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ABSTRACT: For the first time, sigma (σ)- and lone-pair (lp)-hole site-based interactions of SF4
and SeF4 molecules in seesaw geometry with NH3 and FH Lewis bases were herein comparatively
investigated. The obtained findings from the electrostatic potential analysis outlined the emergence
of sundry holes on the molecular entity of the SF4 and SeF4 molecules, dubbed the σ- and lp-holes.
The energetic viewpoint announced splendid negative binding energy values for σ-hole site-based
interactions succeeded by lp-hole analogues, which were found to be −9.21 and −0.50 kcal/mol,
respectively, for SeF4···NH3 complex as a case study. Conspicuously, a proper concurrence between
the strength of chalcogen σ-hole site-based interactions and the chalcogen’s atomic size was
obtained, whereas a reverse pattern was proclaimed for the lp−hole counterparts. Further, a higher
preference for the YF4···NH3 complexes with elevated negative binding energy was promulgated over
the YF4···FH ones, indicating the eminent role of Lewis basicity. The indications of the quantum
theory of atoms in molecules generally asserted the closed-shell nature of all the considered
interactions. The observation of symmetry-adapted perturbation theory revealed the substantial
contributing role of the electrostatic forces beyond the occurrence of σ-hole site-based interactions. In comparison, the dispersion
forces were specified to govern the lp−hole counterparts. Such emerging findings would be a gate for the fruitful forthcoming
applications of chalcogen bonding interactions in crystal engineering and biological systems.

1. INTRODUCTION
The electrostatic hole term was principally defined to be a
region with scanty electron density over the surface of a
chemical system.1 In this respect, the emanating interactions of
this electron-deficient region with the upcoming nucleophile
were accordingly coined as “hole interactions”.1−4 These
interactions embraced superior attention as an upshot to their
prevalent contributions in a multitude of fields, including
ligand−acceptor interactions,5,6 materials science,7−9 anion
recognition,10 supramolecular chemistry,11−13 and drug
discovery.14,15

Chiefly, the hole sites were dissected into four categories on
the ground of the covalent orbital origin. In detail, the σ-hole
was illustrated to be an electron-deficient site located opposite
to the covalent bond.2,16 Apparently, π-hole was announced to
describe a perpendicular electron-deficient portion to a planar
skeleton of a molecular system.17−20 Afterward, lone-pair (lp)
hole was launched to be in the mirror to the lp position.21−23

Recently, radical (R•) hole was found in an opposite direction
to the single electron (R•).24 The electrophilic character of
such holes enabled group IV−VIII elements to form spurious
interactions with Lewis bases (LBs), dubbed as tetrel,25−27

pnicogen,28−33 chalcogen,34−39 halogen,40−44 and aerogen45−47

bonds, respectively.

A literature survey unveiled that manifold hole types could
be simultaneously detected over the molecular entity of
individual molecules, either on the same atom or different
atoms over the molecular entity, regardless of the deformation
effect. Despite announcing the presence of numerous holes
over the entity of different atoms,24,48−53 the researchers
triggered a precise inspection toward investigating the
characteristics of sundry hole interactions over the surface of
the same atom. Illustratively, the σ- and π-holes were
thoroughly divulged over the aerogen atom of the KrF2O
and XeF2O molecules.54,55 Whereas in the case of the ZF3 (i.e.,
Z = N and P)56 and XeO3

57 molecules, σ- and lp-holes were
comparatively inspected on the same atom. On the other hand,
several studies demonstrated the opulent effect of the
geometrical deformation on the σ-hole-containing molecules,
which enabled the emergence of π-hole as in the case of
ZF2C6H5 (Z = P, As, Sb, Bi),58 TF4 (T = Si, Ge, Sn, Pb),59 and
YF4 (Y = S, Se, Te, Po)60 molecular systems. The obtained
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affirmations from those studies documented the higher
preferentiality of σ-hole over the surface of the molecular
systems to engage in interactions with LBs than other holes,
either π-hole or lp-hole. However, the existence of lp-hole
interactions within the seesaw geometry has not been
elucidated yet. Accordingly, this research would evaluate a
critical view of how receptive YF4 molecules in seesaw
geometry engage in chalcogen σ- and lp-hole site-based
interactions with LB. In turn, the desired interactions were
investigated in the fashion of YF4···LB (where Y = S and Se;
LB = NH3 and FH) complexes (see Figure 1). The emanating

findings within the presented work are intended to remove the
mystery beyond the chalcogens’ interaction origin and
accordingly facilitate their analogue applications in organic
chemistry, crystal engineering, and biological systems.

