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Abstract

Background: Bacterial infection with the severe complication of sepsis is a frequent and serious condition, being a major
cause of death worldwide. To cope with the plethora of occurring bacterial infections there is therefore an urgent need to
identify molecular mechanisms operating during the host response, in order both to identify potential targets for
therapeutic intervention and to identify biomarkers for disease. Here we addressed this issue by studying global gene
expression in uteri from female dogs suffering from spontaneously occurring uterine bacterial infection.

Principal Findings: The analysis showed that almost 800 genes were significantly (p,0.05) upregulated (.2-fold) in the
uteri of diseased animals. Among these were numerous chemokine and cytokine genes, as well as genes associated with
inflammatory cell extravasation, anti-bacterial action, the complement system and innate immune responses, as well as
proteoglycan-associated genes. There was also a striking representation of genes associated with proteolysis. Robust
upregulation of immunoglobulin components and genes involved in antigen presentation was also evident, indicating
elaboration of a strong adaptive immune response. The bacterial infection was also associated with a significant
downregulation of almost 700 genes, of which various homeobox and zinc finger transcription factors were highly
represented.

Conclusions/Significance: Together, these finding outline the molecular patterns involved in bacterial infection of the
uterus. The study identified altered expression of numerous genes not previously implicated in bacterial disease, and several
of these may be evaluated for potential as biomarkers of disease or as therapeutic targets. Importantly, since humans and
dogs show genetic similarity and develop diseases that share many characteristics, the molecular events identified here are
likely to reflect the corresponding situation in humans afflicted by similar disease.
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Introduction

Bacterial infection with the severe complication of a systemic

inflammatory host response (sepsis) is a serious condition and the

most common cause of death in intensive care units at hospitals,

with a global incidence that remains rising [1,2]. Despite this, our

knowledge of the complex pathophysiology of sepsis is still is

incomplete. Diagnosis of sepsis in critically ill patients is

demanding because of unspecific clinical signs and imprecise

traditional markers [3]. To improve current diagnostic methods

for sepsis, it is therefore central to identify clinically useful

biomarkers that may facilitate early and precise diagnosis [4,5,6].

Biomarkers may also constitute potential targets for novel

treatments of bacterial infections, severe inflammation and sepsis

[7].

Dogs are commonly used in experimental studies of sepsis as

well as in safety assessment studies of pharmaceuticals since their

inflammatory response is similar to humans [8,9]. It is also

important to stress that, following the sequencing of the canine

genome [10], dogs are currently emerging as attractive models for

studying the genetic background for diseases. Bacterial uterine

infection (pyometra) is a common disease that develops in 25% of

all intact female dogs [11]. The disease is characterized by mainly

Gram-negative infection in combination with severe local and

systemic inflammation [12]. Pyometra is lethal if left untreated and

patients may develop endotoxemia, sepsis or septic shock [13,14].
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The most effective treatment is acute surgical removal of the

uterus and ovaries (ovariohysterectomy).

Bacterial uterine infection in dogs has many similarities with

severe bacterial infections in humans. For example, infection in

both species is associated with induction of local and systemic

inflammation, cytokine production, an acute phase reaction,

endotoxemia and induction of subsequent sepsis. Therefore, an

examination of disease mechanisms involved in pyometra may

provide important insights to the mechanisms operating during

human bacterial infection and sepsis [15,16]. Here we used

Affymetrix microarray technology to investigate the mechanisms

involved in pyometra. We report that pyometra causes dramatic

effects on the uterine gene expression pattern. A large number

of genes associated with both innate and adaptive immune

responses were upregulated, and there was also a striking

upregulation of a wide array of proteases and protease inhibitors.

Moreover, the uterine disease was clearly associated with

downregulation of a panel of transcription factors of homeobox

and zinc-finger type.

Materials and Methods

Animals
This research study was conducted according to national

regulations (The Animal Welfare Act and Ordinance, The

Swedish Ministry of Agriculture) and international guidelines

(the European Convention and the European Commissions

Directive 86/609/EEC on protection of animals used for

experimental and other scientific purposes). The study was

covered by an application approved by the Uppsala Animal

Ethics Committee, Uppsala, Sweden. The dogs were privately-

owned patients admitted and treated according to the routines at

the University Animal Hospital, Swedish University of Agricul-

tural Sciences, Uppsala, Sweden. Written owner consent was

obtained before any dog was included.

Fifteen female dogs admitted to the University Animal Hospital,

Swedish University of Agricultural Sciences, for diagnosis and

subsequent surgical treatment (ovariohysterectomy, OHE) of

pyometra were included in the study. The control group consisted

of 6 healthy female dogs admitted for elective spay (OHE). Case

history and physical examination data were noted by the

veterinarian in charge on a specific form at admittance, and

continued daily during the hospital stay.

Blood- and Tissue Sampling
Blood samples for analysis of haematological and serum

biochemical parameters were collected from all dogs before

surgery from the distal cephalic vein into either non-additive,

EDTA-containing or heparinized collection tubes (Becton-Dick-

inson, Stockholm, Sweden), chilled on ice and centrifuged. Plasma

and serum were stored at 280uC until analysis. The removed

uterus was cut open and a fibre swab (Culturette; Becton

Dickinson AG) was used to sample the uterine contents for

bacterial culturing. Tissue biopsies were snap-frozen in liquid

nitrogen and stored at 280uC. The remaining uterine tissue and

the ovaries were formaldehyde-fixated and used for histopatho-

logical examination.

Blood Analyses
The following haematological and biochemical parameters were

analysed, using routine methods: Packed cell volume (PCV, %),

hemoglobin (Hb), total leukocyte count (WBC), differential count

and morphological evaluation of blood smears, alanine amino-

transferase (ALAT), alkaline phosphatase (AP), creatinine and

urea. Serum levels of the acute phase proteins, C-reactive protein

(CRP) and serum amyloid A (SAA), were analyzed in one batch

with commercially available kits (Tridelta PhaseTM range canine

CRP ELISA assay, TrideltaTM Phase range SAA ELISA assay

(Tridelta, Wicklow, Ireland)). Prostaglandin 15-keto-(13,14)-dihy-

dro-F2a metabolite (PGFM) levels were analyzed as previously

described [17]. Statistically significant (p,0.05) differences in

values between the infected and healthy dogs were determined

using Student’s t-tests (Table 1).

