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This study assessed the accuracy and bias of genomic prediction (GP) in purebred
Holstein (H) and Jersey (J) as well as crossbred (H and J) validation cows using different
reference sets and prediction strategies. The reference sets were made up of different
combinations of 36,695 H and J purebreds and crossbreds. Additionally, the effect of
using different sets of marker genotypes on GP was studied (conventional panel: 50k,
custom panel enriched with, or close to, causal mutations: XT_50k, and conventional
high-density with a limited custom set: pruned HDnGBS). We also compared the
use of genomic best linear unbiased prediction (GBLUP) and Bayesian (emBayesR)
models, and the traits tested were milk, fat, and protein yields. On average, by including
crossbred cows in the reference population, the prediction accuracies increased by
0.01–0.08 and were less biased (regression coefficient closer to 1 by 0.02–0.16), and the
benefit was greater for crossbreds compared to purebreds. The accuracy of prediction
increased by 0.02 using XT_50k compared to 50k genotypes without affecting the bias.
Although using pruned HDnGBS instead of 50k also increased the prediction accuracy
by about 0.02, it increased the bias for purebred predictions in emBayesR models.
Generally, emBayesR outperformed GBLUP for prediction accuracy when using 50k
or pruned HDnGBS genotypes, but the benefits diminished with XT_50k genotypes.
Crossbred predictions derived from a joint pure H and J reference were similar in
accuracy to crossbred predictions derived from the two separate purebred reference
sets and combined proportional to breed composition. However, the latter approach
was less biased by 0.13. Most interestingly, using an equalized breed reference instead
of an H-dominated reference, on average, reduced the bias of prediction by 0.16–0.19
and increased the accuracy by 0.04 for crossbred and J cows, with a little change
in the H accuracy. In conclusion, we observed improved genomic predictions for both
crossbreds and purebreds by equalizing breed contributions in a mixed breed reference
that included crossbred cows. Furthermore, we demonstrate, that compared to the
conventional 50k or high-density panels, our customized set of 50k sequence markers
improved or matched the prediction accuracy and reduced bias with both GBLUP and
Bayesian models.
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INTRODUCTION

The interest in providing genomic predictions for crossbred
dairy cows has increased especially in recent years (Harris, 2005;
Sørensen et al., 2008; VanRaden et al., 2020). Crossbreeding in
dairy cattle is common in New Zealand (making up almost 50%
of the milking herd according to New Zealand Dairy Statistics
2018–2019)1, where often the aim of crossbreeding between
Holstein (H) and Jersey (J) breeds is to combine the best of
both breeds, and crossbred dairy bulls are commonly mated
to crossbred cows (Harris, 2005; Harris and Johnson, 2010b).
In addition to heterosis and breed complementarity effects, in
recent years, crossbreeding is considered more as a potential
approach to improve sustainability in dairy cattle breeding by
reducing problems related to inbreeding and to improve fertility,
survival, and other functional traits (Sørensen et al., 2008).
Consequently, the number of genotyped crossbred animals is
growing, and both New Zealand and United States already
provide genomic evaluations for dairy crossbreds (Winkelman
et al., 2015; VanRaden et al., 2020).

The establishment of a suitable reference population for
crossbred predictions in dairy cattle is challenging because ideally
the same reference population should be used to predict the
purebreds for more than a single breed. This is because genomic
evaluations for dairy cattle are typically very computationally
intensive; they are undertaken at a national level for all dairy
animals, involve millions of animal records from both purebred
and crossbred animals, and are re-analyzed several times per
year. Furthermore, the reducing cost of genotyping has resulted
in very large numbers of cows being genotyped in addition to
bulls because commercial farmers are interested in using genomic
prediction to select female replacement animals (e.g., millions of
animals in the United States; VanRaden et al., 2020). While it is
possible that a combination of purebred and crossbred animals
would be the ideal reference population for crossbreds, it is
uncertain that this would be the optimal reference population
for the purebred animals. For purebred dairy cattle, genomic
prediction (GP) is often performed within a single purebred
reference population because often the accuracy of predictions
show high reliability, whereas the accuracy of across-breed GP is
low (Kemper et al., 2015).

The accuracy of GP is highly dependent on the linkage
disequilibrium (LD) between causal mutations and the dense
single nucleotide polymorphism (SNP) markers spread across
the genome (Meuwissen et al., 2001; Habier et al., 2007). Hence,
within-breed GP in major dairy purebreds using a standard 50k
chip (Illumina Bovine SNP50K) works well and has been adopted
in the dairy industry of many countries (Hayes et al., 2009b).
Furthermore, for within-breed GP in dairy cattle breeds, previous
studies showed that there was no, or limited, gain in accuracy due
to an increase in marker density (Harris and Johnson, 2010a; Su
et al., 2012; VanRaden et al., 2013).

The estimated SNP effects from the reference population
would be generally applicable for GP in another population if

1https://www.dairynz.co.nz/publications/dairy-industry/new-zealand-dairy-
statistics-2018-19/

the LD between SNP and causal mutations remains the same
or is very similar across the populations. However, across-breed
GP, which uses the estimated SNP effects from one breed to
calculate genomic estimated breeding values (GEBV) in another
breed, generally shows a low accuracy. For example, using H as
a reference for GP in J and vice versa is reported to produce
a much-lower-accuracy GEBV compared to within-breed GP
(Harris et al., 2008). This could be partially associated with the
high conservation of LD between markers using standard 50k
chip within H or J breeds, whereas to reach almost the same
amount of LD across breeds would require about 300,000 SNPs
(de Roos et al., 2008). Furthermore, there might be some causal
mutations which do not segregate in all breeds or their allele
effects differ in different breeds due to epistasis and differences in
allele frequencies (Goddard et al., 2018). In across-breed GP, the
increase in accuracy of GEBV using high-density (HD) genotypes
(>600 k SNP) compared to 50 k SNP has also been reported to be
limited (Harris et al., 2008; Erbe et al., 2012).

Combining data from different pure breeds into a single
large reference population compared to within-breed GP and
using HD instead of lower-density genotypes for multi-breed
GP have been reported to show small gains (up to about 5%)
in the accuracy of predictions (Pryce et al., 2011; Erbe et al.,
2012; Hozé et al., 2014; Kemper et al., 2015; Goddard et al.,
2018). Furthermore, a multi-breed reference over-dominated by
one breed has recently been reported to reduce the accuracy of
prediction in the breed with a minor contribution to the reference
population (van den Berg et al., 2020).

Instead of increasing the overall density of SNP, an alternative
approach to improve GP for both crossbred and purebred
performance might be to increase the “functional density” of
markers on medium-density SNP chips by enrichment with
causal mutations. Then, individuals could be genotyped with
a lower-priced custom medium-density SNP chip, and the GP
should not suffer from an excessive number of markers for which
effects should be estimated (Goddard et al., 2018). Given the
paucity of functional information and millions of variants across
the genome, obtaining a custom set of variants is challenging
because preferably the set should be useful for predicting multiple
traits. VanRaden et al. (2017) reported that using the imputed
HD genotypes increased the reliabilities of GP by only 0.6
percentage points, but adding a subset of 16,648 SNP with
the largest estimated effects to the 60,671 conventional SNP
genotypes increased reliabilities by 2.7 percentage points. Xiang
et al. (2019) proposed a comprehensive method to rank sequence
variants with functional and evolutionary significance combined
with their multi-trait associations across 34 important dairy
traits. These authors then used this ranking together with further
analyses to prioritize a custom set of medium-density markers
(∼50,000) for a cost-effective SNP panel that we will refer to here
as the “XT_50k chip.”

