can lead to in-
flammation, whereas chronic inflammation can induce
obesity-associated diabetes in part by inducing insulin resis-
tance [21].With respect to pathophysiological processes in the
heart, there is accumulating evidence that inflammation-
triggered myofibroblasts are capable of inducing the inflam-
matory response by their own via (1) expressing chemokines,
attracting immune cells to the heart, (2) inducing adhesion
molecules on the endothelium, (3) stimulating monocytes to
express gelatinases, facilitating transmigration of immune
cells through the basolateral membrane [23, 24], and (4)
NLRP3 inflammasome activity and IL-1ß release [25]. In this
manner, a vicious circle is induced supporting chronic inflam-
mation in the heart [24].

Inflammation Causes Heart Failure

Inflammation triggers HF in its different aspects, ranging
from its impact on the pathogenesis of HF including HF-
underlying comorbidities like diabetes and obesity [26, 27],
and on pathological substrates underlying heart disease like
endothelial dysfunction [28–31] and atherosclerosis [32], to
its influence on the progression and outcome of acute coro-
nary syndrome (ACS) [33] and HF [34]. Blood monocyte
levels [35] and splenic activity [36] can predict cardiovascu-
lar events in patients, C-reactive protein levels are higher in
patients with recurrent events [37], and cardiac inflammation
is a predictor for a negative outcome in patients with dilated
cardiomyopathy [34]. Inflammatory cytokine (TNF-α, IL-
1ß, IL-6) levels are increased in HF patients [38]. There is
a correlation between serum levels of TNF-α and the sever-
ity of the disease [38], and cytokines and cytokine receptors
are independent predictors of mortality in patients with ad-
vanced HF [39]. The relevance of inflammation in HF fol-
lows from experimental studies in animal models of MI,
diabetic cardiomyopathy, pressure overload, and myocarditis
using knockout [40–42], or transgenic [43] mice, or mice
treated with anti-inflammatory or immunomodulatory strate-
gies, including antibodies (e.g., TNF-α antibody [44], IL-6R
antibody [45]), inhibitors (IL-1 converting enzyme inhibitor
[46]), agonists/antagonists of cytokines/chemokines (IL-2
agonist [47], CCR2 siRNA [48]), statins [49], HDL-raising
strategies [29–31, 50, 51], cell therapies including mesen-
chymal stromal cells (MSC) [52–54], and cardiac-derived
stromal cells [55, 56]. The inflammation-induced cardiac
pathophysiological mechanisms underlying HF will next
shortly be discussed followed by evidence of high-grade
and low-grade systemic inflammation affecting HF.

At the latest, since the cytokine hypothesis from the 1990s
[4], it is well established that cytokines exert detrimental ef-
fects on the heart. Cytokines like TNF-α and IL-1ß
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downregulate the expression of Ca2+-regulating genes includ-
ing sarcoplasmic reticulum Ca2+ ATPase [57] and Ca2+-re-
lease channel [58], leading to a direct negative inotropic effect
as a direct result of alterations in intracellular Ca2+ homeosta-
sis in the adult cardiac myocyte [59]. Abnormalities in sarco-
plasmic reticulum Ca2+ release promote on their turn eccentric
myocardial remodeling (eccentric hypertrophy, substantial fi-
brosis, ventricular dilation) and pump failure, ultimately
resulting in overt HF, in response to pressure overload [60].
This points out that inflammation-triggered Ca2+ dysbalance
can contribute to cardiac remodeling, leading to a vicious
circle [61]. TNF-α and IL-1ß further promote cardiomyocyte
hypertrophy [62] and the cytokine IL-6 has been demonstrated
to increase cardiomyocyte stiffness via reducing the phosphor-
ylation of titin [45]. TNF-α also triggers cardiomyocyte apo-
ptosis [63] and IL-1ß cardiomyocyte pyroptosis [64].

On cardiac fibroblasts, TNF-α and IL-1ß upregulate angio-
tensin II type 1 receptors (AT1R) and they induce AT1R den-
sity in the post-MI heart [65]. The upregulation in AT1 recep-
tor expression enhances the angiotensin (Ang) II-mediated
cardiac fibroblast responses that favor fibrosis [66]. TNF-α
and IL-1ß neutralization ameliorates Ang II-induced cardiac
damage, further supporting synergistic actions of Ang II and
TNF-α/IL-1ß [67]. TNF-α also induces TGF-ß [68] and in-
creases the expression of cardiac fibroblast lysyl oxidase
(LOX) expression through TGF-β and PI3Kinase signaling
pathways [69]. LOX belongs to a family of enzymes [70],
including LOX-like 2, responsible for the crosslinking of
ECM proteins, including collagen types I and III. The rele-
vance of LOX-like 2 as therapeutic target of cardiac fibrosis
and as biomarker for HF has recently been demonstrated [71].
TGF-ß induces fibroblasts to transdifferentiate into active
myofibroblasts. Those cells are not only active in producing
collagens but they also act as inflammatory support cells via
their capacity to express chemokines, to release factors induc-
ing adhesion molecules on endothelial cells, and via their abil-
ity to stimulate monocytes to express gelatinases facilitating
degradation of the basolateral membrane and subsequent in-
filtration of immune cells in the heart [23, 24] and their capac-
ity to modulate the MΦ M1/M2 balance [72]. Furthermore,
activated fibroblasts promote cardiomyocyte hypertrophy and
dysfunction via the release of pro-fibrotic factors, such as
TGF-β1, Ang II, and fibroblast growth factor [73, 74].