Histopathological Examinations
Pyometra diagnosis was performed by gross and histopatholog-

ical examinations of haematoxylin-eosin-stained sections of uteri

and ovaries. Diagnostic criteria for pyometra with or without

concomitant presence of macro- and/or microscopically visible

cystic dilatation and epithelial hyperplasia of endometrial glands

were uterine distension of a varying degree with macroscopically

visible presence of opaque, yellowish to brownish exudates in the

uterine lumen and microscopically visible purulent inflammatory

changes in the endometrium and cystic glands.

Microarray Expression Analysis and Data Analysis
Total RNA was prepared from cross-sections of frozen uterine

tissue samples, using Nucleospin RNA II (Macherey-Nagel,

Düren, Germany). Affymetrix gene chip microarray analysis was

performed using the Canine Genome 2.0 Array, as described [18].

The raw data were normalized using the robust multi-array

average (RMA) [19] background-adjusted, normalized and log-

transformed summarized values. An empirical Bayes moderated t-

test was applied to search for differentially expressed genes [20].

The p-values were adjusted to avoid the problem with multiple

testing [21]. The Genesis software, version 1.7.1 (http://genome.

tugraz.at/), was used to perform hierarchical clustering and to

visualize differentially expressed genes [22]. All data is MIAME

compliant and that the raw data has been deposited in a MIAME

compliant database (the data is accessible via GEO using the

accession no: GSE17878).

Real-Time PCR
RNA was prepared using NucleoSpinH (Macherey-Nagel,

Germany). First-Strand cDNA was synthesized with Super-

ScriptTM II Reverse Transcriptase (Invitrogen, Inchinnan, UK)

according to the manufacturers’ instructions with 5 ml RNA and a

final concentration of 7.5 ng/ml random hexamers (Invitrogen) in

a total volume of 20 ml. The cDNA concentration was determined,

and the cDNA was diluted to 800 ng/ml. Real-time PCR (qPCR)

was performed on a ABI PRISM 7900 HT using iQTM SYBR

Green Supermix (BioRad, CA, USA) in a total volume of 10 ml,

containing 80 ng cDNA and a final primer concentration of

100–300 nM. PCR cycling conditions included a 95uC heating

step of 10 min at the beginning of every run. The samples were

then cycled 40 times at 95uC for 30 s (denaturation), 58uC for 20 s

(annealing) and 72uC for 20 s (extension). A melting curve from

60uC to 90uC was generated at the end of every run. Prior to

experiments, the primer efficiency for each primer pair was

determined with three different dilutions of the cDNA. The

CT-values were plotted against Log concentrations of the dilutions

and primer efficiency was calculated according to following

formula: efficiency = 10(21/slope)-1. The results were calculated by

the comparative CT method (User Bulletin #2: ABI PRISM 770

Sequence Detection System (P7N 4303859)), using Hypoxanthine

guanine phosphoribosyl transferase (Hprt) as housekeeping gene.

For primers used and primer efficiency, see Table S1.

Gene Expression in Pyometra
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Results

Clinical Data
Data from analyses of haematological, biochemical, acute phase

protein and inflammatory parameters are displayed in Table 1. As

shown in Fig. S1, bacterial infection of the uterus was associated

with a profound inflammatory reaction, primarily involving

infiltration of mononuclear cells, and there was a particular

abundance of plasma cells. Neutrophils and eosinophils were

rarely present. In contrast, tissue from healthy individuals lacked

signs of inflammation or tissue remodeling. Clinical data for the 4

dogs selected for Affymetrix gene chip analysis (see below) are

illustrated in Table 2. Escherichia coli were isolated from all 4 uteri

selected for micro-array analysis, whereof 3 strains were

haemolytic. By using clinical criteria for assessment of sepsis/

systemic inflammatory response syndrome (SIRS) in dogs with the

highest sensitivity (97%) and specificity (64%), three of the four

selected dogs were determined SIRS-positive [23]. In one of the

dogs (case 3), peritonitis with pus in the abdomen was apparent

during surgery.

Affymetrix Gene Chip Analysis
In order to investigate the molecular events associated with the

infection, total RNA extracted from uterine tissue of 4 diseased

Table 1. Haematological-, biochemical-, acute phase protein- and inflammatory parameters in 15 female dogs with bacterial
uterine infection (pyometra) and 6 healthy control dogs.

Pyometra Control

Reference value Mean 6 SD (Range) n Mean 6 SD (Range) n

Hemoglobin (g l21) 132–199 121630 (57–175) 15 140621 (111–162) 5

EVF (1012 l21) 0.38–0.57 0.3460.08 (0.17–0.50) 15 0.3960.06 (0.3–0.5) 5

WBC* (109 l21) 5.2–14.1 19.5615.6 (2.8–59.4) 15 8.162.1 (6.3–11.0) 5

BN# (109 l21) 0–0.3 3.465.0 (0–13.7) 14 0.060.0 (0.0–0.0) 5

SN* (109 l21) 3.0–11.5 13.569.7 (2.0–35.6) 15 4.761.1 (3.7–6.3) 4

EoN (109 l21) 0.1–1.2 0.5760.7 (0.0–2.4) 15 0.460.4 (0.2–1.1) 5

BaN (109 l21) 0–0.1 0.0160.05 (0–0.2) 14 0.060.0 (0.0–0.0) 4

Lymphocytes* (109 l21) 1.4–4.8 1.460.9 (0.1–3.2) 15 2.260.8 (1.6 –3.6) 5

Monocytes* (109 l21) 0.2–1.4 1.661.9 (0.2–7.7) 15 0.460.2 (0.3–0.8) 5

Creatinine (mmol l21) 40–130 1066177 (22–747) 15 76614 (52–89) 6

ALAT (mkat l21) ,1.2 0.560.3 (0.3–1.3) 14 0.660.2 (0.4–0.9) 6

Urea (mmol l21) 2.5–8.5 7.4614.0 (1.2–57.5) 15 5.261.3 (3.9–7.5) 6

AP* (mkat l21) ,5.0 5.164.3 (0.8–18.2) 15 1.460.6 (0.8–2.3) 6

Albumin (g l21) 31–43 35640 (16–174) 14 3062.2 (26–32) 6

Bile acids (g l21) ,30 4.665.7 (0.0–20.4) 15 3.161.4 (1.2–4.6) 6

PGFM* (nmol l21) 369563674 (464–13000) 15 4776117 (360–640) 6

SAA# (mg ml21) 61.3631 (,5–.80) 15 All,5 6

CRP* (mg ml21) 38.5617.5 (0.7–58.2) 15 1.361.2 (0.0–2.9) 6

WBC = total white blood cell count; BN = Band neutrophilic granulocytes; SN = segmented neutrophilic granulocytes; BaN = basophilic granulocytes; EoN = eosiniphilic
granulocytes; ALAT = alanine aminotransferase; AP = alkaline phosphatase; PGFM = Prostaglandin F2a metabolite, SAA = Serum amyloid A, CRP = C-reactive protein.
*Statistically significant difference between the pyometra group and control group (Student’s t-test),
#difference not tested.
doi:10.1371/journal.pone.0008039.t001

Table 2. Illustration of data from physical examinations, uterine bacterial cultures and postoperative hospitalisation in the 4
female dogs with bacterial uterine infection (pyometra) selected for micro array analysis.

