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Abstract

Motor adaptation is usually defined as the process by which our nervous system produces accurate 

movements, while the properties of our bodies and our environment continuously change. 

Numerous experimental and theoretical studies have characterized this process by assuming that 

the nervous system uses internal models to compensate for motor errors. Here we extend these 

approaches and construct a probabilistic model that not only compensates for motor errors but 

estimates the sources of these errors. These estimates dictate how the nervous system should 

generalize. For example, estimated changes of limb properties will affect movements across the 

workspace but not movements with the other limb. We provide evidence that many movement 

generalization phenomena emerge from a strategy by which the nervous system estimates the 

sources of our motor errors.

Suppose I throw a stone with my right hand and it travels less than I expected. This 

observation can have at least two interpretations: the stone may be heavier than I thought, or 

my arm may be weaker than I thought. If I believe the stone to be heavier, I will adjust 

accordingly the next time I throw the same stone, with my right or my left arm. Movements 

I make without the stone, clearly, shouldn’t be influenced by my updated estimate of the 

stone’s weight. If, on the other hand, I believe my right arm to be weaker, I will adjust future 

movements with this arm, with or without the stone, but not subsequent movements of my 

(unaffected) left arm. This example highlights what our intuition suggests and dynamics 

demands: the nervous system not only needs to estimate the necessary corrections (e.g. 

throw with more effort), but also estimate the source of errors (e.g. the stone is heavy/my 

arm is weak) when we adapt our movements.

Ideally, the nervous system should treat the body and the world as a coupled dynamical 

system whose properties constantly change over time. For instance, the strength of each of 

our muscles may vary over time (through fatigue, exercise, injury, aging, etc). Similarly, the 

objects we interact with have variable properties and dynamics. To adapt and generalize the 

nervous system needs to attribute observed movement errors to either the body or the world, 

and then estimate the value of those properties.

Many studies have analyzed how human subjects adapt to perturbations and found that they 

estimate these disturbances instead of simply memorizing a motor plan1, 2. This idea is 

captured by the notion of an internal model, a representation of how our motor system 

predicts the outcome of motor commands. Studies that examine internal models assume that 
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motor errors, regardless of their source, are estimated with a general model of disturbances. 

While some studies do recognize that multiple sources may be responsible for motor errors3, 

4, their internal models do not distinguish between them. This single model compensates for 

any changes in the properties of the world or the body. As a result, these models have no 

mechanism for representing that an estimated change in the limb should generalize across 

the workspace but not to the other limb, and that an estimated change in the world should 

generalize to the other hand.

Here we present a model that formalizes the estimation of the sources of motor errors by 

adapting its representation of both the body and the world. This source estimation model 

constantly updates its parameter estimates and its uncertainty about those estimates through 

an application of Bayesian inference. To test the model, we compare its predictions to three 

classes of published motor adaptation studies: velocity-dependent force fields, rotating 

(Coriolis) rooms and inertial perturbations. Our model predicts many findings of these 

experiments. These results support our hypothesis that the nervous system adapts and 

generalizes by estimating the sources of motor errors.

RESULTS

Modeling sources of errors: body and world

As in the example of throwing a stone, a continuum of possible parameter values can 

equally explain many motor errors. In addition, due to noisy perception and commands the 

motor system operates under uncertain conditions. The nervous system therefore needs to 

assign credit to the likely parameters and estimate their properties. Bayesian inference is a 

systematic method for optimally solving such a credit assignment problem. For example, if 

we knew the stone’s weight with great certainty, and errors in our estimate of its inertia 

could not account for the motor errors we observe, then other sources such as limb 

properties would be considered likely culprits. This would result in relatively small changes 

in our estimate of the stone’s weight, and large changes in our estimates of limb properties 

(e.g. mass, strength, etc.). Bayesian inference formalizes this update process by combining 

our belief in parameter estimates with a likelihood that these parameters could account for 

our observations. This results in updated parameter estimate that are as certain as possible.