In simulation studies, it has been shown that the accuracy
of GP for crossbred animals can be increased by combining
pure breeds into a single reference population if the LD
between markers and causal mutations is well conserved across
pure breeds (Esfandyari et al., 2015b). Additionally, Esfandyari
et al. (2015a) reported that using crossbreds in the reference
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population improved the accuracy of crossbred predictions. It
is possible to account for the breed origin of alleles, but this
showed no consistent advantage over a multibreed approach in
real pig data, and accurately allocating a specific breed origin
to alleles was an added complication (Esfandyari et al., 2015a;
Sevillano et al., 2016; Vandenplas et al., 2016). An alternative
and more straightforward method for GP in crossbred is to use
the estimated breed proportions of each animal to calculate a
weighted average of the breeding values (WA_GEBV) from two
or more purebred reference populations (VanRaden et al., 2020).
This approach is especially useful when few crossbred animals
are available for the reference population, for example, because
crossbreds are not routinely phenotyped. However, a limitation
of the method is that crossbreds cannot be exploited in the
reference population.

In GP, using multi-breed populations, there is evidence that
Bayesian statistical methods can improve the accuracy of GEBV
compared to GBLUP methods (Hayes et al., 2009a; Lund et al.,
2016; van den Berg et al., 2019). In GBLUP, the prior assumption
is that SNP effects are from a single normal distribution,
and therefore all have small but non-zero effects (Meuwissen
et al., 2001). However, Bayesian models assume that the SNP
effects follow a non-normal distribution (Meuwissen et al., 2001;
Habier et al., 2011) or a mixture of normal distributions with a
proportion of SNP having a zero effect such as in BayesR (Erbe
et al., 2012; Wang et al., 2015; MacLeod et al., 2016). Therefore,
in a multi-breed reference where LD between causal mutations
and markers is preserved at shorter distances, Bayesian models
should be able to fine-map quantitative trait loci (QTL) more
precisely and produce GEBV with high accuracy than GBLUP
(Toosi et al., 2010; Goddard et al., 2018). Accordingly, MacLeod
et al. (2014) found that a multi-breed reference with a Bayesian
approach outperformed GBLUP for GP in animals that had low
relatedness to the reference set.

We propose that a single multi-breed reference population
including crossbreds, coupled with a set of markers selected to
be closer to causal mutations and a Bayesian prediction model,
could be beneficial for GP in crossbreds while also maintaining
or improving accuracy in purebreds compared to single breed
reference populations.

In the first part of this study, we assessed the accuracy and
bias of GEBV for purebred and crossbred H and J cows using
within-breed, across-breed, and multi-breed GP strategies. The
first aim was to investigate the effect of including crossbreds in the
reference population on purebred and crossbred GP. The second
aim was to test three sets of markers: (a) the Illumina Bovine 50k
SNP marker panel, (b) a custom set of∼46 k markers enriched for
putative causal mutations (XT_50k), and (c) the Illumina Bovine
HD SNP chip augmented with approximately 1,000 custom SNP
(HDnGBS). The third aim was to compare the accuracy of GP
using the GBLUP or Bayesian (emBayesR) methods for all the
above reference sets and marker sets.

In the second part of the study, we compared the accuracy
and bias of GP using a multi-breed reference population that
was either H-dominated or had balanced-breed proportions in
which the potential negative effects of unequal contribution of
the breeds on GP could be avoided. We also explored the benefits

of including crossbred cows in the balanced-breed reference
population. Similar to the first part of the study, GP was
performed with three sets of markers and using GBLUP and
emBayesR approaches.

MATERIALS AND METHODS

Animals
The animals used in this study were available from CRV and
consisted of 14,987 pure H (5,409 H bulls, 953 Red H bulls, and
8,625 H cows), 5,016 pure J (1,101 J bulls and 3,915 J cows), and
20,281 crossbred cows. All cows were born in New Zealand, and
the bulls were from New Zealand or Netherlands. The crossbred
cows were further divided to three subgroups according to the
H:J breed composition as described in “Breed Allocation” (10,125
∼75%H:25%J, 8,675∼50%H:50%J, and 1,481∼25%H:75%J).

Reference Sets
We designed different reference sets to assess GP within
breed, across breed, and for crossbreds (including or excluding
crossbred cows). Furthermore, we studied the potential
benefits of using a balanced-breed instead of a H-dominated
reference population.

The different reference sets are shown in Table 1. Ref. 1
and Ref. 2 consisted of all pure H and all pure J animals,
respectively. Ref. 3 contained all purebred (H and J), and Ref.
5 consisted of all purebred and crossbred animals. Ref. 4. and
Ref. 4′ were both based on two separate single-breed reference
populations (Ref. 1 and Ref. 2) but where the predictions were
proportionally combined for the crossbred prediction and the
single reference prediction used for the purebreds. This follows
the United States dairy evaluation approach for crossbred cows
(VanRaden et al., 2020). For Ref. 4, the breed proportions of
validation cows were defined by using a principal component
analysis (PCA) of their genomic relationship matrix (GRM) to
compare and correct as needed the pedigree defined by a four-
letter breed group based on paternal and maternal grandparents.
For Ref. 4′, Admixture software (Alexander et al., 2009) was used
to define continuous breed proportions with the assumption that
there were only two breeds in the population (k = 2). Ref. 6,
Ref. 7, and Ref. 8 had balanced-breed proportions, and all had
the same set of 2,202 bulls (1,101 H and 1,101 J) but differed
in the cows added in. Ref. 6 included equal numbers of pure
H and J cows, while Ref. 7 contained equal numbers of only
crossbred cows. Ref. 6 and Ref. 7 also contained the same number
of animals. Finally, Ref. 8 included both the purebred cows
from Ref. 6 and the crossbred cows from Ref. 7, and this was
close in the number of animals to Ref. 3 (H-dominated). The
subsets of animals used in these balanced-breed reference sets
were sampled randomly from the full reference to avoid changes
in the average relationships between the reference animals and
the validation animals. Otherwise, any non-random sampling
from the full reference could result in the subset being more/less
closely related to the validation set, and this would confound the
results of GP when compared with the full reference. To help
better differentiate between GP approaches, the reference animals
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and validation sets were intentionally allocated to minimize very
highly related individuals between these groups.

Validation Sets
The same validation cows were used in all comparisons. The cows
in the validation sets were selected to avoid high relationships
with animals in the reference set that included all pure and
crossbred animals (i.e., Ref. 3), so there were no sires, full-
sib brothers and sisters, and maternal half-sib sisters and half-
sib brothers of validation cows in the reference sets. The
number of paternal half-sib sisters were restricted to be as low
as possible. The cow validation set consisted of 3,589 cows
divided into five breed groups as described in “Breed Allocation”
(H, ∼75%H:25%J, ∼%50 H:50%J, ∼%25 H:75%J, and J). Table 2
shows the number of cows in each validation breed group and
the number of their sires, in addition to the average, standard
deviation, and median number of paternal half-sib sisters of
validation cows across different reference sets.