On (cardiac) endothelial cells, pro-inflammatory cytokines
induce adhesion molecule expression [75] and promote sub-
sequent adhesion of immune cells to the endothelium [76] and
transendothelial migration [77]. They induce apoptosis in car-
diac endothelial cells [78] and oxygen-centered free radicals,
which stimulate the elaboration of plasminogen activator
inhibitor-1 and collagen by cardiac microvascular endothelial
cells. Accordingly, microvascularly mediated inhibition of fi-
brinolysis may predispose to the persistence of microvascular
thrombi, thereby contributing to impaired microcirculatory

function, the no-reflow phenomenon, and cardiac dysfunction
after ischemia and reperfusion [79]. TGF-ß and Ang II induce
endothelial-to-mesenchymal transition, the transition from an
endothelial to a fibroblast phenotype [29], a phenomenon,
which has been shown to contribute to cardiac fibrosis in a
landmark study by Zeisberg et al. [80]. Recently, it has been
shown that TNF-α-induced endothelial natriuretic peptide/
guanylate cyclase A/cGMP/phosphodiesterase 2 signaling im-
pairs endothelial barrier functions and enhances myocardial
inflammatory infiltration in the early phase after an acute in-
farction [81].

Inflammatory cytokines further promote structural and
electrical atrial remodeling via impairment of gap junctions
by changes in connexins and via inducing intracellular Ca2+-
handling abnormalities and atrial fibroblast activation, leading
to impaired atrial conduction [82].

Sources of Inflammation

The cytokines inducing cardiac remodeling and dysfunction
can originate from the heart itself (cardiokines) [83], produced
by cardiomyocytes [84], cardiac endothelial cells [85], cardiac
fibroblasts [25], cardiac tissue MΦs [86], and cardiac infiltrat-
ed immune cells, or can be of extra-cardiac tissues including
adipose tissue, gut, and lymphoid organs. Failing humanmyo-
cardium expresses abundant quantities of TNF-α [11].
Cardiomyocytes have TNF-α receptors on their surfaces
[87] and these receptors appear to be released into the circu-
lation during HF [11]. The importance of TNF-α in HF has
experimentally been shown in transgenic mice where chronic
cardiomyocyte overexpression of TNF-α resulted in the de-
velopment of dilated cardiomyopathy with ventricular hyper-
trophy, ventricular dilatation, interstitial infiltrates, interstitial
fibrosis, rare myocyte apoptosis, diminished ejection fraction,
attenuation of β1-adrenergic responsiveness, and expression
of atrial natriuretic peptide (ANP) in the ventricle [43].

NLRP3 is considered necessary for initiating a profound
sterile inflammatory response. Cardiac endothelial cells [85]
and cardiac fibroblasts [25] are both important sources of IL-
1ß, one of the endproducts of NLRP3 inflammasome activity.
By ischemia/reperfusion injury, the NLRP3 inflammasome is
activated as indicated by increased NLRP3 expression,
caspase-1 activity, and increased IL-1β and IL-18 production.
Simulated ischemia/reperfusion-stimulated NLRP3
inflammasome activation in cardiac microvascular endothelial
cells, but not in cardiomyocytes [85]. In another study, a
marked increase in NLRP3, IL-1ß, and IL-18 mRNA expres-
sion was found in the left ventricle after MI, primarily located
to myocardial fibroblasts [25]. The relevance of NLRP3
inflammasome activity in HF follows from studies demon-
strating that when hearts were isolated from NLRP3-
deficient mice, perfused and subjected to global ischemia
and reperfusion, a marked improvement of cardiac function
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and reduction of hypoxic damage was found compared with
wild-type hearts [25], whereas Toldo et al. [88] showed that
the formation of the inflammasome in acute myocarditis is
predictive for the NYHA class and outcome.