2. COMPUTATIONAL METHOD
The propensity of YF4 molecules (i.e., Y = S and Se) within the
seesaw molecular geometry to be appealingly engaged in
chalcogen σ- and lp-hole site-based interactions was minutely
scrutinized and separately compared. In this vein, all the
utilized chemical systems were geometrically optimized via the
MP2/aug-cc-pVTZ level of theory other than the Se atom. The
relativistic effects were considered for the latter atom using the
pseudopotentials (PPs).61−64 To locate sites that are likely to
be either nucleophilic or electrophilic, the electrostatic
potential (EP) analyses were implemented by generating
molecular EP (MEP) maps. The surface EP extrema (Vσ,max/
Vlp,max/Vs,min) values were afterward extracted. The 0.002 au
electron density value was employed to perform EP
calculations based on the earlier suggestions that confirmed
its efficiency in representing the electron density distribution of
the chemical systems.65

To electrostatically investigate to what extent the SF4 and
SeF4 molecules could favorably form chalcogen σ−66−68 and
lp−hole56 site-based interactions, the point-of-charge (PoC)
approach was fulfilled. Thus, the Lewis basicity effect was
inspected by employing PoCs of −0.25 and −0.50 au on the
SF4 and SeF4 monomers through three different sites, namely
the σ- and lp-holes. In accordance, the enumerated
stabilization energy (Estabilization) was quantified within the
chalcogen σ- and lp-hole···PoC distance scope of 2.5−5.0 Å
through a 0.1 Å step size using the following equation56,67,69

= ···E E

E

stabilization and lp hole bearing molecule PoC

and lp hole bearing molecule (1)

The potential energy surface (PES) scan was applied to
explicate the propensity of YF4 molecules toward forming
chalcogen σ- and lp-hole site-based interactions with the NH3
and FH LBs. In this context, the optimized monomers were
directed in three different orientations without permitting the
distortion of the interacting monomers (see Figure 1). In the
PES scan, the binding energy of YF4···LB complexes was
evaluated at the MP2/aug-cc-pVTZ(PP) level of theory via
chalcogen σ- and lp-hole···LB distance scope ranged from 2.5
to 5.0 Å through a 0.1 Å step size. The binding energy of the
considered complexes was evaluated as a result of the
complex’s energy minus the algebraic sum of the optimized
monomers’ energies. The counterpoise correction (CP)
method was applied to eradicate the basis set superposition
error (BSSE) from the obtained binding energies.70 Bench-
marking at the CCSD(T)/CBS level of theory was considered
for the computed EMP2/aug‑cc‑pVTZ(PP) of the investigated
complexes through the posterior equation.71

= +E E ECCSD(T)/CBS MP2/CBS CCSD(T) (2)

where

=E E

E

(64

27 )/37

MP2/CBS MP2/aug cc pVQZ(PP)

MP2/aug cc pVTZ(PP) (3)

=E E

E

CCSD(T) CCSD(T)/aug cc pVDZ(PP)

MP2/aug cc pVDZ(PP) (4)