Phenotypes
The phenotypes of milk traits (milk, fat, and protein yields) for
CRV bulls were de-regressed proofs (DRP) on the Australian
scale, derived from international within-breed MACE (2018)
breeding values (Liu, 2009). The phenotypes for the cows were
also DRP equivalents calculated by DataGene in 2018 using
test day records with random regression models and correcting

for the fixed effects (herd, year, season, lactation) following the
approach used for the official Australian dairy cattle evaluations2.
It was convenient to use all data processed on the Australia scale
because they were available as part of another research project
described in Haile-Mariam et al. (2020) combining Australian
and New Zealand data.

Genotypes
Three different sets of markers were evaluated for GP:

(1) conventional Illumina Bovine50k SNP panel with 40,850
SNP after quality control and that overlapped the Illumina
BovineHD panel;

(2) Illumina BovineHD 800k SNP panel with an additional
custom set of about 1,000 SNP (HDnGBS). This set was
then pruned for strong LD where one of each pair of SNP in
LD r2 > 0.95 was pruned out using PLINK (Purcell et al.,
2007). This reduced the number of SNP from 633,375 to
316,396 (pruned HDnGBS), making genomic prediction
analysis more computationally efficient. We tested the
accuracy of the full panel versus the pruned panel in several
analyses and found no significant difference between the
full and the reduced marker sets, so we presented only the
GP with pruned HDnGBS genotypes in this paper; and

2https://datagene.com.au/

TABLE 1 | Number of purebred and crossbred animals in different reference sets.

Purebred bull Purebred cow Crossbred cow

Reference acronym1 Total number H Red-H J H J 75%H:25%J 50%H:50%J 25%H:75%J

Ref. 1 13,985 4,407 953 – 8,625 – – – –

Ref. 2 4,484 – – 1,101 – 3,383 – – –

Ref. 3 18,469 4,407 953 1,101 8,625 3,383 – – –

Ref. 4 18,469 4,407 953 1,101 8,625 3,383 – – –

Ref. 5 36,695 4,407 953 1,101 8,625 3,383 9,262 7,807 1,157

Ref. 6 8,968 1,101 – 1,101 3,383 3,383 – – –

Ref. 7 8,968 1,101 – 1,101 – – 1,157 4,452 1,157

Ref. 8 15,734 1,101 – 1,101 3,383 3,383 1,157 4,452 1,157

1The multi-breed Refs. 6–8 represent balanced-breed sets while Refs. 3–5 are Holstein-dominated sets.

TABLE 2 | Description of the validation cow sets. Included is the number of cows in each breed group, number of sires that they represented, and average ± standard
deviation (median) of the number of paternal half-sib sisters (HSS) of validation cows in the different reference sets (details of reference sets in Table 1).

H 75%H:25%J 50%H:50%J 25%H:75%J J Total

Number of cows 1,002 863 868 324 532 3,589

Number of sires 314 381 355 128 136 951

Ref. 1 HSS 1.37 ± 1.83 (0) 0.83 ± 1.47 (0) 0.42 ± 0.9 (0) 1.21 ± 1.21 (1) 1.16 ± 1.18 (1) 0.96 ± 1.46 (0)

Ref. 2 HSS 0.04 ± 0.36 (0) 0.18 ± 0.56 (0) 0.96 ± 2.57 (0) 6.51 ± 8.31 (3) 9.85 ± 10.97 (6) 2.33 ± 6.23 (0)

Refs. 3 and 4 HSS 1.41 ± 1.92 (0) 1 ± 1.63 (0) 1.38 ± 2.96 (0) 7.72 ± 9.09 (5) 11.02 ± 12.07 (8) 3.3 ± 6.82 (0)

Ref. 5 HSS 6.55 ± 8.58 (2) 10.34 ± 13.31 (3) 10.07 ± 13.63 (3) 76.4 ± 83.63 (37) 55.93 ± 62.69 (29) 21.94 ± 43.48 (4)

Ref. 6 HSS 0.79 ± 1.36 (0) 0.59 ± 1.23 (0) 1.12 ± 2.71 (0) 7.31 ± 8.78 (3) 10.41 ± 11.36 (7) 2.84 ± 6.49 (0)

Ref. 7 HSS 1 ± 1.8 (0) 3.53 ± 5.41 (1) 4.6 ± 6.57 (1) 36.01 ± 39.3 (18) 26.43 ± 28.97 (13) 9.41 ± 20.55 (1)

Ref. 8 HSS 1.78 ± 2.66 (1) 4.12 ± 5.87 (1) 5.72 ± 8.29 (1) 43.32 ± 45.69 (23) 36.84 ± 38.55 (23) 12.24 ± 25.85 (1)
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(3) customized set of 46,516 SNP (XT_50k) which were
selected from whole genome sequence according to
multiple criteria to be closer to or potentially the causal
mutations for 34 economically important traits in dairy
cattle (Xiang et al., 2019, 2020).

Most of the genotypes in our study were first imputed from
lower-density chips (approximately 8,000 SNP overlapping the
50k panel) up to standard 50k and then imputed from 50k to
HD using FImpute (Sargolzaei et al., 2014). Pedigree information
was not used for imputation. The HD SNP set was imputed
to the whole genome sequence using Minimac3 (Das et al.,
2016) having pre-phased the data with Eagle2 (Loh et al., 2016).
Run6 version of the 1,000-bull genome (Daetwyler et al., 2014;
Bouwman et al., 2018) was used as the sequence imputation
reference, and this was also pre-phased with Eagle2 prior to
imputation of the HD genotypes. The custom set of ∼1,000 SNP
and XT_50k SNP was extracted from imputed whole genome
sequence. The LD pruning process for the HDnGBS set was done
with consideration of preferentially removing SNP tagging the
custom set of ∼1,000 SNP. Finally, before performing GP, SNP
with minor allele frequency less than 0.002 were removed.

Breed Allocation
The bulls in our study were purebred by pedigree and allocated
to the H or J breed groups accordingly. However, the cows were
allocated to purebred and crossbred (sub)groups according to
their pedigree information and the first principal component
(PC) calculated from the GRM using GCTA (Yang et al., 2011)
on a core set of 8,185 autosomal low-density SNP that had
been genotyped in all animals. This was done because not all
cows had full breed information and some had incorrect breed
codes. The bull and cow four-letter breed code that depicts
the maternal and paternal grandparent breed based on pedigree
was used to set the first PC boundaries of each group, and the
PCA was used to correct breed codes that appeared incorrect or
were incomplete. The prediction of breed proportion was also
performed in Admixture software (Alexander et al., 2009) using
the same SNP set and including the New Zealand purebred bulls
and cows. The number of ancestral populations (k) in Admixture
was set to equal the expected number of breeds (H and J: i.e.,
k = 2).

Genomic Prediction
We performed GP with two statistical methods, Genomic Best
Linear Unbiased Prediction (GBLUP) (Meuwissen et al., 2001)
and emBayesR (Wang et al., 2015).