Pyometra
case

Uterine
diameter (cm) General condition Temp(uC) HR(/min) RR(/min) WBC(109 l21) PBN(%) SIRS

Animal hospital
stay (days)

Reference
values

,1 Normal 38.0–39.0 ,120 20–40 5.2–14.1 2 2 2

11 3.5 Mildly depressed 39.5 120 46 10.6 12 + 4

12 4.0 Moderately depressed 39.3 100 20 32.7 42 + 2

13 5.0 Mildly depressed 39.6 140 20 26.8 35 + 4

16 2.0 Mildly depressed 38.3 100 20 29.3 0.1 2 2

Temp = Core temperature, HR = heart rate, RR = respiratory rate, WBC = total white blood cell count, PBN = percentage band neutrophils, SIRS = systemic inflammatory
response syndrome.
doi:10.1371/journal.pone.0008039.t002
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and 4 healthy control animals (blood parameters specified in Table

S2) were subjected to Affymetrix gene chip microarray analysis. A

hierarchic clustering of the samples revealed that the control and

pyometra groups, respectively, clustered well together (Fig. S2).

Using moderated t-statistics we analyzed for differentially

expressed genes, using a 2-fold change and adj p,0.05 as

thresholds for significance. This analysis revealed that almost 800

genes were significantly upregulated more than 2-fold. In Table 3,

the 50 genes showing the largest extent of upregulation are listed

and Table S3 displays the complete list of significantly upregulated

genes. We also found that almost 700 genes were significantly (adj

p,0.05) downregulated more than 2-fold. The 50 genes showing

the largest extent of downregulation are depicted in Table 4, and

Table S4 displays the complete list of downregulated genes. An

examination of the significantly up- and downregulated genes

revealed distinct gene families that were highly represented, and

these were selected for further analysis and visualization.

Chemokines and Chemokine Receptors
A large number of chemokine genes were found among the

most upregulated genes (Fig. 1; Tables 3 and S3). Not only did we

find a number of CCL and CXCL chemokines, we also found a

number of chemotactic proteins of the S100 family among the

highly upregulated genes. In fact, S100A9 and S100A8 were

among the genes showing the highest degree of upregulation of all

genes. Out of the CCL and CXCL chemokines, CXCL14/BRAK

and CCL2/MCP-1 showed the highest extent of upregulation.

Among the chemokine receptors, CCR5 was upregulated to the

largest extent.

Cytokines
As displayed in Fig. 2 and Table 3/S3, a number of cytokines

were upregulated in the uteri of diseased animals, with IL-8, IL-1

and IL-6 showing the highest extent of induction and there was

also a high extent of IL-1 receptor upregulation. Also IL-33 and

IL-18 were markedly upregulated. Somewhat unexpectedly, no

significant upregulation of TNF or of any of the interferon family

members was seen. In line with the upregulated cytokine

expression, we noted a significant (3.3-fold) downregulation of

suppressor of cytokine signaling 6 (SOCS6)(Table S4).

Complement System
The uterine infection caused a marked upregulation of a

number of genes related to the complement system (Fig. 3;

Tables 3/S3). Notably, both the classical and alternative pathways

were represented, as shown by the upregulation of both C1

(classical pathway) as well as of Factors D, B and properdin

(alternative pathway). Also C3 and C6, i.e. components that are

shared by both pathways, were upregulated. Genes involved in the

downregulation of the complement system were also upregulated,

as shown by the strong upregulation of the C1 inhibitor: serpin

peptidase inhibitor (clade G), member 1, and of Factor H. The

C5a receptor was also dramatically upregulated.

Proteases/Protease Inhibitors
An examination of the list of upregulated genes reveals a striking

representation of genes related to proteolysis. Notably, the gene

that showed the highest extent of upregulation among all genes

was a protease inhibitor, secretory leukocyte peptidase inhibitor

(SLPI; Table 3 and Fig. 4), and its profound upregulation in

diseased animals was confirmed by qPCR analysis (Fig. 5A). SLPI

is an inhibitor of neutrophil elastase and strong upregulation (,24-

fold) was also seen for an additional elastase inhibitor, SKALP/

elafin (Table 3 and Fig. 4). Numerous matrix metalloprotease

(MMP) members were upregulated, including the collagenases

MMP-1 and MMP-13, as well as the gelatinase MMP-9 and

MMP-7/matrilysin (Fig. 4 and Table 3/S3). The robust

upregulation of MMP-1 and MMP-9 was confirmed by qPCR

analysis (Fig. 5B, C). There was also a striking induction of TIMP-

1, and -2, i.e. protease inhibitors with specificity for inhibiting

proteases belonging to the MMP family (Fig. 4). Several proteases

of the a disintegrin and metalloproteinase (ADAM) and ADAM

with thrombospondin type 1-like motifs (ADAMTS) families were

also markedly upregulated: ADAMTS2, ADAMTS5, ADAM-

DEC1 and ADAM28. Significant induction was also seen for

various cysteine proteases, including caspase 4, -12 and -8, and

several cysteine cathepsins, including cathepsin H, -S, -C and –B.

Cathepsin D, an aspartic protease, was also significantly

upregulated. Out of the large family of serine protease genes,

the urokinase plasminogen activator gene showed the highest

extent of upregulation and this was also reflected by a large extent

of upregulation for the corresponding inhibitor, i.e. plasminogen

activator inhibitor 1 (PAI-1). An upregulated expression of various

mast cell proteases was also evident. In particular, a significant

upregulation of mastin, a tetrameric, tryptase-like protease with

gelatinase activity [24] was seen in diseased uteri.