Our approach extends the traditional internal model to allow for the estimation of multiple 

sources of error. The source estimation model adapts by estimating the properties of the 

body and the world and generalizes by using these estimates for new movements. When 

adapting to perturbed movements, the source estimation model may produce the same 

compensatory corrections that a traditional internal model would. However, the two classes 

of models make different predictions for generalization to new movements. For example, 

when we adapt while throwing a stone and then throw it in a new direction, or throw it with 

our left arm, or, we throw a different stone, the source estimation model has the necessary 

information to generalize. Estimates about the world can transfer across limbs; they 

represent knowledge that is independent of the motor apparatus. Body estimates help us to 

generalize to new motor goals, but do not necessarily transfer from one limb to another; they 

represent knowledge of a specific motor apparatus.
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Here we examine a nonlinear musculo-skeletal model of the human limb (body) interacting 

with various imposed (world) disturbances. The source estimation model uses this simulated 

body-world system to predict adaptation and generalization. To estimate the body (limb) and 

world (experimental perturbations) parameters we use an extended Kalman filter (see 

Methods). The source estimation model infers changes in the nominal values of a large 

number of parameters. We assume that the variations driving these changes are proportional 

to their nominal values to restrict the model to two free parameters, a proportionality 

constant for body parameters, and another for world parameters. We further restrict the 

model to a single free parameter, α, the ratio of these values. The free parameter α, the ratio 

of uncertainty in world to body parameters, is used by the source estimation model to help 

update all parameter values. For all the results shown below, α was set to 0.4, that is, the 

model assumes the body is more variable than the world. Thus, if all parameters are equally 

likely of accounting for an observed motor error, body parameters will receive more credit. 

We have thus obtained a model with a single free parameter that can predict motor 

adaptation and generalization. Below we present the model’s predictions for adaptation and 

generalization under accurately simulated experimental conditions of human reaching 

movements (see Methods for details).

Velocity-dependent force field studies

We first compare the source estimation model with the results from a seminal study on 

motor adaptation and generalization5 that asked questions highly relevant to the issues we 

consider here. In that study researchers examined if the nervous system represents 

disturbances in terms of a body-based (intrinsic) coordinate frame, or a world-based 

(extrinsic) coordinate frame. A robot rendered velocity-dependent forces that perturbed the 

hand of subjects while they made reaching movements. After the subjects adapted, they 

were tested for generalization in a different part of the workspace (Fig. 1a, b). When the 

disturbing forces were defined in terms of the hand’s velocity (an extrinsic coordinate 

frame) subject’s generalized poorly. However, when the forces were defined in terms of the 

angular velocities of the subject’s limb (an intrinsic coordinate frame) subject’s generalized 

well (Fig. 1c). Thus the study concluded that the nervous system represents disturbances in 

an intrinsic (joint-based) coordinate system.

That study (and many subsequent ones) examined its hypothesis in terms of two coordinate 

frames, assumed to be mutually exclusive. Here we argue that the nervous system should not 

simply use one representation. Such an assumption is equivalent to the belief that either the 

properties of the body or the world are constant and known without error. Yet, all of these 

properties are variable and need to be estimated.

We used the source estimation model to simulate the same adaptation and generalization 

experiment with equivalent force fields (see methods). Once the model has adapted to the 

external field, it has updated estimates of all its parameters, both the world and body 

properties. To what extent a parameter’s estimate is updated depends on its ability to explain 

the motor errors, and the model parameter α. These inferred estimates are used to 

compensate for the actual external field. For any setting of this variable α, we will obtain a 

different set of predictions for movement generalization.
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For illustrative purposes we present how our model adapts with two extreme values of the 

parameter α. When the system attributes errors only to the world and the field is hand-based, 

reaches made in the left region of the workspace perfectly cancel the force field (Fig. 1c, 

bottom). However, if the field is joint-based, there are clear and distinct patterns of 

generalization that reveal the internal model’s incorrect estimation of the velocity-dependent 

force field (Fig. 1c, top). This type of inference of sources of error occurs when the model is 

relatively certain of the body parameters (α≫ 1). Similarly, if the system attributes errors 

only to the body (α≪ 1) it will generalize well with joint-based fields and poorly with hand-

based fields (Fig. 1d). These extreme settings of α correspond to the situation present in 

traditional internal model studies where only a single disturbance, or a single coordinate 

system, is estimated during adaptation.