GBLUP
The GEBV for the animals were calculated using MTG2 (Lee and
van der Werf, 2016) and by fitting the model shown in Equation 1
for each of the reference sets and each of the milk traits (milk, fat,
and protein yields). Furthermore, GEBV were calculated using
three different marker sets (50k, XT_50k, or pruned HDnGBS
genotypes) to construct the GRM in the model (Yang et al., 2010).

y = Xb+ Zu+ e (1)

where y is a vector of DRP for the milk traits (milk, fat, or
protein yields) of the animals in the reference, X is a design
matrix allocating DRP to fixed effects, b is the vector of fixed
effects (mean, sex, and breed group), and Z is a design matrix
allocating DRP to GEBV in vector u. The variance of the breeding
values is calculated as Var(u) = Gσ2

g , where σ2
g is the additive

genetic variance, G is the GRM constructed from genotypes of
the animals in the reference and validation sets, and e ∼ (0,
Eσ2

e) is a vector of random residual effects in which σ2
e is the

error variance and E is a diagonal matrix as diag(E)i = 1/wi,
where wi is the weighting coefficient for the ith animal. Weighting
coefficients were calculated differently for cows and bulls using
Eqs. 2 and 3, respectively (Garrick et al., 2009).

wCow =
1− h2

ch2
+

1+(n−1)t
n − h2 (2)

wbull =
1− h2

ch2
+

(4−h2)
p

(3)

where h2 is heritability (=0.33), t is repeatability (=0.56), c is
the proportion of variance not explained by markers (=0.2), n
is the number of records for each cow, and p is the number of
daughters for each bull.

emBayesR
Genomic estimated breeding values for the animals were also
calculated with emBayesR method (Wang et al., 2015) using
an in-house software and fitting the model shown in Equation
4. Benefiting from an approximate EM algorithm in the initial
phase, emBayesR is a faster approach for GP compared to fully
dependent Markov chain Monte Carlo (MCMC) algorithm in
BayesR (Erbe et al., 2012) while still sampling the SNP effects
from a mixture of normal distributions.

y = Xb+Wv+ e (4)

where y, X, b, and e are as described in Eq. 1, v is the vector
of estimated SNP effects, and W is a design matrix of SNP
genotypes that were standardized to have a variance of 1. The
proportion (and the additive genetic variance) of the SNP effects
sampled from four normal distributions were set to 0.94 (0), 0.049
(0.0001), 0.01 (0.001), and 0.001 (0.01). Thus, for example, each
SNP had 94% prior chance to have 0 contribution in explaining
the genetic variance of the trait. The number of iterations in
the emBayesR analyses was adapted to achieve consistent results
across the five chains, requiring 1,500 to 2,200 EM iterations with
the convergence parameter set as 1 × 10−7 and 5,000 to 15,000
BayesR iterations. Finally, the results were averaged across the
five MCMC chains.

Validation
In all reference sets, other than Ref. 4 and Ref. 4′, the GEBV were
calculated for the validation cows similar to reference animals
but masking their phenotypes in Eqs. 1 and 4. In Ref. 4 and
Ref. 4′, the breed proportion was used to calculate a weighted
average of the two GEBV (WA_GEBV) calculated from purebred
H and J reference sets (VanRaden et al., 2020). In Ref. 4, the
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GEBV for each animal in the validation set was calculated by
multiplying their GEBV from both Ref. 1 (H only) and Ref. 2 (J
only) by the proportion of H and J breeds estimated according
to the approximate breed groups allocated through PCA and
pedigree information. In Ref. 4′, the GEBV were calculated as
for Ref. 4, but using the exact breed proportions estimated from
Admixture software.

The accuracy and bias of GP for each of the five validation
breed groups were calculated separately. The accuracy was the
Pearson’s correlation coefficient between GEBV and DRP, and the
bias of GP was assessed by calculating the regression coefficient
of DRP on GEBV, so the GP was least biased when the regression
coefficient showed the least deviation from one.

RESULTS

Breed Group Allocation
An important aspect of this study was to ensure that the
cows were correctly allocated to breed groups because crossbred
cows in New Zealand are sometimes inter-crossed for several
generations through the use of crossbred bulls, and some
cows had incomplete or incorrect pedigree breed definitions.
A combination of pedigree breed codes and a PCA of the
GRM were used to allocate cows to five breed categories
(H, 75%H:25%J, 50%H:50%J, 75%J:25%H, and J; Figure 1).
This breed group allocation was then also evaluated with
Admixture software as shown in Figure 2. Generally, the
exact breed proportions predicted in Admixture matched well
with the approximated breed proportion using PCA and
pedigree information.

Reference Populations: Refs. 1–5
In the first part of our study, we compared the accuracy and bias
of GP using reference sets (Table 1) that were either single breed
(Refs. 1 and 2), a mix of purebreds (Refs. 3 and 4), or a mix
of purebreds and crossbreds (Ref. 5). The main focus of testing
different reference sets was to determine if there were reference
sets that work equally well for crossbred and purebred GP. The
results for the accuracy and bias of GP in the five breed group
validation sets are shown as an average across three milk traits
(milk, fat, and protein yields) in Figures 3, 4, respectively, because
the results showed consistent trends across these traits for all
comparisons. However, the individual trait results for different
GP scenarios are provided in Supplementary Figures 1, 2.

The comparison between different reference sets showed that
across-breed GP (i.e., predicting H from the reference consisting
of only purebred J and vice versa) had the lowest accuracy
and largest bias. As expected, the within-breed GP performed
well (i.e., predicting H and J from reference sets consisting of
only purebred H and purebred J, respectively). The crossbred
validation group with breed composition closest to the purebred
reference set had the second best accuracy of GP in Refs. 1. and 2,
while a steep decline was seen in the other crossbred groups using
these single-breed reference sets.

Combining purebred H (Ref. 1) and J (Ref. 2) animals into
a single reference (Ref. 3) resulted in an average increase in the

accuracy by 0.09 and a reduction of bias by 0.08 for crossbreds
compared to single breed references. In Ref. 3 compared to Ref.
1, on average, ∼25%H:75%J cows achieved a maximum gain
in accuracy (0.21) and reduction in bias (0.32). However, for
purebred J cows, the H-dominated Ref. 3 compared to Ref. 2
reduced their accuracy by about 0.03 and considerably increased
the bias by 0.11.

In Ref. 4, we proportionally combined GEBV derived from
the H and J single-breed reference sets (Refs. 1 and 2)
according to the approximated PCA breed proportions for
each validation set. Although this method did not improve
the accuracy of predictions compared to Ref. 3, it did on
average reduce the bias by 0.18. The average reduction in bias
was highest in ∼50%H:50%J (0.23), followed by ∼25%H:75%J
(0.21) and∼75%H:25%J (0.09). We also tested substituting these
approximate breed proportions with the exact Admixture breed
composition for each cow to calculate their GEBV (Ref. 4’). The
accuracy and bias were similar to Ref. 4, and these can be seen in
Supplementary Figure 1 (labeled Ref. 4′).