Proteoglycans/Anticoagulant Pathways
One of the genes that showed the highest extent of upregulation

was the gene coding for the core protein of serglycin proteoglycan

(SRGN), as shown both by Affymetrix gene chip analysis (Fig. 6)

and by qPCR (Fig. 5D). Significant upregulation was also seen for

versican, lumican, syndecan-2, biglycan and syndecan-4 (Fig. 6

and Tables 3/S3). The biological properties of proteoglycans are

critically dependent on the nature of the glycosaminoglycan chains

(heparan/chondroitin/dermatan/keratan sulfate or heparin) at-

tached to the respective protein cores. Glycosaminoglycan chain

synthesis is accomplished through the concerted action of a

number of biosynthetic enzymes and we therefore analyzed the

expression of the corresponding genes. As shown in Fig. 6, a strong

induction of two heparan sulfate 3-O-sulfotransferase isoforms

(HS3ST3A1 and HS3ST3B1) was evident in uterus from infected

individuals and upregulation of the genes coding for dermatan

sulfate epimerase, carbohydrate (chondroitin 4) sulfotransferase 11

and chondroitin sulfate N-acetylgalactosaminyltransferase 2 was

also apparent (Fig. 6). Heparan sulfate 3-O-sulfotransferase

catalyzes the incorporation of GlcNAc-3-O-sulfate into heparan

sulfate and mast cell heparin, thereby conferring the respective

glycosaminoglycan with potent anticoagulant activity [25]. Hence,

the upregulated expression of the corresponding genes suggests

that activation of anticoagulant mechanisms is a feature of

bacterial infection of the uterus. In agreement with this notion,

strong upregulation (48-fold) of another anticoagulant component,

tissue factor pathway inhibitor 2, was also evident (Table 3). The

role of anticoagulant pathways in the regulation of bacterial

disease is also underscored by the established use of activated

protein C, an anticoagulant protein, in treatment of sepsis [26].

Prostaglandins
The uterine infection caused a massive (,90-fold) upregulation

of the prostaglandin-endoperoxide synthase 2/cyclooxygenase-2

gene (PTGS2)(Table 3). Further, strong upregulation of the

prostaglandin D2 receptor (PTGDR) and prostaglandin E

synthase (PTGES) genes was evident (Table 3/S3). The upregula-

tion of prostaglandin-related genes is thus in accordance with the

increased levels of prostaglandin F2a metabolite in plasma from

Gene Expression in Pyometra
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Table 3. 50 genes showing the highest extent of significant (adj p,0.05) upregulation, in comparison with healthy controls, in
uterus from animals diagnosed with uterine bacterial infection.

Gene Title Gene symbol ID Fold change adj. p. val

secretory leukocyte peptidase inhibitor SLPI CfaAffx.15167.1.S1_s_at 344,8 0,0006

interleukin 8 IL8 Cfa.3510.1.S2_at 242,9 0,0003

sphingomyelin phosphodiesterase, acid-like 3A SMPDL3A CfaAffx.2399.1.S1_s_at 194,4 0,0002

S100 calcium binding protein A9 S100A9 CfaAffx.26854.1.S1_at 160,7 0,0002

interferon induced transmembrane protein 2 IFITM2 CfaAffx.10684.1.S1_s_at 137,3 0,0002

similar to Ig lambda chain V region 4A precursor LOC612066 CfaAffx.345.1.S1_s_at 129,5 0,0018

similar to Ig kappa chain C region, B allele LOC475754 Cfa.12195.14.S1_s_at 124,8 0,0053

insulin-like growth factor binding protein 1 IGFBP1 CfaAffx.19068.1.S1_s_at 104,4 0,0004

similar to Ig heavy chain V-III region VH26 precursor LOC490894 Cfa.4556.3.A1_a_at 94,5 0,0010

prostaglandin-endoperoxide synthase 2 PTGS2 Cfa.3449.1.S1_s_at 88,7 0,0017

serum amyloid A protein /// serum amyloid A1 SAA1 CfaAffx.14443.1.S1_at 65,9 0,0031

S100 calcium binding protein A8 S100A8 CfaAffx.26852.1.S1_at 56,6 0,0007

haptoglobin-related protein HPR Cfa.12245.2.A1_a_at 56,1 0,0025

similar to Immunoglobulin lambda-like polypeptide 1 precursor LOC607558 Cfa.4465.2.S1_at 53,3 0,0010

serglycin SRGN Cfa.20785.1.S1_s_at 53,2 0,0002

similar to immunoglobulin iota chain preproprotein LOC486411 Cfa.4465.2.S1_s_at 50,7 0,0010

similar to Ig lambda chain V-I region BL2 precursor LOC607020 CfaAffx.265.1.S1_s_at 49,8 0,0162

complement component 6 C6 CfaAffx.28425.1.S1_s_at 48,5 0,0014

tissue factor pathway inhibitor 2 TFPI2 CfaAffx.3983.1.S1_at 48,1 0,0016

chemokine (C-X-C motif) ligand 14 CXCL14 CfaAffx.2498.1.S1_s_at 47,0 0,0010

chemokine (C-C motif) ligand 2 CCL2 Cfa.3851.1.S1_s_at 44,8 0,0008

matrix metallopeptidase 1 (interstitial collagenase) MMP1 CfaAffx.23166.1.S1_s_at 44,7 0,0139

complement component 5a receptor 1 C5AR1 Cfa.3834.1.S1_at 43,4 0,0002

CD5 molecule-like CD5L Cfa.5955.1.S1_at 42,6 0,0068

Fc fragment of IgG, high affinity Ia, receptor (CD64) FCGR1A Cfa.173.1.A1_s_at 42,5 0,0004

macrophage receptor with collagenous structure MARCO Cfa.15713.1.A1_s_at 40,7 0,0002

similar to Small inducible cytokine A23 precursor (CCL23) LOC480602 Cfa.12237.1.A1_at 40,7 0,0007

neutrophil cytosolic factor 2 NCF2 Cfa.2804.1.S1_at 39,7 0,0001

CD48 molecule CD48 Cfa.14560.1.S1_at 38,9 0,0001

acyloxyacyl hydrolase (neutrophil) AOAH CfaAffx.5812.1.S1_at 37,0 0,0001

thrombospondin 4 THBS4 CfaAffx.14209.1.S1_s_at 31,2 0,0033

chemokine (C-X-C motif) ligand 10 CXCL10 Cfa.16590.1.S2_at 31,1 0,0264

similar to Small inducible cytokine A4 precursor (CCL4) LOC480601 Cfa.5334.1.A1_s_at 30,8 0,0020

similar to Ig kappa chain V-II region RPMI 6410 precursor LOC491492 CfaAffx.23613.1.S1_x_at 30,0 0,0114

matrix metallopeptidase 9 (gelatinase B) MMP9 Cfa.3470.1.S1_s_at 29,4 0,0001

selectin L SELL CfaAffx.23335.1.S1_s_at 28,3 0,0004

similar to normal mucosa of esophagus specific 1 LOC478287 CfaAffx.25306.1.S1_x_at 28,2 0,0036

