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Forecasting admissions 
in psychiatric hospitals 
before and during Covid‑19: 
a retrospective study with routine 
data
J. Wolff 1,2*, A. Klimke3,4, M. Marschollek1 & T. Kacprowski5,6

The COVID‑19 pandemic has strong effects on most health care systems. Forecasting of admissions 
can help for the efficient organisation of hospital care. We aimed to forecast the number of admissions 
to psychiatric hospitals before and during the COVID‑19 pandemic and we compared the performance 
of machine learning models and time series models. This would eventually allow to support timely 
resource allocation for optimal treatment of patients. We used admission data from 9 psychiatric 
hospitals in Germany between 2017 and 2020. We compared machine learning models with time 
series models in weekly, monthly and yearly forecasting before and during the COVID‑19 pandemic. 
A total of 90,686 admissions were analysed. The models explained up to 90% of variance in hospital 
admissions in 2019 and 75% in 2020 with the effects of the COVID‑19 pandemic. The best models 
substantially outperformed a one‑step seasonal naïve forecast (seasonal mean absolute scaled error 
(sMASE) 2019: 0.59, 2020: 0.76). The best model in 2019 was a machine learning model (elastic net, 
mean absolute error (MAE): 7.25). The best model in 2020 was a time series model (exponential 
smoothing state space model with Box‑Cox transformation, ARMA errors and trend and seasonal 
components, MAE: 10.44). Models forecasting admissions one week in advance did not perform 
better than monthly and yearly models in 2019 but they did in 2020. The most important features 
for the machine learning models were calendrical variables. Model performance did not vary much 
between different modelling approaches before the COVID‑19 pandemic and established forecasts 
were substantially better than one‑step seasonal naïve forecasts. However, weekly time series models 
adjusted quicker to the COVID‑19 related shock effects. In practice, multiple individual forecast 
horizons could be used simultaneously, such as a yearly model to achieve early forecasts for a long 
planning period and weekly models to adjust quicker to sudden changes.

Abbreviations
ARIMA  Autoregressive integrated moving average
ETS  Exponential smoothing state space models
ICU  Intensive care unit
IQR  Interquartile range
MAE  Mean absolute error
PROPHET  Additive models with non-linear trends fitted by seasonal effects
RMSE  Root-mean- squared-error
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sMASE  Seasonal mean absolute scaled error
SVM  Support vector machines
TBATS  Exponential smoothing state space models with screening for Box-Cox transformation, ARMA 

errors and trend and seasonal components
XGB  Gradient boosting with trees

Health care systems need to balance potentially unlimited demand for services with scarce health care  resources1. 
This balance might become even more difficult in the future due to an aging population that leads to increased 
demand for health care services and reduced medical work  force2. Hospitals often consume a large part of total 
health care  budgets3. A possible way to mitigate resource constraints in hospitals is the use of modern technolo-
gies to make services more cost-effective4. For instance, the increasing availability of data allows to support 
medical decision making in hospitals with information derived from machine learning  algorithms5,6.

Efficient resource allocation in hospitals requires the management of volatile demand and available resources. 
This management is more critical in hospitals than in other areas since lack of timely and sufficient services can 
lead to negative patient  outcomes7. Insufficient staff can lead to increased morbidity and  mortality8,9. Due to the 
shortage of trained medical staff in many health care systems, securing sufficient medical staff to permanently 
meet patient needs becomes a critical  objective10. Inpatient mental health care is more staff intensive than other 
medical disciplines due to the personal nature of many  interventions11,12.

The Covid-19 pandemic has strong effects on most health care systems and individual services  providers13. 
A sudden surge in patients requiring intensive respiratory care and the possible shortage of ICU capacities led 
to political supply side interventions in many health care  systems14. In Hesse, Germany, somatic and psychiatric 
hospitals were required to restrict new admissions to urgent care cases and avoid elective patients from 16th 
March 2020. Furthermore, new hospital hygiene regulations and the requirement to quarantine patients reduced 
hospital capacities.