In eqs 2−4, the MP2/aug-cc-pVQZ(PP), MP2/aug-cc-
pVDZ(PP), and CCSD(T)/aug-cc-pVDZ(PP) levels of theory
were employed to assess the EMP2/aug ‑cc ‑pVQZ(PP) ,
EMP2/aug‑cc‑pVDZ(PP), and ECCSD(T)/aug‑cc‑pVDZ(PP), respectively.
In order to offer descriptive insight into the bonding

characteristics of the scouted complexes, the quantum theory
of atoms in molecules (QTAIM),72 along with the noncovalent
interaction (NCI) index, were introduced.73 Gaussian 09
software was utilized in order to accomplish all computa-
tions.74 The analyses of EP, QTAIM, and NCI were performed
with the help of Multiwfn 3.7 software.75 The QTAIM
schemes and NCI plots were conceived using the Visual
Molecular Dynamics (VMD) program.76 All the executed
quantum mechanical computations were carried out using the
MP2/aug-cc-pVTZ(PP) level of theory.
To quantitatively clarify the nature of the scouted

interactions for the explored complexes, the symmetry-adapted
perturbation theory (SAPT) was fulfilled.77 In this spirit, total
energy (ESAPT2) was computed via eq 5,78 in which it was

Figure 1. Graphical representation for (a) the PoC calculations for
the YF4 molecules (where Y = S and Se) and (b) the PES scan for the
scouted chalcogen σ- and lp-hole site-based interactions in the fashion
of YF4···LB (where LB = NH3 and FH) complexes.
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dissected into its constituent parts, namely dispersion (Edisp),
exchange (Eexch), induction (Eind), and electrostatic (Eelst),
terms. The SAPT2 level of truncation incorporating the aug-
cc-pVTZ basis set was employed using the PSI4 code.79

= + + +E E E E ESAPT2 elst ind disp exch (5)

where

= +E E Eelst elst
(10)

elst,r
(12)

(6)

= + + + +E E E E E Eind ind,r
(20)

exch ind,r
(20)

ind
(22)

exch ind
(22)

HF,r
(2)

(7)

= +E E Edisp disp
(20)

exch disp
(20)

(8)

= + +E E E Eexch exch
(10)

exch
(11)

exch
(12) (9)

3. RESULTS AND DISCUSSION
3.1. EP Analyses. EP was incorporated to minutely

elucidate the possible bonding sites over entities of the
chemical systems.80,81 Figure 2 displays the extracted MEP
maps accompanied by the assessed Vσ,max/Vlp,max and Vs,min
values for the YF4 and LBs, respectively.

Looking at Figure 2, various blue-colored regions with
distinct locations and sizes were observed over the molecular
entities of the SF4 and SeF4 monomers. In line with literature
relevant to the SF4 and SeF4 systems in seesaw geometry,36 the
most apparent area with a scanty electron density was
discerned along the outer surface of the Y−F bond (i.e., σ-
hole). As well, a blue-colored region was perceived in opposite
to the lp position of Y atom (i.e., lp-hole).
Comparatively, the obtained holes relevant to the YF4

molecules were found with a resurgent magnitude as follows:
lp-hole < σ-hole, for example, reputable positive EP with values

of 18.0 and 62.1 kcal/mol was detected over the lp- and σ-
holes of the SeF4 system, respectively. Further, σ-hole size was
perceived to augment synchronically to the chalcogens’ atomic
size, and vice versa was obtained for the lp-hole. Turning to the
LBs, the NH3 and FH molecules were detected with red-coded
regions surrounding their molecular structure and announced
higher preferential Vs,min upshots for the NH3 compared to FH
one, amounting to −44.1 and −19.4 kcal/mol, respectively.
3.2. PoC Calculations. Utilizing the PoC approach, the

inclination of chemical systems to electrostatically interact with
LBs via σ-,67 π-,69 and lp-holes56 was assessed. In this context,
the chalcogen σ- and lp-hole···PoC distance impact was herein
accomplished using a distance ranging from 2.5 to 5.0 Å
through a 0.1 Å step size where PoC = −0.25 and −0.50 au.
Figure 3 displays the stabilization energy curves. Table 1
compiles the stabilization energy (Estabilization) computed at
chalcogen σ-, π-, and lp-hole···PoC distance of 2.5 Å.
As demonstrated in Figure 3, the obtained negative