caspase 4, apoptosis-related cysteine peptidase CASP4 Cfa.3589.1.S1_s_at 28,1 0,0002

similar to immunoglobulin J chain LOC475166 CfaAffx.5291.1.S1_s_at 27,7 0,0022

secreted phosphoprotein 1 SPP1 Cfa.9240.1.S1_at 27,7 0,0038

CD163 molecule CD163 Cfa.9647.1.A1_at 27,5 0,0010

chemokine (C-X-C motif) ligand 14 CXCL14 Cfa.21149.1.S1_at 27,5 0,0005

plasminogen activator inhibitor type 1 SERPINE2 CfaAffx.24902.1.S1_at 25,6 0,0004

peptidase inhibitor 3, skin-derived (SKALP) PI3 CfaAffx.15155.1.S1_s_at 24,1 0,0044

similar to normal mucosa of esophagus specific 1 LOC478287 Cfa.11815.1.A1_at 23,8 0,0067

lymphocyte cytosolic protein 2 LCP2 Cfa.18362.1.S1_at 23,4 0,0002

regenerating islet-derived 3 gamma REG3G Cfa.16734.1.S1_s_at 23,2 0,0474

Fc fragment of IgG, low affinity IIIa, receptor (CD16a) FCGR3A Cfa.21258.1.S1_at 23,2 0,0010

membrane-spanning 4-domains, subfamily A, member 7 MS4A7 CfaAffx.16226.1.S1_at 22,7 0,0015

doi:10.1371/journal.pone.0008039.t003
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Table 4. 50 genes showing the highest extent of significant (adj p,0.05) downregulation, in comparison with healthy controls, in
uterus from animals diagnosed with uterine bacterial infection.

Gene title Gene symbol ID Fold change adj. p. val

sulfotransferase SULT1D1 Cfa.3502.1.S1_at 230,6 0,018

EPH receptor A7 EPHA7 CfaAffx.6057.1.S1_s_at 226,0 0,003

transcription factor CP2-like 1 TFCP2L1 Cfa.15666.1.A1_at 215,2 0,002

synuclein, alpha interacting protein SNCAIP Cfa.13718.1.S1_s_at 210,9 0,001

fasciculation and elongation protein zeta 1 (zygin I) FEZ1 Cfa.18202.2.S1_a_at 210,7 0,042

similar to phosphatidylethanolamine-binding protein 4 LOC608950 Cfa.17117.1.S1_at 210,6 0,004

similar to esophageal cancer related gene 4 protein LOC611190 CfaAffx.4062.1.S1_at 210,5 0,001

trefoil factor 2 TFF2 Cfa.201.1.S1_at 29,2 0,048

regulator of G-protein signaling 22 RGS22 CfaAffx.1736.1.S1_at 28,9 0,002

epoxide hydrolase 2, cytoplasmic EPHX2 Cfa.574.1.A1_at 28,3 0,001

Norrie disease (pseudoglioma) NDP Cfa.4725.1.S1_at 28,3 0,007

ankyrin 3, node of Ranvier (ankyrin G) ANK3 CfaAffx.19834.1.S1_s_at 28,1 0,003

rhophilin, Rho GTPase binding protein 2 RHPN2 Cfa.15.1.S1_at 28,0 0,006

hydroxypyruvate isomerase homolog (E. coli) HYI CfaAffx.8731.1.S1_s_at 27,9 0,004

ectonucleotide pyrophosphatase/phosphodiesterase 6 ENPP6 CfaAffx.12520.1.S1_at 27,9 0,012

msh homeobox 2 MSX2 Cfa.3529.1.S1_at 27,9 0,014

forkhead box A2 FOXA2 Cfa.13382.1.A1_at 27,8 0,007

similar to Homeobox protein DLX-6 LOC482312 CfaAffx.4169.1.S1_at 27,5 0,001

distal-less homeobox 5 DLX5 CfaAffx.4173.1.S1_at 27,4 0,006

solute carrier family 30 (zinc transporter), member 2 SLC30A2 Cfa.5561.1.A1_at 27,4 0,014

lymphoid enhancer-binding factor 1 LEF1 CfaAffx.17535.1.S1_s_at 27,4 0,019

F-box and WD repeat domain containing 10 FBXW10 Cfa.11549.1.A1_at 27,3 0,026

cholecystokinin CCK CfaAffx.8825.1.S1_s_at 27,1 0,027

aldehyde dehydrogenase 1 family, member A1 ALDH1A1 Cfa.1715.1.S1_at 27,1 0,018

epoxide hydrolase 2, cytoplasmic EPHX2 CfaAffx.13394.1.S1_s_at 27,0 0,001

glutamate-cysteine ligase, catalytic subunit GCLC CfaAffx.4309.1.S1_s_at 27,0 0,014

phosphatidic acid phosphatase type 2 domain containing 1A PPAPDC1A Cfa.5652.1.A1_at 26,9 0,023

similar to RIKEN cDNA 5133401N09 LOC484150 CfaAffx.3054.1.S1_at 26,6 0,042

protein phosphatase 1, regulatory (inhibitor) subunit 1B PPP1R1B Cfa.20636.1.S1_at 26,6 0,027

similar to Epithelial-cadherin precursor (E-cadherin) LOC489647 CfaAffx.30291.1.S1_at 26,6 0,009

DEP domain containing 7 DEPDC7 CfaAffx.11821.1.S1_at 26,6 0,044

similar to EGFR-coamplified and overexpressed protein LOC608562 Cfa.20305.1.S1_at 26,6 0,009

betaine-homocysteine methyltransferase BHMT Cfa.11111.1.A1_at 26,5 0,002

N-acetylated alpha-linked acidic dipeptidase 2 NAALAD2 CfaAffx.7397.1.S1_s_at 26,4 0,038

similar to dachshund homolog 1 isoform a LOC485489 CfaAffx.8384.1.S1_at 26,4 0,016

carboxylesterase 2 (intestine, liver) CES2 Cfa.19114.1.S1_at 26,3 0,005

msh homeobox 1 MSX1 CfaAffx.24056.1.S1_at 26,3 0,010

spermatid perinuclear RNA binding protein STRBP Cfa.19369.1.S1_at 26,2 0,002

EF-hand domain (C-terminal) containing 2 EFHC2 Cfa.9584.1.A1_s_at 26,1 0,001

cystathionase (cystathionine gamma-lyase) CTH Cfa.359.1.S1_at 26,1 0,005

SH3 domain binding glutamic acid-rich protein like 2 SH3BGRL2 CfaAffx.5151.1.S1_s_at 26,0 0,033

glutamate receptor interacting protein 1 GRIP1 Cfa.8622.1.A1_s_at 25,9 0,006

CKLF-like MARVEL transmembrane domain containing 8 CMTM8 Cfa.8530.1.A1_s_at 25,7 0,017

tumor-associated calcium signal transducer 1 TACSTD1 CfaAffx.4844.1.S1_at 25,7 0,004

similar to myosin 18A isoform b LOC475308 Cfa.1186.1.A1_s_at 25,6 0,003

similar to ankyrin repeat domain 26 LOC610965 CfaAffx.12169.1.S1_at 25,6 0,009

WNT inhibitory factor 1 WIF1 Cfa.4881.1.A1_at 25,5 0,018

similar to Arg/Abl-interacting protein 2 isoform 1 LOC482906 CfaAffx.12091.1.S1_s_at 25,4 0,012