Forecasting of admissions can help for the efficient organisation of hospital care and for the adjustment of 
resources to sudden changes in patient volumes. The demand for health care services is usually relatively stable. 
Several recent studies have compared methods to forecast the spread of the Covid-19  pandemic15,16. However, 
there is still a lack of evidence considering the appropriate accounting for external shocks, which might be 
impossible to be directly and prospectively accounted for in modelling approaches, in forecasting hospital service 
volumes. Therefore, we aimed to forecast the number of admissions to psychiatric hospitals before and during the 
COVID-19 pandemic and we compared the performance of machine learning models and time series models.

Methods
Data. We included all inpatient admissions from 01 January 2017 to 31 December 2020 to nine hospitals 
in Hesse, Germany. These hospitals are part of a common service provider and account for about half of all 
inpatient mental health care in the state of Hesse. Aggregated admission numbers per day were obtained from 
the hospital administrations and did not contain individual patient data. Returns after planned interruptions, 
such as home leave, were excluded. Multiple separate admissions of the same patient were counted individually. 
Admissions to the departments of child and adolescent psychiatry and admissions to the departments for psy-
chosomatic medicine were excluded.

We obtained weather and climate data from the Climate Data Centre of Germany’s National Meteorological 
 Service17. We used the gtrendsR package version 1.5.1 to query Google trend data for Hesse,  Germany18. School 
holidays and public holidays were obtained from publicly available calendars.

Analyses. We used machine learning and time series models to predict the number of hospital admissions 
for each day of year 2019 and 2020. The machine learning models were (a) gradient boosting with trees (XGB)19, 
(b) support vector machines (SVM)20 and (c) elastic  nets21. The time series models were a) exponential smooth-
ing state space models (ETS)22, (b) exponential smoothing state space models with screening for Box-Cox trans-
formation, ARMA errors and trend and seasonal components (TBATS)23 and (c) additive models with non-
linear trends fitted by seasonal effects (PROPHET)24. The selection of modelling approaches was based on their 
performance in previous research and cannot be exhaustive. However, several other examples were successfully 
used for forecasting in the corona context and might be relevant to the interested  reader16,25,26. We compared 
models forecasting a week in advance, a month in advance and a whole year one week in advance.

Features. Our machine learning model used calendrical variables, climate and weather data, google trend 
data, Fourier terms and lagged number of admissions as features. All features are provided with a detailed expla-
nation in Table S1. The calendrical features were day of day of the week, weekend, public holiday, school holiday, 
quarter of the year, month of the year, bridge days, i.e. days between a public holiday and the weekend and the 
end of the year, i.e. the days between Christmas and new year’s eve. The climate and weather data were wind 
speed, cloudiness, air pressure, precipitation depth and type, duration of sunshine, snow height, air temperature 
and humidity. Since the weather of future days was unknown at the point of prediction we used lagged values, 
i.e. the weekly model used the weather 7 days before the predicted day and the monthly models used the weather 
data 28 days before the predicted day. We did not use weather data for the yearly model.

Google trend data were retrieved using the gtrendsR  package18 in the R environment for statistical 
 computing27. We used the German translations of the following keywords in google trend data: depression, 
sadness, sad, suicide, mania, fear, panic, dread, addiction, dependence, alcohol, drugs, schizophrenia, psychosis 
and hallucinations. The relative frequency of searches for these key words in the region of Hesse, Germany, was 
used as feature. As for the weather data, we used lagged values of google trend data. The weekly models used the 
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number of admissions 14 days before the predicted day, because the number of admissions was not known yet 
on day 7 before prediction, as additional feature and the monthly model used these values with a lag of 35. Our 
time series models did not use feature variables.