In the healthy mouse heart, ≈6 to 8% of non-cardiomyocytes
are resident MΦs [86], a number comparable to the frequency of
resident MΦs in other tissues. Humans may have comparable
numbers, afterMI, theMΦ numbers increase in the heart through
the combined effects of massive recruitment of circulatingmono-
cytes (that become macrophages in tissues) and local self-
renewal of tissue-resident MΦs [89]. MΦs are traditionally clas-
sified in inflammatory MΦs, often referred to as classical or M1
MΦs, secreting pro-inflammatory cytokines as IL-6, TNF-α, IL-
1β, IL-12, and IL-23, and heal/growth-promoting MΦs, com-
monly called alternatively activated orM2MΦs, expressing anti-
inflammatory IL-10 and TGF-ß [90]. M1 and M2 MΦs usually
appear in sequence upon MI, i.e., in the inflammatory versus the
wound healing phase, respectively, whereas also mixed M1/M2
phenotypes can be found [91]. The relevance of cardiac M1
towardM2MΦ phenotype transition for the resolution of inflam-
mation and tissue repair post MI has recently been shown by
Courties et al. (2014) [92] who demonstrated that in vivo silenc-
ing of the transcription factor IRF5, which is involved in inflam-
matory M1 MΦ polarization, supported resolution of inflamma-
tion, accelerated infarct healing, and attenuated development of
post-MI HF.

Besides endogenous cardiac cells, infiltrated inflammatory
cells are responsible for local cardiac cytokine expression.
Those immune cells originate from lymphoid organs as the
spleen and the bone marrow [93]. Pre-clinical studies have
demonstrated that after MI in mice, monocyte progenitor cells
depart bone marrow niches, which results in amplified
extramedullary monocytopoiesis [36, 94]. The observation
of the activation of splenic monocytes and the migration of
pro-inflammatory monocytes from the spleen to the heart in
animal models ofMI [95] and chronic HF [96] have given rise
to the concept of a cardiosplenic axis. This recruitment from
the spleen depends in part on Ang II, an observation that may
underlie the beneficial effect upon angiotensin converting en-
zyme inhibition on remodeling in the infarcted myocardium
[97]. In accordance with the cardiosplenic axis and the immu-
nomodulatory properties of MSC [52, 53], we recently dem-
onstrated that intravenous MSC application in CVB3-induced
myocarditis modulates monocytes trafficking to the heart.
They reduced blood and cardiac pro-inflammatory monocytes
and retained those in the spleen, whereas MSC increased anti-
inflammatory monocytes in the spleen, blood, and heart [54].

Evidence for the existence of a cardiosplenic axis is further
supported by observations in human post-mortem tissue spec-
imens of the heart, spleen, and bone marrow demonstrating a
unique spatio-temporal pattern of monocyte accumulation in
the human myocardium following acute MI that coincides
with a marked depletion of monocytes from the spleen,

suggesting that the human spleen contains an important reser-
voir function for monocytes [98]. Patients with acute MI ex-
hibit an increased inflammatory status/metabolic activity of
the spleen, bone marrow, and carotid artery. This has been
demonstrated via 18F-fluorodeoxyglucose (18F-FDG) positron
emission tomography, which evaluates the metabolic activity
based on the finding that activated inflammatory cells express
high levels of glucose transporters and accumulate 18F-FDG
[93]. Emami et al. [36] further demonstrated that after ACS,
the gene expression of circulating pro-inflammatory mono-
cytes (i.e., CD36, S100A9, IL-1ß, and TLR4) was more close-
ly associated with the metabolic activity of the spleen than it
was for the bone marrow. They further observed that the met-
abolic activity of the spleen independently predicted the risk
of subsequent cardiovascular disease events. In patients with
acute MI, high monocyte blood levels, which are a strong
predictor of mortality, correlate inversely with the ejection
fraction [99]. Collectively, the abovementioned findings pro-
vide evidence of a cardiosplenic axis in humans similar to that
shown in pre-clinical studies [36].

High-Grade Systemic Inflammation

Evidence from chronic immune-mediated diseases like rheu-
matoid arthritis associated with persistent high-grade systemic
inflammation demonstrates the impact of systemic inflamma-
tion on HF. Patients with rheumatoid arthritis have a 1.5–2.0
times higher prevalence of ischemic heart disease and conges-
tive HF compared to the general population [100].
Furthermore, atherosclerosis progresses most rapidly during
the first 6 years after rheumatoid arthritis diagnosis [101],
indicating how enduring systemic inflammation plays a major
role in accelerating heart disease development in these pa-
tients. Systemic inflammation can induce autonomic nervous
system dysfunction. Inflammatory cytokines increase the
sympathetic outflow by targeting the autonomic centers in
the brain, which in turn inhibits cytokine production and
immune-inflammatory activation by stimulating the ß2
adrenoreceptors in circulating lympho-monocytes [102].
This self-controlling loop, so-called inflammatory reflex
[103], and in this context, sympathetic activation, consequent-
ly damps excessive immune-inflammatory activation, but also
affects the heart, potentially favoring the onset of arrhythmias
[104] and HF. In extreme cases of inflammation as systemic
inflammatory response syndrome (SIRS), or sepsis, the hemo-
dynamic changes due to hypotension may directly underlie
the induction of the neuroendocrine system, independent of
the inflammatory response.