RAS guanyl releasing protein 1 (calcium and DAG-regulated) RASGRP1 Cfa.7809.1.A1_at 25,4 0,040
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diseased dogs (Table 1). In contrast, genes related to leukotriene

metabolism were not affected to any major extent.

Immunoglobulins, Antigen Presentation
Various immunoglobulin (Ig)-related genes were highly repre-

sented (Table 3/S3), for example, Ig lambda chain V region 4A

precursor, Ig kappa chain C region and Ig heavy chain V-III region

VH26 precursor. In agreement with a strong upregulation of Ig

genes, plasma cells were abundant in afflicted tissue (Fig. S1).

Several genes associated with antigen presentation were also

upregulated, including MHC class II DR alpha chain and MHC

class II DLA DRB1 beta chain, CD48 (adhesion molecule involved

in the immunological synapse) as well as cathepsin S, the latter being

a cysteine protease implicated in antigen processing [27].

Anti-Bacterial Genes
A natural consequence of the uterine infection would be an

upregulated expression of various anti-bacterial proteins. Indeed,

strong upregulated expression of lysozyme was apparent and

there was also a marked upregulation of acyloxyacyl hydrolase, a

lipase that partially deacylates bacterial lipopolysaccharide

(LPS)(Table 3/S3). Strong induction was also seen for regenerat-

ing islet-derived 3 gamma (REG3G), an anti-bacterial compound

that is expressed in an IL-22 and IL-23p19-dependent fashion

[28,29], and of bactericidal/permeability-increasing protein (BPI),

the latter being an antimicrobial protein with LPS-neutralizing

activity [30]. Moreover, clear upregulation of the anti-bacterial

chemokines [31], CXCL14 [32] and CCL20 was evident.

Somewhat unexpectedly, we did not see a significantly upregulated

expression of any of the defensin family members.

Acute-Phase Reactants
Pyometra and other bacterial infections are associated with

elevated plasma levels of various acute phase reactants [33,34].

Although the liver is considered to be the primary source for this

group of proteins, it is apparent that several acute-phase reactants are

also produced within the uterus, as shown by the dramatic (,160-

fold) upregulation of serum amyloid A (SAA)(Table 3). Notably, the

strong upregulation of the SAA gene is consistent with the high levels

of SAA found in serum from diseased animals (Table 1).

Pattern Recognition Receptors
The onset of innate immunity reactions is typically triggered

through the various pattern recognition receptors, including the toll-

like receptors (TLRs). Out of these, we detected significant

upregulation of, in particular, TLR2 (,9-fold), but also TLR1

(,5-fold) and, to a somewhat lesser extent, TLR4 (,2.4-fold)(Table

S3). There was also a profound upregulation of the mannose

receptor (,17-fold) and of several C type lectins: CLEC5A (,14-

fold), CLEC2D (13-fold), CLEC12A (7-fold), CLEC4D (4.5-fold)

and CLEC4E (3.4-fold)(Table S3), but no significant upregulation of

nucleotide-binding and oligomerization (NOD) 1 or NOD2.

Cell Adhesion/Extravasation
Cell adhesion to the endothelium is a crucial step in the

inflammatory process. Accordingly, several endothelial adhesion

molecules were significantly upregulated in infected animals, in

particular selectin L (28-fold), VCAM-1 (18-fold), selectin P (8.5-

fold), ICAM-1 (7.6-fold) and selectin E (4-fold)(Table 3/S3). We

also detected significantly downregulated expression of several

genes involved in endothelial cell-cell contact formation, including

genes coding for E-cadherin (6.6-fold), catenin (cadherin-associat-

ed protein), delta 2 (5.1-fold), cadherin 18, type 2 (4.7-fold),

protocadherin 11 (3.7-fold) and occludin (3.3-dold). Clearly, the

downregulated expression of the latter compounds is likely to

enhance endothelial permeability and, hence, promote inflamma-

tory cell infiltration into the uterus.

Gene title Gene symbol ID Fold change adj. p. val

similar to membrane-associated guanylate kinase-related (MAGI-3) LOC479761 CfaAffx.24689.1.S1_at 25,4 0,008

doi:10.1371/journal.pone.0008039.t004

Table 4. Cont.

Figure 1. Heat map of differentially expressed chemokine,
S100 protein and chemokine receptor genes in uteri from
control animals and animals with pyometra (n = 4). The
normalized 2 log intensity values were centered to the median value
of each probe set and colored on a range of 23 to +3. Red denotes
upregulated expression levels, and green denotes downregulated
expression levels as compared with the median value.
doi:10.1371/journal.pone.0008039.g001
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Figure 2. Heat map of differentially expressed cytokine receptor genes in uteri from control animals and animals with pyometra
(n = 4). The normalized 2 log intensity values were centered to the median value of each probe set and colored on a range of 23 to +3. Red denotes
upregulated expression levels, and green denotes downregulated expression levels as compared with the median value.
doi:10.1371/journal.pone.0008039.g002

Figure 3. Heat map of differentially expressed complement-related genes in uteri from control animals and animals with pyometra
(n = 4). The normalized 2 log intensity values were centered to the median value of each probe set and colored on a range of 23 to +3. Red denotes
upregulated expression levels, and green denotes downregulated expression levels as compared with the median value.
doi:10.1371/journal.pone.0008039.g003
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Other Upregulated Genes
Among the remaining, upregulated genes, the gene coding for

Sphingomyelin phosphodiesterase, acid-like 3A (SMPDL3A)

showed the most dramatic extent of induction, being increased

almost 200-fold in uteri from diseased animals (Table 3).