Training and testing. We used prospectively sliding time windows to validate (2018) and test (2019 and 
2020) model performance. The final weekly models predicted each day of one full week of hospital admissions 
seven days in advance. We tested one model for each week and study site in 2019 and 2020, thereby incremen-
tally prolonging the training period and forwarding the 7-day testing period each by one week. The monthly 
models each predicted 28 days of hospital admissions in advance and the incremental slides were 28 days. In the 
yearly models, we predicted the whole year of 2019 and 2020 each one week before the years started.

We compared model performance with the Root-Mean- Squared-Error (RMSE), the  R2, the Mean Absolute 
Error (MAE) and a seasonal Mean Absolute Scaled Error (sMASE) as  follows28:

The sMASE was calculated by dividing the MAE of our weekly, monthly and yearly forecasts by the MAE 
derived from a naïve forecast based on the number of admissions observed 14, 35 and 364 days before the pre-
dicted day, respectively. Variable importance was calculated for each variable in the best performing model using 
model specific metrics, i.e. in the case of elastic nets the absolute value of the coefficients after standardizing each 
feature. An advantage of model-specific metrics compared to model-agnostic measures is that they should be 
better in accounting for collinearity between  features29.

Ethics approval and consent to participate. Our study did not involve individual patient data but 
summed numbers of admissions per day. The ethics committee of the Medical School Hannover confirmed that 
our study did not require ethical oversight.

Results
The total number of admissions showed a relatively strong weekly seasonality and a yearly seasonality. Figure 1 
provides the results of a multiple seasonal decomposition of the number of daily admissions by  loess30. There 
was no strong trend in admission numbers during the first three years, until the commencement of the Corona 
hospital regulation on March 16th had a clear negative effect on the number of admissions.

Table 1 shows the forecasting performance in 2019 and in 2020 at all study sites combined. The naïve seasonal 
forecasts were based on the number of admissions 14, 35 and 364 days before the predicted day for the weekly, 
monthly and yearly models, respectively. In absolute terms, the best model in 2019 was the weekly elastic net, 
which achieved a MAE of 7.25 days and an explained variance of 90%. Compared to a naïve forecast based on the 
number of admissions two weeks in advance, this model achieved a forecast improvement of 38% (sMASE = 0.62). 
In absolute terms, the best model in 2020 was the weekly TBATS model. However, compared to the monthly 
possible naïve forecast, i.e. the number of admission 35 days in advance, the highest improvement was achieved 
with the monthly SVM.

The error accumulation in 2019 and 2020 at all study sites combined is shown in Fig. 2. While model perfor-
mance was relatively similar in 2019, errors diverged after commencement of the Corona hospital regulation on 
March 16th, 2020. Weekly time series models adjusted quicker to the new circumstances and accumulated less 
error until the end of year 2020.

The forecasting models showed variation in performance between study sites. Figure 3 shows differences in 
percentage errors between study sites per week derived from the overall best performing weekly machine learn-
ing and time-series models (see Table 1), respectively. Both models performed similar in year 2019. However, 
the elastic net caused less error peaks, for instance at easter Monday and during Christmas time because it had 
these holidays as features. In contrast, the TBATS model adjusted quicker to the corona regulations and adjusted 
to the new level of admission numbers during the rest of 2020 better than the elastic net.

Figure 4 shows the top 25 feature variables ordered by their importance in forecasting the number of admis-
sions with the elastic net, which was the best performing machine learning algorithm in our comparison. Variable 

Observation at time t = Yt

Forecast of Yt = Ft

Forecast error = et = Yt − Ft

MSE = mean
(

e2t
)

RMSE =
√
MSE

R2 = correlation(Yt , Ft)
2

MAE = mean(|et |)

sMASE =
MAE

seasonally adjusted naive MAE
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importance represents the influence of each feature on the forecast performance relative to the other  variables31. 
The strongest influence on forecast performance was found in calendrical variables.