Low-Grade Systemic Inflammation

Obesity is characterized by a low-grade systemic chronic in-
flammatory state [26]. The multisystem effects of obesity are
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linked to an imbalance in homeostatic and pro-inflammatory
immune responses. A major player in systemic low-grade
chronic inflammation in obesity is the increased numbers of
adipose tissue pro-inflammatory MΦs and deregulated pro-
duction and function of adipose tissue hormones and
adipokines including adiponectin [105], which strongly con-
tributes to the initiation and exacerbation of type 2 diabetes
[106]. Over time, ectopic lipid accumulation in the muscle,
liver, and blood vessels activates tissue leukocytes, contrib-
utes to organ-specific disease, and exacerbates systemic insu-
lin resistance. Cellular- and cytokine-mediated inflammation
in the pancreatic islets accelerates the progression toward di-
abetes [26]. The obesity-associated alterations in adipokine
expression (adiponectin ↓, TNF-α ↑) also contribute to
HFpEF [106]. Indeed, adiponectin deficiency known to exac-
erbate the development of obesity-related hypertension [107],
adverse cardiac remodeling [108] in ischemia-reperfusion in-
jury [109], and MI [110], increased the propensity to develop
diastolic HF and diastolic dysfunction in a murine model of
HFpEF/diastolic HF [111]. In contrast, adiponectin overex-
pression in aldosterone-infused mice ameliorated left ventric-
ular (LV) hypertrophy, diastolic dysfunction, lung congestion,
and myocardial oxidative stress without affecting the blood
pressure and LVejection fraction [112].

Diabetes and obesity both induce hematopoiesis and
myelopoiesis. Hyperglycemia promotes myelopoiesis via in-
teraction of neutrophil-derived S100A8/A9 with RAGE on
hematopoietic stem cells [113]. S100A8/A9-induced
TLR4/MyD88 and NLRP3 inflammasome-dependent IL-1ß
production in adipose tissue MΦs interacts with the IL-1 re-
ceptor on bone marrow myeloid progenitors to stimulate the
production of monocytes and neutrophils. These studies un-
cover a positive feedback loop between adipose tissue MΦs
and bone marrow myeloid progenitors and suggest that inhi-
bition of TLR4 ligands or the NLRP3-IL-1ß signaling axis
could reduce adipose tissue inflammation and insulin resis-
tance in obesity [114].

In line with the HFpEF paradigm postulated by Paulus and
Tschöpe [6•], it has been demonstrated that the systemic, low-
grade inflammation of metabolic risk contributes to diastolic
LV dysfunction and HFpEF through coronary microvascular
endothelial activation, which alters paracrine signaling to
cardiomyocytes and predisposes them to hypertrophy and
high diastolic stiffness [115, 116]. In detail, the authors
showed upregulated E-selectin and intercellular adhesion
molecule-1 expression levels, increased NADPH oxidase
(NOX) 2 expression in MΦs and endothelial cells but not in
cardiomyocytes, and uncoupling of endothelial nitric oxide
synthase, which was associated with reduced myocardial
nitrite/nitrate concentration, cGMP content, and protein ki-
nase G activity in the myocardium of HFpEF patients and
ZSF1-HFpEF rats. The ZSF1-HFpEF rats are characterized
by titin hypophosphorylation and cardiomyocyte stiffness

and do not exhibit cardiac fibrosis [116], the other main con-
tributor to cardiac diastolic dysfunction [5, 117, 118].
Murdoch and coworkers [119] demonstrated how Ang II-
induced endothelial NOX 2 activation had profound pro-
fibrotic effects in the heart in vivo that lead to a diastolic
dysfunction phenotype. Endothelial NOX 2 had pro-
inflammatory effects and enhanced endothelial-to-
mesenchymal transition, which might be an important mech-
anism underlying cardiac fibrosis and diastolic dysfunction
during increased renin-angiotensin activation. A positive cor-
relation between cardiac collagen, the amount of inflammato-
ry cells, and diastolic dysfunction evident in HFpEF patients
further suggests a direct influence of inflammation on fibrosis
contributing to diastolic dysfunction [5].