The source estimation model predicts the experimental data well (Fig. 1e, f) under the 

assumption that changes in the body are more likely than changes in the world (α = 0.4). To 

quantify this similarity, we compared signed perpendicular errors at 25%, 50% and 75% of 

the movement displacements. Our model had an RMS error of 4.81 cm, whereas the results 

based on a hypothesis of world-only, or body-only inferences (Fig. 1c and d, respectively) 

had RMS errors of 11.0 cm and 7.70 mm, respectively.

A close inspection of the experimental generalization to an intrinsic field (Fig. 1e, top) 

shows that the trajectories are not perfectly straight but tend to be slightly curved into the 

direction predicted by generalization after estimating world errors (Fig. 1c and F, top). This 

indicates that the nervous system may be generalizing simultaneously in hand-based and 

joint-based coordinates while placing a clear emphasis on the latter. The model we present 

here naturally shows this kind of mixed generalization.

Examining movements with only one limb cannot fully reveal how the nervous system 

adapts and generalizes. Consequently, generalization to the other limb (interlimb 

generalization) is also widely tested. In a notable study of interlimb generalization6 subjects 

once again adapted to a robot-rendered velocity-dependent force field while making 

reaching movements. One group of subjects adapted to a hand-based clock-wise curl field, 

while another group adapted to a counter clock-wise curl field. All subjects were then tested 

using their other limb in a counterclockwise field to examine generalization.

The experiment aimed to distinguish between two hypotheses. If internal models use hand-

based (extrinsic) coordinates then they should transfer to the other hand when reaching in 

the same field and facilitate motor adaptation. But if internal models use joint-based 

coordinates (intrinsic), then making reaching movements with the other hand would 

generalize only if the field switched from a clockwise to a counterclockwise field, upon 

switching hands. Subjects adapting to a counterclockwise curl field showed some ability to 

compensate for the same counterclockwise curl field when they switched to their other hand 

(Fig. 2c). However, when they adapted to a clockwise curl field and switched to their other 

hand, their paths were even more displaced than those of naïve subjects (Fig. 2c, compare 

Test, Intrinsic with Early Training, Extrinsic). The investigators interpreted this as 

supporting evidence for internal models with an extrinsic reference frame during interlimb 

generalization.
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When the source estimation model adapts to the same counterclockwise curl field it will 

assign more credit to the limb properties but some to the world properties. However, only 

the estimated world parameters will transfer to the other limb. This estimated external 

disturbance is weak but still allows the other limb to partially compensate for the field 

during the initial exposure (Fig. 2d, Test, Extrinsic). On the other hand, when adapting to the 

clockwise curl field, the estimated world parameters transfer to the other limb to estimate a 

clockwise disturbance. When a counterclockwise curl field is then presented to the other 

hand, the limb’s trajectory is greatly displaced. The transferred estimates of the world 

disturbance are used to compute a compensatory motor command that only acts to 

strengthen the field’s effects (compare Fig. 2c, d, Early Training, Extrinsic with Test, 

Intrinsic). In this way the source estimation model predicts the pattern of interlimb 

generalization well.

The source estimation model may help to explain another salient property of motor 

generalization: no transfer of adapted skills was found when subjects trained with their 

nondominant hand and switched to their dominant hand. As we have demonstrated, the 

nervous system appears to favor interpreting motor errors in terms of uncertainty and 

variability in limb properties. We expect this uncertainty to be larger for the less familiar 

nondominant limb and several studies have examined this notion7, 8. When α indicates an 

even higher uncertainty about the body for the nondominant hand we also find that 

adaptation generalizes from the dominant to the nondominant hand but not vice versa (Fig. 

2e, α = 0.1). This is because motor errors with the nondominant hand are even more likely 

to be attributed to a misestimate of that limb’s properties, information that does not facilitate 

subsequent movements with the dominant limb.

Rotating room studies

Experiments using robots to perturb human hand movements don’t reveal all aspects of 

generalization behavior. In a unique set of experiments, researchers analyzed reaching 

movements made in a rotating room9–11. The rotating room induces nonlinear Coriolis 

forces on the limb proportional to its translational velocity (see Fig. 3a). Though distinct 

from the previous studies in a number of ways, the results were generally similar. Subjects 

initially produce motor errors and then adapt and display aftereffects consistent with a newly 

learned internal model. When subjects were then asked to make reaches with the alternate 

arm, their movements were relatively straight, but rotated slightly appearing as if they were 

made to a laterally displaced target (Fig. 3c). Instead of explaining the results in terms of 

coordinate frames, the investigators proposed that this shift in the reaching direction 

represented a transferred change in the motor system’s kinematic plan, and was thus 

evidence for distinct representations, one for movement dynamics and another for 

kinematics9. Finding evidence for two distinct representations, the experiment supports one 

of the central assumptions of our source estimation model.