Discussion
Key findings. We aimed to forecast the number of admissions to psychiatric hospitals before and during the 
COVID-19 pandemic and we compared the performance of machine learning models and time series models. 
This would eventually allow to support timely resource allocation for optimal treatment of patients. Model per-
formance did not vary much between different modelling approaches before the COVID-19 pandemic. Estab-
lished forecasts were substantially better than seasonal naïve forecasts. The most important features were calen-
drical variables that did not require short term adjustments in weekly and monthly models. However, weekly 
time series models adjusted quicker to the COVID-19 related shock effects than monthly and yearly models and 
the machine learning models. This is to be expected based on the theory and mechanics underlying the different 
modelling approaches, since longer forecasting horizons made the models less flexible and slower to adapt to 
radical changes, and the machine learning models, in contrast to the time series models, based their predictions 
on many data points from the past, which made them slower to adapt to radical changes.

Strength and weaknesses. A strength of our study were the data of four years from nine hospitals repre-
senting about half of all inpatient psychiatric admissions in Hesse, Germany. This allowed both to give a repre-
sentative picture of inpatient psychiatric care in Germany and to show how the forecasting approaches work at 
different study sites. Furthermore, it was possible to analyse the effect of sudden changes in hospital admissions 

Figure 1.  Multiple seasonal decomposition by loess. The y-axes show the number of days and are scaled 
differently between the facets. Loess = Locally weighted scatterplot smoothing.
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to the performance of different modelling approaches due to the commencement of the Corona hospital regula-
tion in March 2020.

A limitation of our study was the lack of data to differentiate between causes of reduced hospital admissions 
after the corona regulation came into effect in March 2020. The reduced admissions could have been a result of 
different supply side and demand side effects, such as avoidance of elective admissions, reduced capacities due 

Table 1.  Forecasting performance in 2019 and in 2020. Best values per column are in boldface. RMSE Root-
mean-squared-error, MAE Mean absolute error, sMASE Seasonal mean absolute scaled error. a The naïve 
seasonal forecasts were based on the number of admissions 14, 35 and 364 days before the predicted day for 
the weekly, monthly and yearly models, respectively.

RMSE R2 MAE sMASEa

2019 2020 2019 2020 2019 2020 2019 2020

Week

XGB 11.38 16.21 0.86 0.71 8.40 12.06 0.72 1.08

SVM 10.45 15.68 0.88 0.73 7.56 10.78 0.65 0.97

Elastic net 9.65 15.63 0.90 0.75 7.25 11.42 0.62 1.03

ETS 13.92 16.19 0.78 0.66 8.65 10.76 0.74 0.97

TBATS 14.10 15.43 0.77 0.70 8.93 10.44 0.77 0.94

PROPHET 13.54 16.13 0.79 0.68 8.81 11.03 0.76 0.99

Month

XGB 11.45 16.50 0.86 0.70 8.44 12.30 0.68 0.84

SVM 10.49 15.90 0.89 0.73 7.69 11.17 0.62 0.76

Elastic net 9.74 16.36 0.90 0.73 7.32 11.94 0.59 0.81

ETS 13.89 18.10 0.78 0.60 8.65 12.31 0.70 0.84

TBATS 14.15 18.24 0.77 0.60 9.15 12.45 0.74 0.85

PROPHET 14.18 18.41 0.77 0.59 8.91 12.38 0.72 0.84

Year

XGB 11.31 16.95 0.87 0.71 8.37 12.80 0.67 1.02

SVM 10.60 16.52 0.88 0.72 7.77 11.61 0.62 0.93

Elastic net 9.81 16.60 0.90 0.74 7.33 12.33 0.59 0.98

ETS 13.77 18.83 0.78 0.66 8.62 12.98 0.69 1.04

TBATS 13.78 18.08 0.78 0.67 8.85 12.59 0.71 1.00

PROPHET 13.80 18.83 0.78 0.68 8.63 13.42 0.69 1.07

Figure 2.  Cumulated mean absolute error in 2019 and 2020 by machine learning and time series models (days). 
XGB = Gradient boosting with trees, SVM = Support vector machines, ETS = Exponential smoothing state space 
models, TBATS = Exponential smoothing state space models with Box-Cox transformation, ARMA errors and 
trend and seasonal components, PROPHET = Additive models with non-linear trends fitted by seasonal effects.
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Figure 3.  Variation of percentage error between study sites. TBATS = Exponential smoothing state space 
models with Box-Cox transformation, ARMA errors and trend and seasonal components, IQR = Interquartile 
range.