Many studies have indicated that an overactive RAAS,
excess oxidative stress, and excess inflammation in the brain
cause sympathoexcitation in HF [120]. Partial silencing of
brain TLR4 via intracerebroventricular injection of TLR4
siRNA causes sympathoinhibition with the prevention of left
ventricular remodeling in MI-induced HF through the reduc-
tion of brain pro-inflammatory cytokines [120]. Kishi [121]
recently demonstrated that systemic infusion of Ang II direct-
ly affects brain AT1R with sympathoexcitation and LV dia-
stolic dysfunction. Furthermore, they demonstrated that
targeted deletion of AT1R in astrocytes strikingly improved
survival wi th prevent ion of LV remodel ing and
sympathoinhibition inMI-induced HF. Based on these results,
the authors propose a novel concept that the brain works as a
central processing unit integrating neural and hormonal input,
and that the disruption of dynamic circulatory homeostasis
mediated by the brain causes HF.

Heart Failure Causes Inflammation

HF is a clinical diagnosis secondary to either LV systolic or
diastolic dysfunction leading to insufficient oxygen and nutri-
ent supply to peripheral organs. HF may underlie different
etiologies ranging from ischemic heart disease, valve dysfunc-
tion, hypertension, metabolic syndrome, and genetic cardio-
myopathies to inflammatory cardiomyopathy. HF induces
sterile inflammation in the heart itself triggered by wall stress
and signals released by stressed, malfunctioning, or dead cells
secondary to HF and induces inflammation in various periph-
eral tissues in a direct (inflammatory) [122] and indirect
(hemodynamic) manner (Fig. 1). Cardiac cells release regula-
tory peptides, cardiokines, in response to changes in the car-
diac environment. These cardiokines affect the heart (see su-
pra) and also have physiological and pathological roles in
organs distal from the heart, such as the spleen, bone marrow,
adipose tissue, and muscle, affecting cell death, growth, fibro-
sis, remodeling, metabolism, and inflammation [122, 123].
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Heart Failure Provokes Cardiac Inflammation

Wall stress increases in the failing heart, exposing all cells to
increased biomechanical strain. Mechano-sensitive adhesion
proteins, including integrins and cadherins, transduce me-
chanical signals between cells and their microenvironment
and can stimulate cellular responses including cell growth,
differentiation, and inflammation [124]. TNF-α, IL-6, IL-18,
and ANP can be induced in stretched myocytes and in
hemodynamic-overloaded myocardium [125]. Cyclic stretch
enhances the expression of TLR4 in cultured cardiomyocytes
via p38MAP kinase [126], which is known tomediate inflam-
matory cytokine induction in cardiomyocytes. Cardiac fibro-
blasts are activated by mechanical stretch mimicking cardiac

dilation in heart failure. Upon stretching, they not only pro-
duce more ECM but also upregulate chemokine production
and trigger typical inflammatory pathways. Cell culture super-
natant of stretched fibroblasts activates inflammatory cells and
induces further recruitment of monocytes by allowing
transendothelial migration into the cardiac tissue [23].
Furthermore, the mechanical stretch of cardiac fibroblasts,
rather than of cardiomyocytes, leads to the release of IL-1ß
[127], which induces leukopoiesis in the bone marrow and at
the extramedullary sites [128].

Wall shear stress on endothelial cells plays an important
role in blood vessel physiology and pathology. In regions
where undisturbed wall shear stress dominates, endothelial
cells are healthy, whereas regions with disturbed wall shear

Fig. 1 Inflammation and heart failure reciprocally trigger each other.
Heart failure (HF) provokes sterile inflammation in the heart itself
triggered by wall stress and signals released by stressed,
malfunctioning, or dead cells secondary to HF (DAMPs: e.g.,
mitochondrial (mt) DNA, ATP, matricellular proteins). The released
cardiac cytokines and other inflammatory mediators not only affect the
heart but also different organs. IL-1ß induces monocytopoiesis via
increasing hematopoietic stem cell proliferation in the bone marrow and
monocyte proliferation in the spleen. Cytokines particularly, TNF-α,
unleashes inflammation in the skeletal muscle and adipose tissue and
accelerate atherogenesis. Furthermore, several neurohormonal
mechanisms (renin angiotensin aldosteron system (RAAS) and ß-
adrenergic nervous system) that become activated in HF to try and
sustain cardiac output in the face of decompensating function also affect
inflammation in different organs. ß3 agonism and Ang II induce