Simulated reaches made with the source estimation model acting under a Coriolis force 

disturbance predicted a similar pattern of adaptation and generalization (Fig. 3d). The model 

adapts to the disturbance and, when the room stops rotating, produces aftereffects consistent 

with the experimental data. As in the previous simulated results, the model adapts to the 
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rotating room by inferring relatively large misestimates in the body’s parameters and small 

estimates in the world parameters. When the left arm makes a subsequent reaching 

movement it utilizes this relatively small inferred world disturbance. However, this 

information causes the limb to compensate for a non-existent external disturbance (the room 

is no longer rotating) and the movement direction is slightly altered, just as was found 

experimentally. To quantify this similarity, we again compared perpendicular errors. Our 

model has an RMS error of 3.81 mm, whereas the same results for a body-only, or world-

only inference are 16.7 mm and 10.0 mm, respectively.

Similar to the force field studies examined earlier, the rotating room studies found 

asymmetric generalization between the dominant and nondominant limbs. Again, this is 

consistent with the source estimation model. If we assume an increased uncertainty for the 

nondominant limb’s parameters, then the model predicts generalization to the dominant limb 

that is nearly indistinguishable from a naïve movement (see supplementary information). 

The nervous system’s preference for relatively large uncertainty in the body (and even larger 

uncertainty in the nondominant limb) results in motor errors being largely attributed to body 

parameters and only weakly to world parameters that would generalize the other arm.

Inertial disturbance studies

Velocity-dependent disturbances were used in all the studies above. However, the nervous 

system is constantly faced with disturbances of other kinds as well. For example, 

movements with a mass introduce forces that also vary with the acceleration and orientation 

of the limb. We thus proceed to compare the source estimation model with results from a 

motor adaptation paradigm that introduces inertial perturbations12–14. In these studies the 

subject wears an arm splint upon which a mass is attached (Fig. 4a). This disturbance 

increases the subject’s apparent limb inertia by an unknown amount and reaching 

movements are initially distorted. Just as in other motor adaptation studies, the subject 

eventually adapts to the disturbance and produces relatively straight reaches. Similarly, 

when the disturbance is removed, the subject displays aftereffects indicative of the now 

absent inertia. In a study using this paradigm15 subjects adapted to reaching movements 

with the inertial disturbance and then the mass was attached to their opposite limb to observe 

evidence for the transfer of this motor skill (Fig. 4b). Initial movements made with the 

opposite limb after training performed better than naïve (Fig. 4c). The researchers 

interpreted these results as indicating an intrinsic coordinate frame for interlimb 

generalization.

When the source estimation model adapts and generalizes to a simulated inertial disturbance 

the results are similar (Fig. 4d). The model infers that the observed motor errors are largely 

due to an incorrect estimate of the limb’s inertia and estimates a relatively small value for 

the external mass. When the nondominant limb is then tested, it makes reaches with the 

benefit of a small, inferred world disturbance (the added external mass). This results in the 

observed generalization. Again, comparing perpendicular movement errors our model has an 

RMS error of 16.46 mm, whereas a purely world-only or body-only inference results in 

RMS errors of 17.28 mm and 23.46 mm, respectively.
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Consistent with the previous studies, this transfer of adaptation was only observed when the 

initial training was performed with the dominant hand. Previously, this asymmetry was 

viewed as evidence that the nervous system is less proficient at developing an internal model 

for the nondominant limb. As in those studies, we find this asymmetry when we introduce 

additional uncertainty into the representation of the nondominant hand (see supplementary 

information).