In Ref. 5, generated by adding crossbred cows to Ref. 3
(H and J), the accuracy increased by between 0.03 to 0.08
in crossbreds compared to Ref. 3 and Ref. 4. For Ref. 5, in
comparison to Ref. 3, there was an average reduction in bias
for all validation breed groups that was highest in ∼50%H:50%J
(0.14), followed by∼75%H:25%J (0.11) and∼25%H:75%J (0.09),
compared to purebred cows with a reduction in bias of GEBV
(0.06). However, in comparing Ref. 5 to Ref. 4, there was only a
reduction in bias for the pure H and the ∼75%H:25%J, while on
average the bias increased for the∼50%H:50%J, 25%H:75%J, and
pure J breed groups.

Genotypes: Marker Sets 50k, XT_50k,
and Pruned HDnGBS (Refs. 1–5)
For single-breed references, comparing three different sets of
markers (Figures 3, 4) showed that using XT_50k or pruned
HDnGBS instead of 50k increased the accuracy of GP for within-
breed prediction (H and J) by about 0.02. In Ref. 1, using XT_50k
(and pruned HDnGBS) instead of 50k consistently improved the
accuracy of GP for crossbred cows by, on average, 0.05 (and 0.04)
and also reduced bias by about 0.08 (and 0.06). In reference sets
3, 4, and 5, there was also a small but consistent advantage in the
crossbred GBLUP accuracy for the XT_50k set over the 50k and
pruned HDnGBS, but there were no consistent differences in the
accuracies using emBayesR. In reference sets 3, 4, and 5, there was
no consistent trend for bias across the three marker sets.

Methods: GBLUP Versus emBayesR
(Refs. 1–5)
Comparing the two different statistical methods for GP
(Figures 3, 4), it was shown that the emBayesR method gave
a consistent increase in accuracy compared to GBLUP for
crossbred and purebred prediction using single-breed reference
sets (Refs. 1 and 2). On average, there was also a small but
consistent advantage in accuracy for emBayesR versus GBLUP
in Refs. 3, 4, and 5 for 50k and pruned HDnGBS marker sets.
However, the benefits of emBayesR over GBLUP in accuracy
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FIGURE 1 | The second principal component (PC) is plotted against the first PC of the genomic relationship matrix constructed using a low-density set of genotypes
of all purebred and crossbred animals in this study.

FIGURE 2 | The admixture breed proportions estimated with Admixture software where each horizontal line represents the breed proportion of each animal.

diminished with the use of the custom XT_50k marker set. The
differences in bias between emBayesR and GBLUP were less
consistent: for example, in Ref. 3, emBayesR reduced the bias of
GP in crossbred cows by about 0.03 compared to GBLUP, but the
bias was similar for both methods in Ref. 5.

Equalizing Breed Proportions in
Reference Sets
In the second part of our study, we compared the accuracy and
bias of GP in Ref. 3 (mixed H and J purebreds and dominated by
H) versus three additional reference sets, where breed proportion
was equalized (Refs. 6, 7, and 8: Table 1) in Figures 5, 6. Refs. 6,
7, and 8 all included the same∼2,200 H and J bulls but differed in

cow composition: purebreds (Ref. 6), crossbreds (Ref. 7), or pure
and crossbreds (Ref. 8).

First, comparing H-dominated Ref. 3 that had ∼18,500
purebred animals versus Ref. 6 that had only ∼9,000 purebreds
balanced across H and J (all J animals from Ref. 3 but the H set
randomly reduced from∼14,000 to∼4,500 animals), on average,
the bias was considerably reduced for all validation sets in Ref.
6, with the most impact in purebreds (reducing by 0.14 for H,
0.10 for J, 0.06 for 75%H:25%J, 0.09 for 50%H:50%J, and 0.10 for
25%H:75%J). The accuracies were similar to Ref. 3, but there was
a consistent trend for the H accuracy to fall in Ref. 6 by 0.01
to 0.02 and J to increase by 0.01 to 0.02. Therefore, GP in the J
breed benefited from simply removing a large proportion of H to
achieve similar breed proportions in Ref. 6, resulting in both bias
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FIGURE 3 | Accuracy of genomic predictions in five validation sets using different reference populations (Refs. 1–5: details in Table 1). The results are averaged
across milk, fat, and protein yields.

FIGURE 4 | Bias of genomic predictions in five validation sets using different reference populations (Refs. 1–5: details in Table 1). The results are averaged across
milk, fat, and protein yields.

and accuracy being restored to similar levels as using purebred J
reference (Ref. 2).

Ref. 7 had the same number of animals as Ref. 6, but
crossbred cows replaced purebred cows. This resulted in a
consistent average increase in the accuracy of GP for the
crossbred validation sets compared to Ref. 6. and Ref. 3. However,
the accuracy for the H and J purebreds consistently reduced.
Ref. 8 included all the cows from Ref. 6 and 7 (pure and

crosses) with ∼15,700 animals, and this restored the purebred
accuracies to either the same (H) or higher (J) than Ref. 3
and Ref. 6. For the all the crossbred validation sets, accuracy
was consistently increased in Ref. 8 compared to Refs. 3 and
6. There was a dramatic reduction in bias for Ref. 8 (balanced-
breed) compared to the H-dominated Ref. 3 for all five validation
sets: on average, the reduction of bias was 0.19 for H, 0.13 for
J, and 0.16 for the crossbred validation sets. Overall, the bias
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FIGURE 5 | Accuracy of genomic predictions in five validation sets using different reference populations (Ref. 3 and Refs. 6–8: details in Table 1). The results are
averaged across milk, fat, and protein yields. Ref. 3 is Holstein-dominated, while Refs. 6–8 have balanced-breed proportions.

FIGURE 6 | Bias of genomic predictions in five validation sets using different reference populations (Ref. 3 and Refs. 6–8: details in Table 1). The results are
averaged across milk, fat, and protein yields. Ref. 3 is Holstein-dominated, while Refs. 6–8 have balanced-breed proportions.

was always highest in the H-dominated Ref. 3 compared to
Refs. 6, 7, and 8.

Figure 7 shows the distribution of the estimated genomic
relationships between a set of purebred bulls common to Refs. 3,
6, 7 and 8 (1,101 H and 1,101 J) and the cows in the five validation
breed groups. The genomic relationships displayed between
these common sets of reference bulls and validation cows were
estimated separately for each reference set and validation animals
using the XT_50k genotypes. It can be seen that the genomic
relationships had a very different distribution when estimated in

the reference population that was dominated by purebred H (Ref.
3) compared to the equalized breed sets in Refs. 6, 7, and 8.

DISCUSSION

This study used approximately 18,500 purebred and 18,200
crossbred dairy animals to comprehensively test a range
of strategies to jointly optimize the accuracy of GP for
crossbreds and purebreds. A novel strategy was tested in which
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FIGURE 7 | The distribution of genomic relationships estimated between a common set of bulls in Ref. 3 and Refs. 6–8 (1,101 H and 1,101 J) and the cows in the
five validation breed groups. The genomic relationships were estimated using the XT_50k genotypes.

breed proportions were balanced in a mixed-breed reference
population with the inclusion of a large number of crossbred
cows and also using a custom SNP chip enriched with sequence
variants. In many dairy industries, one breed dominates, while
other breeds and crosses are important but have substantially
lower numbers genotyped. While this study focused on GP in H
and J breeds, the results are likely to be equally relevant to GP
in other breeds and other livestock groups, such as beef cattle
and sheep, particularly where one breed is more dominantly used
compared to other breeds.