monocytopoiesis in the spleen. As a consequence of chronic
vasoconstriction and underperfusion, inflammation is induced in the
skeletal muscle. HF-associated decreased cardiac output and
redistribution of systemic circulation can further also lead to a decrease
in intestinal perfusion and mucosal ischemia and ultimately, a disrupted
intestinal mucosa. This disruption can in turn lead to increased gut
permeability and subsequent enhanced translocation of bacteria and
bacterial toxins in the blood, which can contribute to systemic
inflammation. Systemic inflammation, high-grade (e.g., rheumatoid
arthritis) and low-grade (e.g., obesity), and cardiac inflammation induce
HF involving different pathophysiological mechanisms. Inflammation
triggers cardiomyocyte apoptosis, hypertrophy, stiffness, myofibroblast
differentiation, collagen production, endothelial dysfunction,
endothelial-to-mesenchymal transition, and subsequent cardiac
remodeling and left ventricular dysfunction
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stress have endothelial cells with a pro-inflammatory, pro-
oxidative stress phenotype and represent sites where athero-
sclerosis preferentially develops [129]. Despite substantial ev-
idence for the central role of hemodynamic shear stress in the
functional integrity of vascular endothelial cells, hemodynam-
ic and molecular regulation of the endocardial endothelium
lining the heart chambers remains understudied [130]. A re-
cent study by McCormick et al. [130] demonstrated spatio-
temporal wall shear stress values in defined regions of the left
ventricle linking local hemodynamics to regional heterogene-
ity in endocardial gene expression. However, the spatial reg-
ulation of inflammation in cardiac endothelial cells in re-
sponse to shear stress requires further investigation. MΦs re-
spond to strain by inflammatory activation, including in-
creased expression of TNF-α, IL-8, IL-6, and MMP-9 [131]
and increased expression of scavenger receptors [132]. These
phenomena could be of importance in hypertension, which
exposes arterial MΦs to increased mechanical forces [132].
A recent study of Sager et al. [89] demonstrated that the me-
chanical strain of primary murine and human MΦ cultures
promoted a cell cycle entry, suggesting that the increased wall
tension in post-MI HF stimulates local MΦ proliferation.

Besides increases in wall stress, HF is associated with cell
death, oxidative stress (ROS), hypoxia, and ECM remodeling.
TLRs and RAGE are important PRRs for the recognition of
endogenous DAMPS including the intracellular S100 proteins,
heat shock protein, HMGB1, matricellular proteins, and mito-
chondrial DNA, released by the heart during HF. Stimulation of
TLRs in cardiomyocytes initiates a NF-kB-dependent inflam-
matory response [133]. Extracellular mitochondrial DNA acti-
vates NF-kB via TLR9 in cardiomyocytes [134], and heat
shock protein 60 induces inflammation through activating and
upregulating TLRs in cardiomyocytes [135]. The alarmin
S100A1 is released from ischemic cardiomyocytes and signals
myocardial damage via TLR4 [136], whereas the alarmin
S100A8/A9 aggravates post-ischemic HF through activation
of RAGE-dependent NF-κB signaling [137]. An HMGB1-
TLR4 axis is active upon myocardial ischemia/reperfusion in-
jury and the innate immune adaptorMyD88 downstream TLR4
has been shown to mediate neutrophil recruitment and myocar-
dial injury after ischemia-reperfusion in mice. [138].
Matricellular proteins such as tenascin-C and the small
leucine-rich proteoglycan biglycan modulate the inflammatory
response by binding to TLR2 and/or TLR4 [139, 140]. The
matrix component biglycan activates the NLRP3
inflammasome via TLRs and P2X receptors and leads to sub-
sequent IL-1ß release [141]. Other important factors by which
HF increases cardiac NLRP3 inflammasome activity are ATP,
released when cells die [142], ROS, and mitochondrial DNA.
ROS mediates autocrine and paracrine activation and nuclear
translocation of NF-κB, which regulates the transcription of
pro-IL-1ß and pro-IL-18 [143•]. Mitochondrial DNA released
by damaged cells [144] directly primes NLRP3 and ATP via

binding to P2X7 purinergic receptors and leads to potassium
efflux, which triggers the assembly of NLRP3 inflammasome.
These collective effects result in the activation of NLRP3-
associated caspase 1, which processes pro-IL-1ß and pro-IL-
18 in their mature IL-1ß and IL-18 forms [122]. The
abovementioned released cardiac cytokines and other inflam-
matory mediators not only affect the heart but also different
organs as outlined below. Furthermore, several neurohormonal
mechanisms that become activated in HF to try and sustain
cardiac output in the face of decompensating function [145,
146] also affect inflammation in different organs.

Heart Failure Induces Monocytopoiesis in the Bone
Marrow and Spleen

Monocytes arise from hematopoietic stem cells in the bone
marrow, pass through several intermediate progenitor stages
(from granulocyte MΦ progenitor to MΦ dendritic cell pro-
genitor) [147], and emigrate from the bone marrow into the
blood pool mediated by the chemokine receptor CCR2 [148].
IL-1ß released uponMI induces leukopoiesis in the bone mar-
row and at extramedullary sites [128, 149]. The relevance of
IL-1ß in this process follows fromMI mice lacking the IL-1R
which exhibits an impaired splenic monocytopoiesis as indi-
cated by a reduced number of colony-forming units, less MΦ
dendritic cell progenitors, and proliferating monocytes in the
spleen [149]. The reduced CD45.2+ progeny in the spleen
following adoptive transfer of IL-1R−/− compared to wild-
type granulocyte MΦ progenitors indicates that direct IL-1
signaling on myeloid progenitors controls splenic
monocytopoiesis. Sager et al. [128] further demonstrated that
anti-IL-1ß treatment dampens the post MI increase in hema-
topoietic stem cell proliferation in the bone marrow. Finally,
HF-associated activation of the RAAS also boosts the release
of monocytes from their splenic reservoir [97]. The increased
monocytopoiesis post MI accelerates coronary plaque growth
after the first MI [150] and may be responsible for the high
secondary event rates [151].