Generalization to natural hand movements

As our source estimation model adapts both the properties of the body and the world, a 

crucial test of its validity would be an experiment that independently tests for world and 

body adaptations. For instance, according to the source estimation model, if adapting to an 

experimental disturbance results in new estimates of limb parameters, then this information 

should influence movements made after the experiment has ended. A few recent studies 

have specifically examined these kind of after effects4, 16. In one study in particular4, this 

predicted phenomenon was found; after releasing the robot handle, some aspect of training 

persisted. In this study subjects adapted to a velocity-dependent force field and were then 

tested with and without grasping the robot handle. Their results provide strong evidence for 

the representation of a world model, separate from the body, just as we have hypothesized. 

Interestingly, the authors also found large after-effects even when subjects were not grasping 

the handle (Fig. 5a). Again our model can offer a concise explanation for these results. 

When the field is turned off, the new estimates of both the limb and the body act to produce 

after effects whose magnitude is approximately equivalent to the force field, but in the 

opposite orientation (Fig. 5b, black line). However, when the model makes movements 

without holding the robot handle, the new world estimates are neglected, but the new body 

estimates persist. This results in after effects of a similar nature, but of reduced magnitude 

(Fig. 5b, grey line).

The model results may seem to suggest that once the experiment has ended, subjects 

undergo a relatively slow period of “de-adapting” to return to their nominal, pre-experiment 

state (compare the model’s slow progression of errors returning to baseline with the 

experimental evidence, Fig. 5a, b). However, previous work has proposed that the nervous 

system may not rely on a single representation of the body and may switch its model of the 

body, or the world, in a context-dependent manner17, 18. These approaches can easily be 

combined with the source estimation model presented here. For example, a pair of body and 

world models could be grouped together within a specific module, appropriate for a given 

context. Then multiple modules could be stored and combined at any time according to their 

ability to account for the current context19.

To demonstrate this multiple module system, we built a new source estimation model with 

two world-body modules. We assume that one module correctly represents unperturbed 

reaches (a correct limb model, and no world disturbances), and a second module is used to 

account for new, perturbed motor contexts. When the force field is turned on, the large 

motor errors indicate a small likelihood that the unperturbed module represents this context, 

and the second module’s likelihood is large (see Methods). As a result, the perturbed module 

adapts its world and body parameters. Once the force field is turned off, the motor errors 
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(now in the opposite orientation) indicate that the perturbed module’s likelihood of 

representing this context quickly decreases, as the unperturbed module’s likelihood 

increases. The unperturbed module’s high likelihood of representing the current context 

essentially allows it to “win” over the perturbed module. This results in a quicker reduction 

in the observed after effects (Fig. 5c). Moreover, by quickly switching to the unperturbed 

module, the body and world models of both modules undergo minimal adaptation, allowing 

for their storage and later retrieval. These results, along with the results of our basic model 

(Fig. 5b) demonstrate that the source-estimation scheme comes close to capturing what 

could be the salient temporal and spatial features of adaptation and generalization under 

such conditions.

DISCUSSION

Many traditional studies of motor control posit a single internal model that adapts its 

parameters to reduce observed motor errors. Regardless of how these errors arise, the model 

parameters adapt to compensate for perceived disturbances and reduce future motor errors. 

However, since these disturbance models don’t distinguish between errors arising from the 

properties of the body and the properties of the world, their ability to make rational 

predictions for generalization is limited. For example, these models have no mechanism for 

indicating that what the nervous system learns about the right arm should generalize across 

the workspace, but not to the left arm. For this reason, these internal models have no option 

but to use the learned disturbance model to generalize under all circumstances.

By design, these internal models can only generalize along one coordinate frame. 

Capitalizing on the differences between extrinsic and intrinsic coordinate frames, 

experimental data has been used to examine which of these two coordinate frames best fits 

the observed data. Yet, if the nervous system is simultaneously generalizing with parameters 

that vary in both coordinate frames, then the evidence for these internal models should be 

mixed. Indeed, the experimental evidence is far from clearly supporting one coordinate 

frame over the other. Some intralimb generalization studies have argued for an intrinsic 

representation5, 20–22, while some evidence supports an extrinsic representation23, and yet 

others have found evidence for what is argued to be a mixed representation3. Studies of 

interlimb generalization on the other hand have found support for an extrinsic 

representation6, 24, 25. Further confounding the issue, generalization appears to be 

asymmetrical: newly acquired skills transfer from the dominant arm to the nondominant, but 

not vice versa7, 8, 12, 26, 27. Jointly, these studies paint a complicated picture of inter- and 

intralimb generalization, dependent on the task as well as the limb used. As we have 

demonstrated, this may be due to an overly restrictive interpretation for describing internal 

models.