Figure 4.  Variable importance of TOP 25 features in machine leaning models. Positive and negative effects 
represent increases and decreases in the number of admissions, respectively. Dec = December. Bridge day: Day 
between a holiday and the weekend, vice versa. Lag (14) = The number of admissions fourteen days before the 
predicted day. The Fourier series accounted to a yearly and a weekly seasonality with sine (S) and cosine (C) 
waves with an maximum order of 2 (weekly) and 5 (yearly).
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to isolation and quarantine requirements and unwillingness of patients to enter hospitals during the Corona 
crisis. Another limitation of our study was its restriction to one large German provider of inpatient mental health 
care, which requires a lot of care when translating to different healthcare systems or different clinical settings.

Comparison to previous research. Previous studies in the field of forecasting admissions in hospitals 
often focused on emergency  departments32 and there were no previous studies that analysed forecasting of psy-
chiatric hospital admission comparable to our study in scale and scope.

Vollmer et al.33 predicted admission numbers in the emergency departments of two hospitals London with 
data from 2011 to 2018. They compared machine learning models to more traditional time series models to make 
forecasts of admissions one, three and seven days in advance. The forecasts of different time horizons, i.e., one, 
three and seven days in advance, performed very similar. This is comparable to our findings of relatively similar 
results between weekly, monthly and yearly predictions, although at a different scale. In contrast to our study, 
lagged admissions from previous weeks were among the strongest predictors, probably related to the stronger 
increase and decrease of admission number levels during the study period at the different hospitals in compari-
son to our study. As in our study, Vollmer et al. also found that calendrical variables were among the features 
with the strongest influence on forecasting performance. Weather and climate data and google search data had 
a relatively low influence on forecasting performance.

Similar results were found by Boutsioli et al.34, who used a simple OLS regression to forecast hospital admis-
sions to the emergency departments of ten public hospitals in Greece. They only used the calendrical variables 
weekend, summer holiday, public holiday and the participation in emergency care in their model and explained 
a relatively high variance in hospital admissions of up to 88%.

Jones et al.35 forecasted the admission numbers at three emergency departments in the USA one, seven, 
fourteen, twenty-one and thirty days in advance. They used autoregressive integrated moving average (ARIMA) 
models, time series regression, exponential smoothing, and artificial neural network models to predict admis-
sions per day. They also found that admissions were characterised by yearly and weekly seasonality (see for 
comparison our Fig. 1). As in our study, they found a relatively low improvement in forecasting performance in 
the shorter forecasting horizons in comparison to the longer horizons. Similar to our study and to the study of 
Vollmer et al.33, weather and climate had a relatively low influence on forecasting performance.

McCoy et al.36 forecasted hospital discharge numbers at two academic medical centers in the USA. They 
compared the performance of a PROPHET model with a seasonal ARIMA model and a one-step naïve seasonal 
forecast and compared monthly models to yearly models. The best performance was achieved by a PROPHET 
model. Comparable to our study, they also found relatively low to none improvement of forecasting accuracy in 
refitting their models monthly in comparison to yearly models.

A main similarity between our study and previous studies was the relatively strong influence of calendri-
cal variables in comparison to other potential forecasting features, such as weather and google trend data. The 
finding is most likely related to the strong dependence of health care systems service patterns to the work-day/
weekend difference in service unit performance on the one hand and the relatively weak influence of other fac-
tors on actual number of admissions.