Heart Failure Provokes Inflammation in the Skeletal
Muscle

It is well established that HF is associated with skeletal muscle
wasting and cachexia including increased degradation of myofi-
brils, myocyte apoptosis, and metabolic imbalance [152]. Less
known is the evidence from experimental [153] and patient [154]
studies which indicate that HF-elevated serum cytokine levels
(most notably TNF-α) are associatedwith increased local inflam-
mation in the skeletal muscle. The TNF-α/IL-10 and IL-6/IL-10
ratio is higher in the soleus muscle of rats with HF compared to
that of controls [155]. The skeletal muscle of patients with chron-
ic HF with only mildly elevated serum cytokines exhibits in-
creased expression of TNF-α, IL-1ß, IL-6, and iNOS compared
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to skeletal muscle of the control patients [154]. This occurs in the
absence of infiltrating monocytes or MΦs indicating that skeletal
myocytes may produce cytokines in a paracrine/autocrine fash-
ion [156]. Furthermore, HF-associated inflammation induces re-
sistance to the anti-inflammatory adipokine adiponectin in the
muscle [157]. Interestingly, a recent study demonstrated an in-
crease in markers of muscle atrophy, oxidative stress, and mito-
chondrial impairments solely in the soleus muscle of HFrEF, but
not of HFpEF rats. The authors concluded that this disparity may
be mediated, in part, by the different circulating inflammatory
cytokines that were elevated between HFpEF and HFrEF, i.e.,
TNF-α plasma concentrations were significantly increased in
HFrEF, whereas IL-1β and IL-12 were higher in HFpEF rats
[158]. Unfortunately, the analysis of potential differences in skel-
etal muscle inflammation between HFpEF and HFrEF rats was
beyond the scope of this study. Besides inflammation, HF-
associated neurohumoral activation triggers inflammation in the
skeletal muscle. Chronic sympathetic stimulation in HF pro-
motes redistribution of blood flow to skeletal muscles through
chronic vasoconstriction [152]. Chronic underperfusion of the
capillary bed, in turn, promotes skeletal muscle ischemia, which
leads to the generation of ROS and muscle inflammation [159].
Furthermore, increased levels of Ang II associatedwith HF result
in impaired vasodilation and aggravate bradykinin degradation,
leading to muscle hypoxia and reduced endurance capacity
[160]. Gielen et al. [154] described that a 6-month program of
regular physical exercise significantly reduced the local expres-
sion of TNF-α, IL-1ß, IL-6, iNOS, and nitrotyrosine levels in the
skeletal muscle of patients with stable moderate chronic systolic
HF, while serum cytokine levels remained virtually unchanged.
The lower total peripheral resistance after training [161] may
contribute to lower oxidative stress and inflammation in the skel-
etal muscle.

Heart Failure Affects Inflammation in Adipose Tissue

Pro-inflammatory cytokines are known to reduce the expression
of the anti-inflammatory adipokine adiponectin in cultured adi-
pocytes [162] and adiponectin expression in adipose tissue and
circulating adiponectin levels are decreased in experimental se-
vere inflammation [163]. However, in humans, adiponectin reg-
ulation is complex. Atherosclerosis-related low-grade inflamma-
tion has been associated with decreased plasma adiponectin
[164], whereas advanced, chronic inflammation with increased
adiponectin levels [165]. Antonopoulos et al. [166] demonstrated
how the reciprocal effects of systemic inflammation and brain
natriuretic peptide (BNP) influence adiponectin expression in
patients with HF. Low-grade inflammation reduces the
adiponectin levels in populations without significant cardiovas-
cular disease and low plasma BNP, explaining why its low levels
predict the onset of cardiovascular disease [167]. However, after
the development of advanced cardiovascular disease, the
adiponectin levels are no longer negatively controlled by low-

grade inflammation, but they are driven upward by circulating
BNP levels [168]. Therefore, high circulating adiponectin pre-
dicts (indirectly) worse clinical outcome in patients with HF.
Therefore, the interpretation of adiponectin as a biomarker
should always take into account the underlying cardiovascular
disease state [166]. Valero-Munoz et al. [169] recently demon-
strated increased neutrophil content in white adipose tissue of
HFpEF patients compared to controls. Neutrophils are recog-
nized as primary effector cells in acute inflammatory responses
and are implicated in the modulation of adipose tissue inflamma-
tion in the early stages of obesity, but their presence in adipose
tissue in response to a high-fat diet may last ≤90 days [170].
Therefore, the increased neutrophil presence in white adipose
tissue of HFpEF patients suggests the onset of immune activa-
tion, setting the stage for tissue infiltration by other immune cells,
such as MΦs [169].