A recent line of work addresses how a wide range of properties of the nervous system can be 

understood using Bayesian statistics. Neural coding28, 29, sensorimotor integration30, 31, 

sensory cue combination32–36 and cognitive decision making37 have all been described in 

the same normative framework. In this study, we have extended these ideas to motor 

adaptation and generalization – where a large number of variables need to be estimated 
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simultaneously and the problem of ambiguity between the body and the world becomes 

important.

Many properties of the body and the world are variable and can contribute to motor errors. 

Moreover, they can contribute to errors in an ambiguous way. Here we have proposed that 

the nervous system therefore needs to estimate the sources of errors. Thus, we extended the 

traditional internal model representation to one of a coupled body-world representation. This 

model allows for the estimation of likely sources of motor errors, and a common sense 

method for generalizing based on these estimations. Further, our model offers an 

explanation for the inconsistent findings on extrinsic and intrinsic representations for 

internal models and the long-standing observation of asymmetric motor generalization. In 

addition, a source estimation strategy may account for the apparently contradictory evidence 

found examining adaptation to kinematic and dynamic disturbances. For example, in one 

experiment14 kinematic and dynamic variables were relatively uncorrelated to each other 

and found to have little influence on the their respective adaptations. In a follow-up 

experiment38 the kinematic and dynamic disturbances were highly correlated and their 

respective influence on adaptation was significantly disrupted. In general, whenever two 

experimental perturbations can be explained by shared sources, adaptation is not 

independent when using a source estimation strategy.

The source estimation model we have presented here is a preliminary attempt to formalize 

the problems of motor adaptation and generalization. There are numerous modifications 

future implementations could consider. For instance, in the current model we have assumed 

the position and velocity of the limb’s endpoint (hand) is the only sensory information 

available, but everything from grip force to muscle spindle fiber afferents could be 

incorporated into the model. Furthermore, presently we have almost entirely neglected the 

temporal aspects of adaptation and instead focused on the “steady-state” conditions, where 

motor errors are sufficiently small as to justify the halt of adaptation. However, our model 

can be extended to include adaptation to parameters that have their own time scales39. This 

may be useful in examining studies where perturbations are gradually, as opposed to 

suddenly, presented to the subject. For instance, one study of interlimb generalization24 

found that subjects who adapted to a gradually applied perturbation showed little 

generalization, whereas subjects who adapted to a sudden onset perturbation showed the 

familiar characters of extrinsic generalization. Assuming that the nervous system entertains 

abrupt changes in motor errors as more likely the result of sources in the world, our model 

should predict similar findings. Finally, currently we have grouped parameter properties 

according to body and world to minimize the number of model parameters to be tuned. 

Future versions of the model can include independent properties of all relevant parameters, 

whether they are body, world, extrinsic, intrinsic, etc.

In this study we have sidestepped the issue of motor learning by assuming that the goal of 

the motor system is to produce straight, minimum jerk trajectories40. This is a common 

assumption shared by many other studies and supported by a host of data, including the 

experimental studies modeled here. However, this clearly cannot be sufficient to explain all 

aspects of motor adaptation. Indeed, many studies of adaptation have demonstrated clear 

distinctions between motor behaviors before and after experimental disturbances41, 42. 
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Rather than acting to maintain a desired trajectory, the nervous system appears to be 

optimizing some other criteria. While the issues of optimal control and motor learning are 

the subjects of on-going research43, 44 exactly what the nervous system is optimizing for is 

still unknown. Regardless, estimating the properties of the body and the world is a necessary 

first step towards re-optimizing a new motor plan.

METHODS

Generative model

The human upper limb is modeled as a nonlinear 2-link, 2 degree of freedom mechanism 

with joint angles, q, as,

I(q) and C(q,q) are the inertial and velocity-dependent acceleration matrices, Km and Bm 

represent the joint stiffness and damping that result from muscle forces as well as spinal and 

supra-spinal feedback loops, τmotor is the commanded torque, τworld is an external 

disturbance from the world, and τnoise is vector of motor noise (with zero mean). As 

elsewhere5, we shall assume that the joint torque specified by the motor system, is the sum 

of three components: (1) a feedback torque, (2) a feedforward controller to compensate for 

limb dynamics, and (3) a compensatory term for estimated world disturbances.