Conclusions
Accurate forecasting of hospital admissions can help for the efficient organisation of hospital care and for the 
adjustment of resources to sudden changes in patient volumes. We found a substantial improvement of fore-
casting accuracy in comparison to a seasonally adjusted naïve baseline forecast. Model performance did not 
vary much between different modelling approaches and different forecasting horizons before the COVID-19 
pandemic. However, weekly time series models adjusted quicker to the COVID-19 related shock effects. In 
practice, multiple individual forecast horizons could be used simultaneously, such as a yearly model to achieve 
early forecasts for a long planning period and weekly models to provided more precise forecasts that adjust 
quicker to sudden changes.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due data confidential-
ity by German and EU data protection regulations but could be made available in parts from the corresponding 
author on reasonable request.

Received: 14 February 2022; Accepted: 9 September 2022

References
 1. Hurst, J. Challenges for health systems in member countries of the organisation for economic co-operation and development. Bull. 

World Health Organ. 78, 751–760 (2000).
 2. Dall, T. M. et al. An aging population and growing disease burden will require alarge and specialized health care workforce by 

2025. Health Aff. 32, 2013–2020. https:// doi. org/ 10. 1377/ hltha ff. 2013. 0714 (2013).
 3. WHO. Global spending on health 2020: Weathering the storm (Geneva: World Health Organization, 2020).
 4. Ekman, B. Cost analysis of a digital health care model in sweden. PharmacoEconomics Open 2, 347–354. https:// doi. org/ 10. 1007/ 

s41669- 017- 0059-7 (2018).
 5. Wolff, J. et al. Predicting patient outcomes in psychiatric hospitals with routine data: A machine learning approach. BMC Med. 

Inform. Decis. Mak. 20, 21. https:// doi. org/ 10. 1186/ s12911- 020- 1042-2 (2020).
 6. Wolff, J. et al. Predicting the risk of drug–drug interactions in psychiatric hospitals: A retrospective longitudinal pharmacovigilance 

study. BMJ Open 11, e045276. https:// doi. org/ 10. 1136/ bmjop en- 2020- 045276 (2021).

https://doi.org/10.1377/hlthaff.2013.0714
https://doi.org/10.1007/s41669-017-0059-7
https://doi.org/10.1007/s41669-017-0059-7
https://doi.org/10.1186/s12911-020-1042-2
https://doi.org/10.1136/bmjopen-2020-045276


8

Vol:.(1234567890)

Scientific Reports |        (2022) 12:15912  | https://doi.org/10.1038/s41598-022-20190-y

www.nature.com/scientificreports/

 7. Jack, E. P. & Powers, T. L. A review and synthesis of demand management, capacity management and performance in health-care 
services. Int. J. Manag. Rev. 11, 149–174. https:// doi. org/ 10. 1111/j. 1468- 2370. 2008. 00235.x (2009).

 8. Bernstein, S. L. et al. The effect of emergency department crowding on clinically oriented outcomes. Acad. Emerg. Med. 16, 1–10. 
https:// doi. org/ 10. 1111/j. 1553- 2712. 2008. 00295.x (2009).

 9. Needleman, J. et al. Nurse-staffing levels and the quality of care in hospitals. N. Engl. J. Med. 346, 1715–1722. https:// doi. org/ 10. 
1056/ NEJMs a0122 47 (2002).

 10. Michel, J.-P. & Ecarnot, F. The shortage of skilled workers in Europe: its impact on geriatric medicine. Eur. Geriatr. Med. 11, 
345–347. https:// doi. org/ 10. 1007/ s41999- 020- 00323-0 (2020).

 11. Wolff, J. et al. Work-time distribution of physicians at a German University Hospital. Dtsch. Arztebl. Int. 114, 705–711. https:// doi. 
org/ 10. 3238/ arzte bl. 2017. 0705 (2017).