Estabilization for all the YF4···PoC systems declared preferential
versatility of chalcogen σ- and lp-hole to electrostatically
interact with negative PoCs (i.e., LBs). Notably, the
stabilization energy curves outlined that the Estabilization was
inversely correlated with the chalcogen σ- and lp-hole···PoC
distance, respectively.
The numerical data summarized in Table 1 proclaimed that

all the YF4···PoC systems were discerned with elevated
Estabilization values as follows: lp- < σ-hole. For instance,
Estabilization values of the SeF4···PoC system at the σ- and lp-
hole···PoC under the −0.25 au PoC impact were −8.31 and
−2.74 kcal/mol, respectively. Further, the PoC energetic
upshots exposed the synchronicity of the Estabilization with
chalcogen’s atomic size for σ-hole site, whereas the reverse was
detected for the lp-hole one. Quantitatively, Estabilization values of
the SF4··· and SeF4···PoC systems at chalcogen σ-/lp-hole···
PoC, under the PoC influence of −0.25 au, were −5.49/−3.49
and −8.31/−2.74 kcal/mol, respectively. Eminently, higher
negative PoCs led to ameliorated Estabilization values, affirming
the preferable role of the Lewis basicity. For example,
Estabilization values of the SeF4···PoC system at σ-hole···PoC
under the −0.50 and −0.25 au PoCs impact were −18.39 and
−8.31 kcal/mol, respectively.
3.3. PES Scan. The PES scan was herein applied in order to

provide an energetic assessment for chalcogen σ- and lp-hole
site-based interactions of SF4 and SeF4 molecules in the seesaw
geometrical structure with the NH3 and FH LBs. Accordingly,
binding energy was computed for the YF4···LB complexes at
chalcogen σ- and lp-hole···LB distance ranging from 2.5 to 5.0
Å through a 0.1 Å step size. The PES scan graphs of YF4···
NH3/FH complexes were generated and are illustrated in
Figure 4. Upon the most proficient distances, binding energy
was benchmarked at the CCSD/CBS level of theory for the
investigated complexes. Table 2 gathers the computed binding
energy at all the studied levels of theories for the complexes
under study.
All the YF4···LB complexes exhibited preferential negative

values of binding energy with disparate preferability (see
Figure 4). This finding declared the propensity of the SF4 and
SeF4 molecules to preferentially engage in the previously
documented σ-hole site-based interactions,36 along with the
unconventional lp-hole analogues.
With respect to the σ-hole site-based interaction, binding

energy was perceived to be enhanced synchronically to the σ-
hole size of the S and Se atoms, which aligned with the anterior

Figure 2. MEP maps of the σ- and lp-holes over the surface of the YF4
molecules (where Y = S and Se) along with the NH3 and FH LBs.
The EP aligned in the +0.01 au (blue) and −0.01 au (red) ambit. The
Vσ,max/Vlp,max/Vs,min values are in kcal/mol.
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studies.36 Illustratively, paramount negative EMP2/aug‑cc‑pVTZ(PP)
values of −5.38 and −9.21 kcal/mol were denoted for the
SF4··· and SeF4···NH3 complexes, respectively. On the
contrary, for the lp-hole site-based interactions, the energetic
observations announced superior binding energies for the
sulfur-bearing complexes than the selenium-bearing ones,
alluding to the lp-hole size. For instance, concerning the
SF4··· and SeF4···NH3 complexes, EMP2/aug‑cc‑pVTZ(PP) were
−0.83 and −0.50 kcal/mol versus positive EP values of 20.1
and 18.0 kcal/mol for SF4 and SeF4 molecules, respectively.

Figure 3. Stabilization energy curves for the examined YF4···PoC systems (where Y = S and Se) within chalcogen σ- and lp-hole···PoC distance
ranging from 2.5 to 5.0 Å influenced by PoCs = −0.25 and −0.50 au.