Î, Ĉ, B̂
m, and K̂

m are estimates of the system parameters. KP and KD are matrices that model 

the limb’s (proportional and derivative) visco-elastic convergence to a commanded 

trajectory, q*(t).

We shall define the output of the system, y(t), as the position vector, x and velocity vector, 

dx/dt of the limb’s endpoint (or hand) in a Cartesian reference frame, y = [x(t), dx(t)/dt]T. 

We shall further assume this output is corrupted by measurement noise, n(t), with zero mean 

and covariance R.

We follow the lead of previous studies and assume that the motor system can estimate a 

force field applied to the hand. This external perturbation is a velocity-dependent force field, 

Fext, modeled as, F̂
ext = B̂

ext dx/dt. In addition, we will assume that an external mass, M, 

attached to the forearm at a known position can also be estimated, as M̂, and that its 

influence on the limb’s dynamics can be modeled appropriately. We only simulate 

estimations of the limb parameters I and Bm since changes in these two matrices are similar 

or equivalent to the disturbances that are imposed during the experimental studies we 

examine. Estimated variations from the nominal values for I and Bm, as well as the estimated 

values for Bexternal and M (13 parameters in total) are used to compute τmotor.
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To compactly parameterize all these parameters, we introduce the vector, p, and a vector of 

inferred parameter estimates, p̂. Therefore, for example, we can express the estimated 

velocity dependent field parameter as B̂
ext = [p̂1, p̂2; p̂3, p̂4]. An estimate of the generative 

model can then be expressed as, ŷ(p̂,t) (for brevity we shall refer to this estimate simply as 

ŷ(t)).

To infer these parameters, p, we will need to make on final assumption, that the parameters 

vary according a random walk, with a small forgetting factor,

where a = .99 and wi is a zero mean random variable drawn from a normal distribution with 

variance, σi
2. These variances represent 13 free parameters. Allowing each to vary 

independently would provide our model with freedom to capture the data well. However, to 

avoid the problem of over-fitting, we shall restrict these values. We make the following 

assumptions, for each pi, we assume it’s accompanying standard deviation is proportional to 

its nominal value, σi = C pi
o, where we assume C takes one value for body parameters, and 

another value for world parameters. Since the magnitude of this parameter influences the 

rate of adaptation, a characteristic we are not investigating, we only investigate the ratio of 

its values and define it as α = Cworld/Cbody. This single free parameter was varied across all 

the simulations to find an approximate best fit to the data.

Optimal inferences

The source estimation model’s task is to infer changes, both in the body and the world, that 

may account for any perceived errors between what is observed and what is predicted. To 

develop our inference algorithm we assume that,

(1)

For small perturbations in p this is equivalent to a Taylor series approximation. However, as 

is demonstrated in our results, even when the quantity (p −p̂) is large, the inference 

algorithm converges to correct values. Equation 1, combined with our assumption of normal, 

uncorrelated noise and random walks in the parameters, are the necessary assumptions to 

conclude that the Kalman filter is an optimal mechanism for performing inferences of p. 

Therefore, to best estimate the parameter values based on the observed system output and 

our confidence in the current parameter values we update the parameter values according to 

the rule,
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where Kn is the Kalman gain matrix at the nth update. This update is computed at discrete 

points in time, t0, t1, … tn, …, tN during each movement. The standard update equations for 

the Kalman gain are,

where Q is the covariance of the parameter p (defined above through α), R is the 

measurement error covariance and Pn is residual covariance of p. A is a forgetting factor, aI. 

For our nonlinear model, we approximate Hn, the output matrix at the nth time step as,

(2)

where δj is a small perturbation in the jth element of p. This is a back difference 

approximation to the gradient ∂ŷ/∂p evaluated at time, tn. While equation 1 holds, and 

equation 2 is accurate, we have the guarantee that our update rule will yield a set of 

parameters, p̂, that minimizes the variance in our estimates.