 12. Wolff, J. et al. A work time study analysing differences in resource use between psychiatric inpatients. Soc. Psychiatry Psychiatr. 
Epidemiol. 50, 1309–1315. https:// doi. org/ 10. 1007/ s00127- 015- 1041-2 (2015).

 13. Blumenthal, D. et al. Covid-19—implications for the health care system. N. Engl. J. Med. 383, 1483–1488. https:// doi. org/ 10. 1056/ 
NEJMs b2021 088 (2020).

 14. Netters, S. et al. Pandemic ICU triage challenge and medical ethics. BMJ Support. Palliat. Care 11, 133–137. https:// doi. org/ 10. 
1136/ bmjsp care- 2020- 002793 (2021).

 15. Elsheikh, A. H. et al. Artificial intelligence for forecasting the prevalence of COVID-19 pandemic: An overview. Healthcare 9, 
1614. https:// doi. org/ 10. 3390/ healt hcare 91216 14 (2021).

 16. Saba, A. I. & Elsheikh, A. H. Forecasting the prevalence of COVID-19 outbreak in Egypt using nonlinear autoregressive artificial 
neural networks. Process Saf. Environ. Prot. 141, 1–8. https:// doi. org/ 10. 1016/j. psep. 2020. 05. 029 (2020).

 17. National Meteorological Service. Climate data centre. https:// cdc. dwd. de/ portal/ (2021).
 18. Massicotte, P., Eddelbuettel, D. gtrendsR: Perform and display google trends queries. Version 1.4.8. https:// CRAN.R- proje ct. org/ 

packa ge= gtren dsR (2021).
 19. Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).
 20. Hearst, M. A. et al. Support vector machines. IEEE Intell. Syst. Appl. 13, 18–28. https:// doi. org/ 10. 1109/ 5254. 708428 (1998).
 21. Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320. https:// doi. org/ 10. 1111/j. 

1467- 9868. 2005. 00503.x (2005).
 22. Hyndman, R. J. et al. A state space framework for automatic forecasting using exponential smoothing methods. Int. J. Forecast. 

18, 439–454. https:// doi. org/ 10. 1016/ S0169- 2070(01) 00110-8 (2002).
 23. De Livera, A. M., Hyndman, R. J. & Snyder, R. D. Forecasting time series with complex seasonal patterns using exponential smooth-

ing. J. Am. Stat. Assoc. 106, 1513–1527. https:// doi. org/ 10. 1198/ jasa. 2011. tm097 71 (2011).
 24. Taylor, S. J. & Letham, B. Forecasting at scale. PeerJ https:// doi. org/ 10. 7287/ peerj. prepr ints. 3190v2 (2017).
 25. Al-qaness, M. A. A. et al. Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil. Process 

Saf. Environ. Prot. 149, 399–409. https:// doi. org/ 10. 1016/j. psep. 2020. 11. 007 (2021).
 26. Elsheikh, A. H. et al. Deep learning-based forecasting model for COVID-19 outbreak in Saudi Arabia. Process Saf. Environ. Prot. 

149, 223–233. https:// doi. org/ 10. 1016/j. psep. 2020. 10. 048 (2021).
 27. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 

https:// www.R- proje ct. org/ (2018).
 28. Hyndman, R. J. & Koehler, A. B. Another look at measures of forecast accuracy. Int. J. Forecast. 22, 679–688. https:// doi. org/ 10. 

1016/j. ijfor ecast. 2006. 03. 001 (2006).
 29. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26. https:// doi. org/ 10. 18637/ jss. v028. i05 

(2008).
 30. Cleveland, R. et al. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–37 (1990).
 31. Greenwell, B. M., Boehmke, B. C., McCarthy, A. J. A simple and effective model-based variable importance measure. 

arXiv:180504755 [cs, stat]. http:// arxiv. org/ abs/ 1805. 04755. Accessed 14 Jun 2021.
 32. Gul, M. & Celik, E. An exhaustive review and analysis on applications of statistical forecasting in hospital emergency departments. 