Sphingomyelin phosphodiesterase is an enzyme that hydrolyzes

sphingomyelin to ceramide and phosphorylcholine and, notewor-

thy, ceramide has been implicated in various pathophysiologial

settings including apoptosis and infectious disease [35]. Other

examples of profoundly (over 20-fold) upregulated genes included

interferon induced transmembrane protein 2 (IFITM2), insulin-

like growth factor binding protein 1 (IGFBP1), CD5 molecule-like

(CD5L), lymphocyte cytosolic protein 2, CD48, thrombospondin

4, secreted phosphoprotein 1 (osteopontin), CD163, membrane-

spanning 4-domains, subfamily A, member 7 (MS4A7) and

Growth-associated protein-43 (GAP-43) (Tables 3/S3).

Downregulated Genes/Homeobox and Zinc Finger
Transcription Factors

The genes that were significantly downregulated in diseased

animals included a number of genes with functions associated with

signaling pathways (Table 4/S4). In particular, we note a striking

presence of numerous members of the homeobox (Fig. 7) and zinc

finger (Fig. 8) transcription factor families. The strong downreg-

ulation of homeobox genes in dogs afflicted with pyometra was

also verified by qPCR analysis, as shown for MSX2 and HOXA6

(Fig. 5E, F). Notably, of all significantly downregulated (more than

2-fold) genes, 16 homeobox genes and 54 zinc finger genes were

found. In contrast, homeobox and zinc finger proteins were only

minimally represented (altogether 3 genes) among the significantly

upregulated genes, being absent from the 100 most upregulated

genes.

Other examples of markedly downregulated genes included

SULT1D1 (,30-fold; coding for sulfotransferase), EPHA7 (,26-

fold; coding for EPH receptor A7), TFCP2L1 (,15-fold; coding

for transcription factor CP2-like 1) and SNCAIP (,11-fold; coding

for synuclein, alpha interacting protein)(Table 4).

Discussion

To the best of our knowledge, this is the first study in which the

global gene expression pattern in the uterus is studied following a

naturally occurring bacterial infection. Importantly, since a

spontaneous disease rather than experimentally induced infection

was used, the findings reflect a clinically relevant situation.

Notably, previous attempts to extrapolate findings derived from

Figure 4. Heat map showing upregulated expression of protease and protease inhibitor genes in uteri from control animals and
animals with pyometra (n = 4). The normalized 2 log intensity values for 50 genes (out of total 172 genes filtered as proteases/protease inhibitors)
were centered to the median value of each probe set and colored on a range of -3 to +3. Red indicates upregulated expression, and green indicates
downregulated expression as compared with the median value.
doi:10.1371/journal.pone.0008039.g004
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experimental models of sepsis into a clinical setting have often

encountered serious problems [36]. Another advantage of using

the canine uterine disease as a model for sepsis is that the surgical

treatment of the disease produces tissue samples readily available

for studies of the local inflammatory response to bacterial

infection. This is in contrast to corresponding human diseases, in

which investigations are often limited to the use of blood sampling

[37,38,39].

Figure 5. qPCR analysis confirming the up- or downregulation of selected genes in uterine tissue from dogs with pyometra. (A) SLPI;
(B) MMP1; (C) MMP9; (D) SRGN; (E) MSX2; (F) HOXA6. All values are relative to one of the control samples. n = 7 (control); n = 5 (pyometra). p,0.05
*; p,0.01 **; p,0.001 ***; Student’s t-test
doi:10.1371/journal.pone.0008039.g005

Figure 6. Heat map of differentially expressed proteoglycan genes and genes related to biosynthesis of the glycosaminoglycan
component of proteoglycans (n = 4). The normalized 2 log intensity values for 30 genes (out of total 72 filtered genes) were centered to the
median value of each probe set and colored on a range of -3 to +3. Red denotes upregulated expression levels, and green denotes downregulated
expression levels as compared with the median value.
doi:10.1371/journal.pone.0008039.g006
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The pattern of upregulated genes clearly reflects an ongoing

inflammatory response, as shown by the upregulated expression

of several endothelial adhesion molecules, chemotactic proteins

and cytokines. Among the cytokines, IL-6 and IL-1 were

upregulated to the largest extent, and this was also reflected by

a strong induction of the IL-1 receptor. Marked upregulation of

IL-18 and IL-33 was also evident. Notably, IL-1, IL-18 and IL-

33 are closely related cytokines, sharing structural and functional

properties and, in addition, they are all activated by a caspase-1/

inflammasome-dependent pathway [40]. We may thus suggest

that activation of the inflammasome constitutes a major pathway

for driving the inflammation seen in diseased animals. Given the

wide implication of TNF during the host response to a plethora

of pathogens, it was expected that pyometra would be associated

with robust upregulation of TNF. However, the TNF gene was

only marginally (,1.5-fold) upregulated, not even reaching

statistical significance. Most likely, this apparent paradox may

reflect that the samples were taken from animals that had

reached a late stage of disease, a stage where the initial rise in

TNF levels during the early phase of infection may have

declined. Following this, targeting of TNF may not constitute the

most optimal regimen for therapy and, indeed, clinical trials for

sepsis in which TNF was targeted have shown limited success

(discussed in [36]).

As judged from the present study, a major feature of uterine

infection is the upregulated expression of a large panel of

proteases. In particular, there was a profound upregulation of

various MMP members implicated in extracellular matrix (ECM)

and chemokine [41] turnover, including collagenases (MMP-1,

MMP-13), MMP-9 and MMP-7. We also note a robust

upregulation of several caspases, a family of cysteine proteases

strongly implicated in apoptotic processes, but also in a variety of

other settings such as cancer and inflammation [42]. Out of the

caspases, the most dramatic upregulation was seen for caspase-4,

an ‘‘inflammatory’’ caspase that has been shown to promote

nuclear factor kappa B (NF-kB) signaling and production of pro-

inflammatory chemokines [43]. Also caspase-8 was upregulated.

Caspase-8 is widely implicated in apoptosis but may also

contribute to NF-kB activation through TLR4 [44]. Hence, its

robust upregulation during uterine infection is in clear agreement

Figure 7. Heat map showing downregulated expression of homeobox genes in uteri from control animals and animals with
pyometra (n = 4). The normalized 2 log intensity values for 50 homeobox genes (out of 176) were centered to the median value of each probe set
and colored on a range of 23 to +3. Red denotes upregulated expression levels, and green denotes downregulated expression levels as compared
with the median value.
doi:10.1371/journal.pone.0008039.g007
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with activation of the NF-kB pathway. Interestingly, strong

upregulation was also seen for caspase-12, a protease that was

recently shown to downregulate NF-kB signaling, thereby

dampening the production of antibacterial peptides [45]. Hence,

the uterine infection is associated with caspases capable of both

promoting and dampening NF-kB-mediated effects on the

immune system.