To simulate inferences made with multiple modules, we introduce a second set of 

parameters that are relevant for the module representing the force field, pfield. The nominal 

module’s parameters (no field present) will be denoted, p. We also introduce the parameter 

λ, a binary variable with a continuous probability distribution. If λ = 1, an external field 

exists, and when λ = 0 there is no field. Using these separate parameters, the force field 

module and the nominal module each have their own estimated outputs, ŷ(pf̂ield) and ŷ(p̂), 

respectively. The source estimation model’s overall estimate is then based on a weighted 

combination of the two module’s parameters, ptotoal = P(λ = 1)pfield + P(λ = 0)p. The 

commands used to control the limb are based on the same weighted combination of 

parameters.

The probability of λ is computed by comparing output estimates based on the two modules,

where the probability of the force field module’s estimate is,
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and the probability of the nominal module’s estimate (the no field condition) is similarly 

defined. The probability of λ, is computed at each update time, tn, and then used to scale the 

inferences as

Simulations

The limb parameter values were based on5. For all simulated force field experiments, the 

field was equivalent to that used in the study. Due to the size of the stiffness and damping 

parameters, the Coriolis forces were largely mitigated. To counteract this, in simulations the 

room rotated at five times the experimental rate. For similar reasons, in the simulated inertial 

disturbance study the perturbing mass was five times as large as the experimental one. For 

all simulated studies, we assumed q* was a minimum jerk trajectory specified by the target 

locations and the movement times reported. Parameter estimates were updated 6 times per 

movement, and movement targets were randomly selected until the movement errors were 

sufficiently small.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Simulated intralimb generalization. (a) A velocity-dependent force field in the right region 

of the workspace is adapted to. (b) Reaches are made in the unexperienced left region of the 

workspace to test for generalization. (c) A disturbance is estimated as an entirely extrinsic 

velocity-dependent force field and the arm is exposed to an intrinsic field (top) and an 

extrinsic field (bottom), (d) A disturbance is adapted to as misestimates in limb properties 

and the arm is exposed to an intrinsic velocity-dependent force field (top) and an extrinsic 

field (bottom), (e) Experimental results for intralimb generalization (reproduced from 

Shadmehr & Mussa-Ivaldi, ‘94) when subjects are exposed to an intrinsic and extrinsic force 

field, top and bottom respectively. (f) Simulated intralimb generalizations showing a mixture 

of inferred body and world estimates.
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Figure 2. 
Simulated Interlimb Generalization. (a) Adaptation and (b) interlimb generalization with a 

curl field. (c) Experimental evidence (reproduced from Criscimagna-Hemminger et. al. ‘03) 

showing early exposure, adaptation (late training) and interlimb generalization (test) in a 

clockwise (Extrinsic) and counter-clockwise (Intrinsic) field. (d) Simulated data with our 

model demonstrating similar findings as the result of a small estimated external field and 

large misestimates in limb parameters. (e) Increasing the body’s uncertainty (decreasing α to 

0.1) our model predicts asymmetric generalization. The top plots displays generalization 

from the dominant to the nondominant limb, while the bottom plots displays generalization 

from the nondominant to the dominant limb with little transfer of the adapted skill.
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Figure 3. 
Simulated Coriolis room generalization. (a) A Coriolis force disturbance is adapted to and 

(b) interlimb generalization is observed. (c) Experimental results of motor adaptation and 

interlimb generalization reproduced from DiZio & Lackner ‘95. (d) Simulated experiment 

predicting similar results.
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Figure 4. 
Simulated inertial perturbation generalization. (a) An inertial disturbance is adapted to with 

the dominant limb and (b) interlimb generalization is observed with the nondominant limb. 

(c) Experimental results for initial exposure reaches with nondominant left arm with out the 

mass, with a mass before, and after training with the dominant right arm (reproduced from 

Wang & Sainburg ‘04.). (d) Simulated experiment demonstrating similar predictions for 

initial reaches with nondominant arm.
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Figure 5. 
Comparison of after effects. Maximum perpendicular errors from a straight line are plotted 

versus trials. (a) Experimental data displaying reach errors (mean of 6 subjects) during 

adaptation (left portion) and after effects with and without holding a robot handle, black and 

grey lines, respectively (reproduced from Cothros et. al. ‘06) (b) Simulated data of the same 

experiment (mean of 8 simulated runs). When the simulated limb let’s go of the handle, 

world estimates are neglected. (c) Simulated data with the two-module source estimation 

model.
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