As expected, our single purebred references (Refs. 1 and
2) were suitable only for within-breed GP but provided a
baseline for comparing accuracy and bias for other reference sets.
These single-breed marker effects were also used to compute a
WA_GEBV for crossbreds (VanRaden et al., 2020). VanRaden
et al. (2020) reported the successful use of breed representation
of up to five dairy breeds estimated with Findhap (VanRaden
and Cooper, 2015) for the WA_GEBV. We had crossbreds of
just two breeds and found a similar accuracy of WA_GEBV
using either approximate breed proportions from PCA or the
breed proportions estimated using Admixture software (Refs. 4
and 4′), implying that either approach was valid. However, for
crossbreds of more than two breeds, it would be more practical
to use software such as Admixture or Findhap to predict breed
proportion. Similar to VanRaden et al. (2020), we found that the
WA_GEBV approach was competitive (Ref. 4) if no crossbred
phenotypes were available because it increased the accuracy
compared to a single breed, reduced the bias for crossbreds
compared to a multi-breed reference, and maintained purebred
accuracies. Combining the purebreds into a single multi-breed
reference caused our J accuracy to drop, implying a negative
impact from the multi-breed reference being dominated by H.
A similar finding has been reported for the accuracy of GP of
Australian Red breed by van den Berg et al. (2020) when using

a mixed breed reference strongly dominated by H. Previous
simulation and plant studies also showed that increasing the size
of the reference population by including individuals not closely
related to the validation set could reduce the accuracy of GP
(Neyhart et al., 2017; Mangin et al., 2019).

Although the WA_GEBV approach offers analytical
simplicity, unfortunately, it does not exploit crossbred data
where available. Previous studies have reported the significance
of including crossbred animals in the reference for better GP
(Esfandyari et al., 2015a; van Grevenhof and van der Werf,
2015). We also found that combining all the purebred and
crossbred animals (Ref. 5) could improve accuracy compared
to the WA_GEBV (Ref. 4), but still this incurred an increase
in bias of predictions for crossbreds. We believe this is in a
large part due to the domination of H breed in the reference
(both purebreds and crossbreds) because the bias reduced
considerably by balancing the proportion of H and J in Ref.
6 compared to the H-dominated Ref. 3. Furthermore, the
genomic relationship between the common reference bulls and
validation cows (Figure 7) shows very different distributions of
relationships estimated in the H-dominated Ref. 3 compared to
the balanced-breed reference sets 6, 7, and 8, probably due to
differences in allele frequencies between the breeds. Excluding
a large proportion of H and 75%H:25%J from the reference to
equalize breed proportions, Ref. 6 did reduce the prediction
accuracy in H and 75%H:25%J when compared to the full Ref.
8 (mixed breed and cross set). Notably, however, the accuracy
for the H validation was still equal to that achieved with the
purebred-H-only reference set (Ref. 1), and bias was less in
Ref. 6 vs. Ref. 8. This suggests that a reference set with more
balanced-breed proportions and including crossbreds may
provide a practical compromise for genomic prediction for
both purebreds and crosses. However, in specific cases, this
will also depend on the numbers available for the minor breed
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because if too many H need to be removed, then the accuracy
of prediction for the H will drop below that achieved from a
single-breed H reference set (Ref. 7 vs. Ref. 8). In this case, for
purebred H predictions, the alternative would be to combine
the H purebreds with their closest crosses because our results
demonstrated that the inclusion of crossbreds in the reference
set improved the prediction accuracy in the purebreds (Ref. 8
vs. Ref. 6). Altogether the results highlight the importance of
trying to ensure that genotyped reference sets are developed
to include as many as possible of the minor breeds and their
crosses to encourage genetic diversity and progress across all
breed groups. While we demonstrated improved GP from
the balanced-breed set that included pure and crossbred cows
(Ref. 8), it is possible that this could be further improved by
adding some more H and H-cross animals from the full set,
provided that they are chosen to be the most closely related to
the validation animals. For example, van den Berg et al. (2020)
reported that combining a limited number of H closely related
to Australian Red in a H-dominated multi-breed reference
was the best strategy to improve the GP in Australian Red.
However, in the context of trying to simultaneously improve
the accuracy of both purebred and crossbred groups, this may
not be straightforward. A method proposed by Harris and
Johnson (2010b) within the GBLUP framework to account for
differences in allele frequency between H, J, and crossbreds could
be tested in future work to determine if this mitigates the H
domination effect.

In our study, while the accuracy of GP for crossbred cows
improved considerably with the balanced multibreed reference
that included crossbreds (Ref. 8), the accuracy for crossbreds
was still often lower than the accuracy of predicting purebreds.
However, this could be due in part to the lower accuracy of DRP
in crossbred validation cows compared to that in purebred cows
and the lower relatedness, on average, of crossbred validation
cows compared to purebred bulls (Figure 7). The only exception
was the∼25%H:75%J validation set that met the expected level of
accuracy relative to the purebreds (Ref. 8). This may be because,
on average, this set shared more half-sib sisters with Ref. 8
compared to the other two crossbred validation sets (Table 2).
Therefore, in an industry setting, the accuracy of crossbreds
may be found to be close to the average of parental breeds if
there is high relatedness between crossbred cows in the reference
population with those in the new test sets. It is also likely that
the inclusion of crossbred bulls in the reference would increase
the accuracy of GP in crossbred cows because crossbred bulls in
New Zealand are mainly used for mating with crossbred cows
(New Zealand Dairy Statistics 2018–2019)3.

Another model that has been tested for genomic prediction
of multiple breeds and crosses is the multi-trait model, where
the same trait is fitted as a correlated trait. However, this multi-
trait approach for GP in dairy cattle showed no consistent
improvement over a single-trait model (Olson et al., 2012; Haile-
Mariam et al., 2019; van den Berg et al., 2020). Given that the
correlation between DRP for milk traits for the same animals

3https://www.dairynz.co.nz/publications/dairy-industry/new-zealand-dairy-
statistics-2018-19/

in our study was previously reported to be high (Haile-Mariam
et al., 2019) and given that dairy cattle purebred and crossbred
cows are raised under the same condition and even in the
same herds, a multi-trait approach was not expected to improve
the accuracy of GP.

Our custom panel, XT_50k, included ∼35,000 variants (out
of 46,516) that were close to or included causal mutations for a
range of 34 dairy traits (Xiang et al., 2019). This means that it
is different to most custom panels in that the majority of SNP
were selected as more highly predictive rather than the majority
being random variants enriched with a smaller selected set. It is
useful to evaluate the accuracy of GP in validation sets that are
more distantly related to see if the LD phase between markers
and QTL is preserved more strongly. Therefore, it is interesting
to note that, for the pure H reference (Ref. 1), the XT_50k
genotypes maintained a considerably higher accuracy in the more
distantly related validation sets compared to the 50k. In fact, for
the most distantly related validation sets in Ref. 1, the XT_50k
accuracy even exceeded the high-density panel (HDnGBS) and,
as expected, the emBayesR approach showed a higher accuracy
than GBLUP. The reason for this is likely because the GBLUP
model assumes an infinitesimal model where all markers have
a small effect, while the emBayesR model assumes that a large
proportion of the markers have no effect and also allows for
a more complex genetic architecture by modeling a mixture
of normal distributions, which better accommodates estimating
large effect mutations such as the DGAT1 mutation for milk traits
(Grisart et al., 2004).