Health Syst. 9, 263–284. https:// doi. org/ 10. 1080/ 20476 965. 2018. 15473 48 (2020).
 33. Vollmer, M. A. C. et al. A unified machine learning approach to time series forecasting applied to demand at emergency depart-

ments. BMC Emerg. Med. 21, 9. https:// doi. org/ 10. 1186/ s12873- 020- 00395-y (2021).
 34. Boutsioli, Z. Forecasting the stochastic demand for inpatient care: The case of the Greek national health system. Health Serv. Manag. 

Res. 23, 116–120. https:// doi. org/ 10. 1258/ hsmr. 2009. 009025 (2010).
 35. Jones, S. S. et al. Forecasting daily patient volumes in the emergency department. Acad. Emerg. Med. 15, 159–170. https:// doi. org/ 

10. 1111/j. 1553- 2712. 2007. 00032.x (2008).
 36. McCoy, T. H., Pellegrini, A. M. & Perlis, R. H. Assessment of time-series machine learning methods for forecasting hospital dis-

charge volume. JAMA Netw. Open 1, e184087. https:// doi. org/ 10. 1001/ jaman etwor kopen. 2018. 4087 (2018).

Author contributions
J.W., A.K., M.M. and T.K. conceived and designed the study. J.W. analysed and interpreted the data. J.W. and 
T.K. initiated the research.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 022- 20190-y.

Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1111/j.1468-2370.2008.00235.x
https://doi.org/10.1111/j.1553-2712.2008.00295.x
https://doi.org/10.1056/NEJMsa012247
https://doi.org/10.1056/NEJMsa012247
https://doi.org/10.1007/s41999-020-00323-0
https://doi.org/10.3238/arztebl.2017.0705
https://doi.org/10.3238/arztebl.2017.0705
https://doi.org/10.1007/s00127-015-1041-2
https://doi.org/10.1056/NEJMsb2021088
https://doi.org/10.1056/NEJMsb2021088
https://doi.org/10.1136/bmjspcare-2020-002793
https://doi.org/10.1136/bmjspcare-2020-002793
https://doi.org/10.3390/healthcare9121614
https://doi.org/10.1016/j.psep.2020.05.029
https://cdc.dwd.de/portal/
https://CRAN.R-project.org/package=gtrendsR
https://CRAN.R-project.org/package=gtrendsR
https://doi.org/10.1109/5254.708428
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1016/S0169-2070(01)00110-8
https://doi.org/10.1198/jasa.2011.tm09771
https://doi.org/10.7287/peerj.preprints.3190v2
https://doi.org/10.1016/j.psep.2020.11.007
https://doi.org/10.1016/j.psep.2020.10.048
https://www.R-project.org/
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.18637/jss.v028.i05
http://arxiv.org/abs/1805.04755
https://doi.org/10.1080/20476965.2018.1547348
https://doi.org/10.1186/s12873-020-00395-y
https://doi.org/10.1258/hsmr.2009.009025
https://doi.org/10.1111/j.1553-2712.2007.00032.x
https://doi.org/10.1111/j.1553-2712.2007.00032.x
https://doi.org/10.1001/jamanetworkopen.2018.4087
https://doi.org/10.1038/s41598-022-20190-y
https://doi.org/10.1038/s41598-022-20190-y
www.nature.com/reprints


9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:15912  | https://doi.org/10.1038/s41598-022-20190-y

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	Forecasting admissions in psychiatric hospitals before and during Covid-19: a retrospective study with routine data
	Methods
	Data. 
	Analyses. 
	Features. 
	Training and testing. 
	Ethics approval and consent to participate. 

	Results
	Discussion
	Key findings. 
	Strength and weaknesses. 
	Comparison to previous research. 

	Conclusions
	References