Uterine infection also caused a strong induction of several

cysteine cathepsins. Traditionally, cystein cathepsins are mostly

known as lysosomal enzymes involved in intracellular degradation

processes. However, more recent data have revealed a much wider

repertoire of functions, extending from roles in apoptosis to roles

in cancer progression, wound healing and also in inflammatory

disorders [46]. The present report thus indicates that cysteine

cathepsin induction is a prominent feature of bacterial uterine

infection. The uterine infection was also associated with a marked

upregulation of several ADAM and ADAMTS metalloproteases,

primarily ADAMTS2, ADAMTS5, ADAMDEC1 and ADAM28.

Previous studies have implicated ADAMTS proteases mainly in

ECM turnover and in regulation of angiogenesis [47] and the

present report thus introduces the possibility that certain members

of this protease family participate in bacterial disease. Members of

the ADAM family have previously been implicated in a variety of

disorders, such as asthma, cancer and autoimmune disease [48],

but we are not aware of any previous in vivo evidence suggesting

an involvement of any of the ADAM proteases in bacterial disease.

Since uncontrolled activation of proteolytic pathways may be

harmful, it is critical that proteolytic activities are in balance with

corresponding inhibitors. Indeed, a major finding in this study was

the strong upregulation of various protease inhibitors. Strikingly,

out of all upregulated genes, the gene coding for SLPI showed the

highest extent of upregulation (,340-fold). SLPI is an inhibitor of

neutrophil elastase and its dramatic upregulation thus indicates

that control of elastase activity is an important feature of the

uterine infection. This notion is also supported by the strong

upregulation of another elastase inhibitor, SKALP (24-fold). There

was also a robust upregulation of MMP inhibitors, TIMP-1 and -2.

In addition, a number of serine protease inhibitors of serpin type

Figure 8. Heat map showing downregulated expression of zinc finger protein genes in uteri from control animals and animals with
pyometra (n = 4). The normalized 2 log intensity values for 50 zinc finger genes (out of 489) were centered to the median value of each probe set
and colored on a range of 23 to +3. Red denotes upregulated expression levels, and green denotes downregulated expression levels as compared
with the median value.
doi:10.1371/journal.pone.0008039.g008
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were induced. Out of these, plasminogen activator inhibitor 1

(PAI-1) showed the largest degree of upregulation and, notably,

this was matched by a strong upregulation of the corresponding

target, i.e. urokinase-type plasminogen activator.

SRGN, i.e. the gene coding for the core protein of serglycin

proteoglycan, was one of the genes showing the largest extent of

upregulation in diseased uteri. Serglycin has previously been

shown to be critical for maintaining storage of secretory granule

proteases in such cells [49] and the upregulated SRGN expression

in diseased uteri may therefore be in line with the induction of

proteolytic activities. Notably, mice lacking serglycin were

previously shown to be more susceptible to Klebsiella infection

than were wild type animals [50]. The present data thus support a

prominent role for serglycin proteoglycan in host defense and also

introduce the possibility to utilize serglycin as a biomarker for

infection.

The massive downregulation of a number of homeobox and

zinc finger genes during uterine infection is intriguing. Homeobox

transcription factors have been widely implicated mainly in

embryonal development and in cancer [18,51] and the data

presented here thus expand their repertoire of functions by

implicating them in bacterial disease. Although we cannot with

certainty explain why the homeobox genes are downregulated

during disease, we may speculate that homeobox genes, during

homeostatic conditions, have a role in suppressing pro-inflamma-

tory pathways, and that downregulated expression of homeobox

genes may unleash inflammatory cascades. In agreement with such

a scenario, it has been shown that HOXA9 inhibits NF-kB-

dependent activation of endothelium [52] and that mice with a

reduced expression of Cdx2 are hypersensitive to dextran sodium

sulfate-induced acute inflammation [53]. It is also of interest to

note that a homeobox gene, TSHZ1 (teashirt), has previously been

shown to inhibit caspase-4 gene expression [54]. Thus, the robust

upregulation of caspase-4 in diseased animals (Table 3) is clearly

compatible with the decreased expression of homeobox factors.

There is also evidence suggesting that certain zinc finger proteins

may have a homeostatic function by repressing pro-inflammatory

responses, including suppression of the NF-kB pathway [55,56].

Moreover, a recent study indicated that genes involved in zinc-

related biology were downregulated during pediatric septic shock

[39].

An obvious extension of the present work will be to evaluate

whether any of the identified upregulated genes can be utilized

either as biomarkers for disease or as therapeutic targets.

Moreover, it will be important to address whether the respective

identified gene product is specifically associated with uterine

bacterial infection or if its upregulation is a general consequence of

bacterial insult. We believe that the results presented here may

provide a basis for numerous future investigations where the

usefulness of the candidate genes/gene products identified are

evaluated in both canine and corresponding human disease.

Supporting Information

Table S1 Primers used in qPCR. Primers were designed for

qPCR using the software Primer Express Version 1.0 O or Primer-

BLAST, NCBI.

Found at: doi:10.1371/journal.pone.0008039.s001 (0.06 MB

DOC)

Table S2 Haematological-, biochemical-, acute phase protein-

and inflammatory parameters in 4 female dogs with bacterial

uterine infection (pyometra) and 4 healthy control dogs subjected

to Affymetrix gene chip analysis.

Found at: doi:10.1371/journal.pone.0008039.s002 (0.09 MB

DOC)

Table S3 All genes showing significant (adj p,0.05) and more

than 2-fold upregulation, in comparison with healthy controls, in

uteri from animals diagnosed with uterine bacterial infection.

Found at: doi:10.1371/journal.pone.0008039.s003 (1.23 MB

DOC)

Table S4 All genes showing significant (adj p,0.05) and more

than 2-fold downregulation, in comparison with healthy controls,

in uteri from animals diagnosed with uterine bacterial infection

Found at: doi:10.1371/journal.pone.0008039.s004 (0.88 MB

DOC)

Figure S1 Histology of uteri from control (A) dogs and dogs

diagnosed with uterine bacterial infection (pyometra; B). Note the

extensive infiltration of mononuclear cells in infected animals, as

well as the extensive loss of tissue organization.

Found at: doi:10.1371/journal.pone.0008039.s005 (0.34 MB TIF)

Figure S2 Unsupervised clustering of gene expression in uteri

from control animals and animal diagnosed with uterine bacterial

infection (pyometra), data derived from the Affymetrix Canine

Genome 2.0 Array.

Found at: doi:10.1371/journal.pone.0008039.s006 (0.05 MB TIF)
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