The extra value of the XT_50k was less clear in the pure
J reference (Ref. 2), which is possibly a reflection of the
variant discovery work to select markers for the XT_50k being
undertaken in a H-dominated set of animals (Xiang et al., 2019).
However, it could also be partly influenced by the fact that
the J reference set was less powerful than the H reference that
was three times larger. The average improvement here of up to
6% from the XT_50k versus the 50k set is in line with other
studies. For example, VanRaden et al. (2017) reported that adding
16,648 SNP to a 60k panel increased the reliabilities of within-
breed GP when compared to HD genotypes. Brøndum et al.
(2015) reported that adding 1,623 sequence variants identified by
genome-wide association study from multiple breeds to a custom
chip increased the reliabilites by up to 5 percentage points for
production traits in French H.

It was also interesting that, while emBayesR mostly
outperformed GBLUP, in our study, both approaches performed
equally well for the XT_50k set with multi-breed references.
Some previous studies showed that the accuracy of GBLUP
models was more competitive with Bayesian models when
selected QTL markers were modeled by fitting a separate GRM
to that of the random markers to allow their effects to be sampled
from a normal distribution with a higher variance (Khansefid
et al., 2014; Brøndum et al., 2015; Moghaddar et al., 2018).
It is possible that, in our study, GBLUP showed competitive
accuracies to emBayesR without fitting the selected variants
as a separate component because around 80% of the variants
in the XT_50k set were selected as QTL markers, with only
approximately 8,000 that were random markers. This makes the
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XT_50k custom panel quite different to those previously reported
where the proportion of QTL markers was much lower than the
remaining random marker set.

CONCLUSION

Our study compared different reference populations, SNP marker
sets, and statistical approaches (GBLUP and emBayesR) for GP
in purebred and crossbred H and J cows. Generally, we found
that a H-dominated reference had a negative effect on GP of J
and crossbreds. Balancing the breed proportions in the reference
set achieved a comparable accuracy to a H-dominated reference
but a consistently reduced bias for both crosses and purebreds.
Inclusion of crossbred cows in the reference population improved
the accuracy especially for crossbreds. Using a custom marker
panel (XT_50k) instead of standard 50k or pruned HD panels
further improved the prediction accuracy and reduced the bias.
Remarkably, the advantage of emBayesR over GBLUP was very
limited when XT_50k genotypes were used in GP, indicating
the benefits of using a selected set of markers. In conclusion,
to improve crossbred GP, we recommend a balanced-breed
reference containing crossbred animals and using a set of SNP
close to QTL and enriched for causal mutations. Our results
indicate that this may also be a competitive reference for GP
in purebreds, particularly for the less numerous breeds. We
also recommend further research to find an optimized method
of selecting a subset of the dominant breed for a balanced
reference or other corrective algorithms to mitigate the major
breed domination effect on the accuracy and bias of GP in pure
and crossbred cattle.
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Supplementary Figure 1 | Accuracy and bias of genomic predictions in Refs.
1–5 (including Ref. 4’) using different marker sets (50k, XT_50k, and pruned
HDnGBS) and analytic approaches (GBLUP and emBayesR) for milk, fat, and
protein yields as well as averaged across milk traits.

Supplementary Figure 2 | Accuracy and bias of genomic predictions in Ref. 3
and Refs. 6–8 using different marker sets (50k, XT_50k, and pruned HDnGBS)
and analytic approaches (GBLUP and emBayesR) for milk, fat, and protein yields.

REFERENCES
Alexander, D. H., Novembre, J., and Lange, K. (2009). Fast model-based estimation

of ancestry in unrelated individuals. Genome Res. 19, 1655–1664. doi: 10.1101/
gr.094052.109

Bouwman, A. C., Daetwyler, H. D., Chamberlain, A. J., Ponce, C. H., Sargolzaei, M.,
Schenkel, F. S., et al. (2018). Meta-analysis of genome-wide association studies
for cattle stature identifies common genes that regulate body size in mammals.
Nat. Genet. 50:362.

Brøndum, R. F., Su, G., Janss, L., Sahana, G., Guldbrandtsen, B., Boichard, D., et al.
(2015). Quantitative trait loci markers derived from whole genome sequence

data increases the reliability of genomic prediction. J. Dairy Sci. 98, 4107–4116.
doi: 10.3168/jds.2014-9005

Daetwyler, H. D., Capitan, A., Pausch, H., Stothard, P., Binsbergen, R., and
Brøndum, R. F. (2014). Whole-genome sequencing of 234 bulls facilitates
mapping of monogenic and complex traits in cattle. Nat. Genet. 46, 858–865.
doi: 10.1038/ng.3034

Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., et al. (2016).
Next-generation genotype imputation service and methods. Nature Genet. 48,
1284–1287. doi: 10.1038/ng.3656

de Roos, A. P. W., Hayes, B. J., Spelman, R. J., and Goddard, M. E. (2008).
Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey

Frontiers in Genetics | www.frontiersin.org 12 December 2020 | Volume 11 | Article 598580

https://www.crv4all-international.com/
https://www.crv4all-international.com/
https://interbull.org/
https://www.crv4all-international.com/
https://www.crv4all-international.com/
https://interbull.org/
https://www.frontiersin.org/articles/10.3389/fgene.2020.598580/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2020.598580/full#supplementary-material
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.1101/gr.094052.109
https://doi.org/10.3168/jds.2014-9005
https://doi.org/10.1038/ng.3034
https://doi.org/10.1038/ng.3656
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-598580 December 8, 2020 Time: 19:35 # 13

Khansefid et al. Exploiting Crossbreds in Genomic Prediction

and Angus Cattle. Genetics 179, 1503–1512. doi: 10.1534/genetics.107.
084301

Erbe, M., Hayes, B. J., Matukumalli, L. K., Goswami, S., Bowman, P. J., Reich, C. M.,
et al. (2012). Improving accuracy of genomic predictions within and between
dairy cattle breeds with imputed high-density single nucleotide polymorphism
panels. J. Dairy Sci. 95, 4114–4129. doi: 10.3168/jds.2011-5019

Esfandyari, H., Sørensen, A. C., and Bijma, P. (2015a). A crossbred reference
population can improve the response to genomic selection for crossbred
performance. GSE 47, 76–76. doi: 10.1186/s12711-015-0155-z

Esfandyari, H., Sørensen, A. C., and Bijma, P. (2015b). Maximizing crossbred
performance through purebred genomic selection. Genet. Sel. Evol. 47:16. doi:
10.1186/s12711-015-0099-3

Garrick, D. J., Taylor, J. F., and Fernando, R. L. (2009). Deregressing estimated
breeding values and weighting information for genomic regression analyses.
Genet. Sel. Evol. 41:55.

Goddard, M., MacLeod, I., Kemper, K., Xiang, R., Berg, I. V. D., Khansefid, M., et al.
(2018). “The use of multi-breed reference populations and multi-omic data to
maximize accuracy of genomic prediction,” in Proceedings of the 11th World
Congress on Genetics Applied to Livestock Production, Auckland.