Table 1. Estabilization of the YF4···PoC Systems (Where Y = S
and Se) at Chalcogen σ- and lp-Hole···PoC Distance of 2.5
Å and PoCs = −0.25 and −0.50 au

stabilization energy (Estabilization, kcal/mol)

site PoC = −0.25 au PoC = −0.50 au

SF4 SeF4 SF4 SeF4
σ-hole −5.49 −8.31 −12.56 −18.39
lp-hole −3.49 −2.74 −9.43 −8.20

Figure 4. Binding energy curves of chalcogen σ- and lp-hole site-based interactions within YF4 ···NH3/FH complexes (where Y = S and Se)
evaluated through chalcogen σ- and lp-hole···LB distance in a range of 2.5−5.0 Å.
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Moreover, the favorability of YF4···LB complexes was shown in
the order YF4···NH3 > ···FH complexes, highlighting the
synchronicity of the inspected interactions with the obtained
results of EP analysis. As an example, EMP2/aug‑cc‑pVTZ(PP)
findings for the σ-hole site-based interactions within SeF4···
NH3/···FH complexes were −9.21/−3.00 kcal/mol along with
Vs,min results, amounting to −44.1/−19.4 kcal/mol regarding
the NH3/FH LBs, respectively.
Comparatively, for all the studied complexes, preferential

negative binding energy values were recorded for σ-hole site-
based interactions as compared to the lp-hole counterparts,
which coincide with the EP affirmations. Illustratively,
EMP2/aug‑cc‑pVTZ(PP) values for chalcogen σ-/lp-hole site-based
interactions within the SeF4···NH3 complex were −9.21/−0.50
kcal/mol against positive σ-/lp-hole EP amounts of 62.1/18.0
kcal/mol for the SeF4 monomer, respectively. Overall, the
binding energy pattern was consistent with the PoC-based
results. For instance, in lp-hole site-based interactions, the
SeF4···NH3 and ···FH complexes showed EMP2/aug‑cc‑pVTZ(PP)
values of −0.50 and −0.27 kcal/mol, which were synchronic to
Estabilization with values of the −8.20 and −2.74 kcal/mol for the
SeF4···PoC systems in the presence of −0.50 and −0.25 au,
respectively. Generally, the obtained energetic results at the
CCSD(T)/CBS level of theory proclaimed a great harmo-
nization and precision for the upshots relevant to the MP2/
aug-cc-PVTZ analog (Table 2).
3.4. QTAIM Analysis. In order to unveil the intermolecular

interaction characteristics, the QTAIM was invoked. Based on
the QTAIM perspective, the BPs and BCPs were built and are
depicted in Figure 5 for all the SF4··· and SeF4···NH3/FH
complexes. Further, the ρb, ∇2ρb, and Hb topological properties
were computed and are given in Table 3.
Regarding σ-hole site-based interactions, one BP and BCP

were noticed between the chalcogen-bearing molecules and the
corresponding LB (Figure 5). While two BPs and BCPs were
detected between the interacted species within the lp-hole site-
based interactions. These findings declared the remarkable
contributions of the fluorine atoms to the overall lp-hole site-
based interactions.
The closed shell nature of the inspected complexes was

assured by the tiny values of ρb and remarkable values of ∇2ρb
and Hb with a positive sign, except for the SeF4···NH3 complex.
Negative Hb values were denoted for the latter complex,
accentuating its partially covalent nature. The ρb, ∇2ρb, and Hb
trends were consistently synchronic with the binding energy
values. Illustratively, for σ-hole site-based interactions, the ρb

was found with values of 0.0201 and 0.0298 au (see Table 3)
accompanied by EMP2/aug‑cc‑pVTZ(PP) amounting to −5.38 and
−9.21, kcal/mol for the SF4··· and SeF4···NH3 complexes,
respectively.
3.5. NCI Analysis. NCI index was fulfilled to pictorially

identify the nature of the interactions under inspection in a
thoroughly descriptive way. In this vein, 2D reduced density
gradient and 3D NCI plots were constructed to three-
dimensionally illuminate whether the forces beyond the
deemed complexes were attractive or repulsive force ones.
NCI plots were perceived and are depicted for the SF4··· and
SeF4···NH3/FH complexes in Figure 6.