Heart Failure Increases Gut Permeability and Subsequent
Systemic Inflammation

HF-associated decreased cardiac output, elevated systemic con-
gestion, and distribution of systemic circulation can lead to a
decrease in intestinal perfusion and mucosal ischemia and ulti-
mately a disrupted intestinal mucosa. This disruption can in turn
lead to increased gut permeability and subsequent enhanced
translocation of bacteria and bacterial toxins in the blood, which
can contribute to systemic inflammation and further to HF ex-
acerbations [171]. The HF-associated gut luminal hypoxia and
decrease in mucosal pH [172], well known activators of bacte-
rial virulence in microbiota, can also change the microbiota to
pathogenic microbiota which further contributes to the raise in
gut permeability. A recent study in fact demonstrated that pa-
tients with chronic HF have intestinal overgrowth of pathogenic
bacteria and Candida species and showed that the increased
intestinal permeability correlated with systemic inflammation
[173]. Beyond their effect on systemic inflammation, the low-
level leakage of bacterial products could augment local inflam-
mation of the plaque in vessels, promoting atherogenesis. This
is an example of how sites of tissue injury and ischemic damage
beyond the myocardium can elicit an “echo” at the level of the
atherosclerotic plaque and induce a remote inflammatory re-
sponse [7••]. This further explains how patients with a primary
MI have a higher prevalence to get recurrent ACSs [151].

Heart Failure Affects Neurohumoral System-Dependent
Inflammation and Monocytopoiesis

Pro- and anti-inflammatory cytokine production is regulated
by the adrenergic nervous system. Previous studies have dem-
onstrated that β2-, but not β1-receptor agonists attenuate
TNF-α expression, while increasing anti-inflammatory IL-
10 production [174]. Conversely, α1,2-adrenergic stimulation
results in increased expression of TNF-α and reduction in IL-
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10 [175]. Under normal physiologic conditions, norepineph-
rine, anα- and β-agonist, reduces TNF-α and enhances IL-10
expression in monocytes exposed to LPS and other stimuli
[176]. However, in HF, a paradox exists as both catechol-
amines and TNF-α are elevated [174]. Ngu et al. [174] recent-
ly demonstrated that the norepinephrine regulation of mono-
cyte inflammatory cytokine balance is impaired in HF. The
inhibitory effect of noradrenaline on TNF-α production of
monocytes from HF patients was lower compared to that of
monocytes from control patients, whereas the increase in IL-
10 production by noradrenaline was also attenuated in HF
monocytes. Another example how HF affects the adrenergic
nervous system and inflammation is the ß3-adrenergic-stimu-
lated activation of bone marrow progenitor cells following
MI. The pain and acute stress of the acute MI promotes local
catecholamine synthesis in the bone marrow and the systemic
release of ß3-adrenergic stimulants [7••, 94] The relevance of
adrenergic signaling in monocytopoiesis in ischemic disease
follows from findings showing that patients undergoing ACS
who were non-randomly allocated to ß-blocker use before the
ACS had significantly lower leukocyte and monocyte counts
than those who had never used ß-blockers [7••, 94]. Finally, HF
activates the RAAS, which also triggers monocytopoiesis as
outlined before [97].

Conclusions and Perspectives

Inflammation and HF are strongly interconnected and mutu-
ally reinforce each other. This indicates the difficulty to coun-
teract inflammation and HF once this chronic vicious circle
has started and points out the need to control the inflammatory
process at an early stage avoiding chronic inflammation and
HF. The relevance of the ß-adrenergic system in HF as well as
in the control of inflammation (inflammatory reflex versus ß3
agonism-induced monocytopoiesis) warrants further investi-
gation. The diversity of inflammation further addresses the
need for a tailored characterization of inflammation enabling
differentiation of inflammation and subsequent target-specific
strategies. This necessity is supported by the disappointing
results of anti-inflammatory strategies used in HF patients so
far [14, 15]. The characterization and differentiation of inflam-
mation will allow classification of patients in subclasses to
provide appropriate treatment. Such a differentiated approach
is in line with the growing appreciation and ongoing introduc-
tion of precision medicine in cardiology [177], a field of med-
icine which is a common practice in oncology [178]. It is
expected that the characterization of the systemic and/or car-
diac immune profile will be part of precision medicine in the
future of cardiology. The questions at this stage rise how long
this will still take, which methods will be used to that end, and
which novel therapeutic targets will be defined.
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