Table 2. Binding Energies Calculated at the MP2/aug-cc-pVTZ(PP) and CCSD(T)/CBS for the Chalcogen σ- and lp-Hole
Site-Based Interactions within the YF4···NH3/FH Complexes (Where Y = S and Se) at the Most Proficient Chalcogen σ- and
lp-Hole···Lewis Bases Distance (in Å)

complex distance (Å)a EMP2/aug‑cc‑pVTZ(PP) (kcal/mol) ECCSD(T)/CBS (kcal/mol)

σ-hole site-based interactions
SF4···NH3 2.87 −5.38 −5.50
SeF4···NH3 2.72 −9.21 −9.58
SF4···FH 3.00 −1.91 −2.07
SeF4···FH 2.94 −3.00 −3.29

lp-hole site-based interactions
SF4···NH3 4.16 −0.83 −0.97
SeF4···NH3 4.23 −0.50 −0.64
SF4···FH 3.80 −0.59 −0.68
SeF4···FH 3.91 −0.27 −0.38

aThe most proficient distance was determined according to the binding energy curves presented in Figure 4.

Figure 5. QTAIM diagrams for chalcogen σ- and lp-hole site-based
interactions within the YF4··· NH3/FH complexes (where Y = S and
Se).

Table 3. ρb, ∇2ρb, and Hb Topological Parameters at BCPs
for the Chalcogen σ- and lp-Hole Site-Based Interactions
within the YF4···NH3/FH Complexes (Where Y = S and Se)

complex ρb (au) ∇2ρb (au) Hb (au)

σ-hole site-based interactions
SF4···NH3 0.0201 0.0546 0.0006
SeF4···NH3 0.0298 0.0685 −0.0013
SF4···FH 0.0082 0.0378 0.0018
SeF4···FH 0.0105 0.0461 0.0019

lp-hole site-based interactions
SF4···NH3 0.0036 0.0129 0.0007
SeF4···NH3 0.0035 0.0123 0.0006
SF4···FH 0.0035 0.0179 0.0010
SeF4···FH 0.0032 0.0160 0.0008
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Looking at Figure 6, 2D NCI plots displayed a clear shifting
in the spikes toward negative sign(λ2)ρ values for all the
examined complexes, affirming the existence of attractive forces

among the interacting species. Moreover, the green 3D NCI
plots between the YF4 molecules and the studied LBs
conspicuously asserted the preferential attractive interactions

Figure 6. 2D and 3D NCI diagrams for chalcogen σ- and lp-hole site-based interactions within YF4···NH3/FH complexes (where Y = S and Se).
The 2D plot isosurfaces are created using a value of 0.50 au. 3D NCI isosurfaces are mapped with a color scale ranging from blue to red depending
on the (λ2)ρ sign between −0.035 and 0.020 au, respectively.

Table 4. Eelst, Edisp, Eind, and Eexch, and ESAPT2 for the Chalcogen σ- and lp-Hole Site-Based Interactions within YF4···NH3/FH
Complexes (Where Y = S and Se) with σ- and lp-hole···LB Most Proficient Distance

complex Eelst (kcal/mol) Edisp (kcal/mol) Eind (kcal/mol) Eexch (kcal/mol) ESAPT2 (kcal/mol)
a ΔΔEb

σ-hole site-based interactions
SF4···NH3 −11.94 −4.10 −3.92 13.79 −6.17 0.79
SeF4···NH3 −19.51 −5.84 −8.28 23.54 −10.08 0.87
SF4···FH −2.23 −1.40 −0.54 2.15 −2.03 0.12
SeF4···FH −3.61 −1.72 −1.00 3.27 −3.06 0.06

lp-hole site-based interactions
SF4···NH3 −1.06 −1.02 −0.21 1.35 −0.94 0.11
SeF4···NH3 −0.64 −1.04 −0.21 1.29 −0.60 0.10
SF4···FH −0.39 −0.77 −0.10 0.66 −0.60 0.01
SeF4···FH −0.04 −0.73 −0.10 0.57 −0.29 0.02

aESAPT2 = Eelst + Edisp + Eind + Eexch.
bΔΔE = EMP2/aug‑cc‑pVTZ(PP) − ESAPT2.
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within the chalcogen σ- and lp-hole bearing complexes.
Remarkably, the SeF4···NH3 complex announced a partially
covalent nature, which was demonstrated through a blue-
colored isosurfaces domain. Outstandingly, the variable-in-size
green isosurfaces were denoted to be resurgent in the following
sequence lp- < σ-hole site-based interactions, which was in line
with the binding energy pattern. Concerning lp-hole site-based
interactions, NCI plots supported the QTAIM claims, which
declared the outstanding fluorine atoms’ contributions (i.e.,
substituents) to the interactions within all the considered
complexes.
3.6. SAPT Analysis. SAPT was herein devoted for a minute

elucidation to the chalcogen σ- and lp-hole-based interactions’
nature through subcategorizing the physical components of
such interactions. In this regard, the energetic SAPT2 terms of
SF4··· and SeF4···NH3/FH complexes are compiled in Table 4
and outlined in Figure 7.

The energetic components displayed in Figure 7 announced
that Eelst, Edisp, and Eind forces introduced an exemplary
contribution to all chalcogen σ- and lp-hole site-based
interactions within all investigated YF4···LB complexes, while
the positive values of Eexch forces demonstrated their
undesirable influence on all interactions’ strength.
Upon the registered data in Table 4, regarding σ-hole site-

based interactions, SAPT upshots announced the substantial
contributions of the Eelst followed by Edisp and then Eind forces
for all investigated complexes. This could be interpreted as a
result of the attractive electrostatic interactions between the
positively charged area on the chalcogen atom and the negative
clouds existing on the molecular surface of LBs. Numerically,
in the case of the σ-hole site-based interaction within the
SeF4···NH3 complex, the Eelst, Edisp, and Eind energies were
−11.94, −4.10, and −3.92 kcal/mol, respectively.
In comparison, regarding the lp-hole site-based interactions,

the SAPT components were generally dominated in the order;
Edisp > Eelst > Eind forces, respectively. For instance, Edisp/Eelst/
Eind were −1.04/−0.64/−0.21 kcal/mol, for lp-hole site-based
interactions within the SeF4···NH3 complex. The exactitude of
the adopted SAPT calculations was established via nominal

energy difference (ΔΔE values) between the EMP2/aug‑cc‑pVTZ(PP)
and SAPT2 energies. Generally, the negative energetic
components (i.e., Eelst, Edisp, and Eind) coincided with the
binding energy pattern. Illustratively, for σ-hole site-based
interactions, Eelst values were −19.51 and −3.61 kcal/mol
accompanied with EMP2/aug‑cc‑pVTZ(PP) values of −9.21 and
−3.00 kcal/mol for the SeF4···NH3 and ···FH complexes.

4. CONCLUSIONS
In the current work, the potentiality of the YF4 molecules (i.e.,
Y = S and Se) within the seesaw molecular geometry to engage
in chalcogen σ- and lp-hole site-based interactions with NH3
and FH LBs was thoroughly disclosed. Conspicuously, the EP
affirmations proclaimed the existence of σ- and lp-holes over
the SF4 and SeF4 molecular entities. The energetic viewpoint
declared more favorable binding energy values for the σ-hole
site-based interactions than lp-hole ones within all inspected
complexes. Moreover, the binding energy showed a parallel
pattern to the chalcogens’ atomic size within the σ-hole site-
based interactions; however, a reverse concatenation was
perceived for the lp-hole counterparts. The closed-shell nature
of the studied interactions was assured via the QTAIM and
NCI observations, except for the σ-hole site-based interaction
within the SeF4···NH3 complex. Such σ-hole site-based
interaction within the latter complex was disclosed with a
partially covalent character. SAPT upshots accentuated that the
Eelst was the main driving force for σ- hole site-based
interactions, whilst the Edisp forces generally controlled the
lp-hole ones. These findings would be the linchpin for future
crystal engineering and biological system applications.
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