Grisart, B., Farnir, F., Karim, L., Cambisano, N., Kim, J. J., Kvasz, A., et al. (2004).
Genetic and functional confirmation of the causality of the DGAT1 K232A
quantitative trait nucleotide in affecting milk yield and composition. Proc. Natl.
Acad. Sci. U.S.A. 101, 2398–2403. doi: 10.1073/pnas.0308518100

Habier, D., Fernando, R., and Dekkers, J. (2007). The impact of genetics
relationship information on genome-assisted breeding values. Genetics 177,
2389–2397. doi: 10.1534/genetics.107.081190

Habier, D., Fernando, R., Kizilkaya, K., and Garrick, D. (2011). Extension of the
bayesian alphabet for genomic selection. BMC Bioinformatics 12:186. doi: 10.
1186/1471-2105-12-186

Haile-Mariam, M., MacLeod, I., Khansefid, M., Schrooten, C., O’Connor, E., de
Jong, G., et al. (2019). Sharing multibreed cow data with New Zealand to
improve prediction for Australian crossbreed cows for milk yield traits. Proc.
Assoc. Advmt. Anim. Breed. Genet. 23, 370–373.

Haile-Mariam, M., MacLeod, I. M., Bolormaa, S., Schrooten, C., O’Connor, E.,
de Jong, G., et al. (2020). Value of sharing cow reference population between
countries on reliability of genomic prediction for milk yield traits. J. Dairy Sci.
103, 1711–1728. doi: 10.3168/jds.2019-17170

Harris, B., and Johnson, D. (2010a). The impact of high density SNP chips on
genomic evaluation in dairy cattle. Interbull Bull. 42, 40–43.

Harris, B., Johnson, D., Spelman, R., and Sattler, J. (2008). “Genomic selection
in New Zealand and the implications for national genetic evaluation,” in
Proceedings of the Interbull Meeting, Niagara Falls, Canada.

Harris, B. L. (2005). Breeding dairy cows for the future in New Zealand. N. Z. Vet.
J. 53, 384–389. doi: 10.1080/00480169.2005.36582

Harris, B. L., and Johnson, D. L. (2010b). Genomic predictions for New Zealand
dairy bulls and integration with national genetic evaluation. J. Dairy Sci. 93,
1243–1252. doi: 10.3168/jds.2009-2619

Hayes, B., Bowman, P., Chamberlain, A., Verbyla, K., and Goddard, M. (2009a).
Accuracy of genomic breeding values in multi-breed dairy cattle populations.
Genet. Sel. Evol. 41:51.

Hayes, B. J., Bowman, P. J., Chamberlain, A. J., and Goddard, M. E. (2009b). Invited
review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci.
92, 433–443. doi: 10.3168/jds.2008-1646

Hozé, C., Fritz, S., Phocas, F., Boichard, D., Ducrocq, V., and Croiseau, P. (2014).
Efficiency of multi-breed genomic selection for dairy cattle breeds with different
sizes of reference population. J. Dairy Sci. 97, 3918–3929. doi: 10.3168/jds.2013-
7761

Kemper, K. E., Reich, C. M., Bowman, P., vander Jagt, C. J., Chamberlain,
A. J., Mason, B. A., et al. (2015). Improved precision of QTL mapping using
a nonlinear Bayesian method in a multi-breed population leads to greater
accuracy of across-breed genomic predictions. Genet. Sel. Evol. 47:29.

Khansefid, M., Pryce, J. E., Bolormaa, S., Miller, S. P., Wang, Z., Li, C., et al.
(2014). Estimation of genomic breeding values for residual feed intake in a
multibreed cattle population. J. Anim. Sci. 92, 3270–3283. doi: 10.2527/jas.20
14-7375

Lee, S. H., and van der Werf, J. H. J. (2016). MTG2: an efficient algorithm
for multivariate linear mixed model analysis based on genomic information.
Bioinformatics 32, 1420–1422. doi: 10.1093/bioinformatics/btw012

Liu, Z. (2009). Deregressing MACE Proofs for Genomic Evaluations. PROTEJE
meeting in Brussels, Belgium.

Loh, P.-R., Danecek, P., Palamara, P. F., Fuchsberger, C., A Reshef, Y., K Finucane,
H., et al. (2016). Reference-based phasing using the Haplotype Reference
Consortium panel. Nat. Genet. 48, 1443–1448. doi: 10.1038/ng.3679

Lund, M. S., van den Berg, I., Ma, P., Brøndum, R. F., and Su, G. (2016). Review:
how to improve genomic predictions in small dairy cattle populations. Animal
10, 1042–1049. doi: 10.1017/S1751731115003031

MacLeod, I. M., Bowman, P. J., Vander Jagt, C. J., Haile-Mariam, M., Kemper,
K. E., Chamberlain, A. J., et al. (2016). Exploiting biological priors and sequence
variants enhances QTL discovery and genomic prediction of complex traits.
BMC Genomics 17:144. doi: 10.1186/s12864-016-2443-6

MacLeod, I. M., Hayes, B. J., and Goddard, M. E. (2014). The effects of demography
and long-term selection on the accuracy of genomic prediction with sequence
data. Genetics 198, 1671–1684. doi: 10.1534/genetics.114.168344

Mangin, B., Rincent, R., Rabier, C.-E., Moreau, L., and Goudemand-Dugue, E.
(2019). Training set optimization of genomic prediction by means of EthAcc.
PLoS One 14:e0205629. doi: 10.1371/journal.pone.0205629

Meuwissen, T., Hayes, B., and Goddard, M. (2001). Prediction of total genetic value
using genome-wide dense marker maps. Genetics 157, 1819–1829.

Moghaddar, N., MacLeod, I., Duijvesteijn, N., Bolormaa, S., Khansefid, M.,
Al-Mamun, H. A., et al. (2018). “Genomic evaluation based on selected
variants from imputed whole-genome sequence data in Australian sheep
populations,” in Proceedings of the World Congress on Genetics Applied to
Livestock Production, Auckland.

Neyhart, J. L., Tiede, T., Lorenz, A. J., and Smith, K. P. (2017). Evaluating methods
of updating training data in long-term genomewide selection. G3 7:1499. doi:
10.1534/g3.117.040550

Olson, K., VanRaden, P., and Tooker, M. (2012). Multibreed genomic evaluations
using purebred Holsteins, Jerseys, and Brown Swiss. J. Dairy Sci. 95, 5378–5383.
doi: 10.3168/jds.2011-5006

Pryce, J. E., Gredler, B., Bolormaa, S., Bowman, P. J., Egger-Danner, C., Fuerst,
C., et al. (2011). Short communication: genomic selection using a multi-breed,
across-country reference population. J. Dairy Sci. 94, 2625–2630. doi: 10.3168/
jds.2010-3719

Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D.,
et al. (2007). PLINK: a tool set for whole-genome association and population-
based linkage analyses. Am. J. Hum. Genet. 81, 559–575. doi: 10.1086/519795

Sargolzaei, M., Chesnais, J. P., and Schenkel, F. S. (2014). A new approach for
efficient genotype imputation using information from relatives. BMC Genomics
15:478. doi: 10.1186/1471-2164-15-478

Sevillano, C. A., Vandenplas, J., Bastiaansen, J. W. M., and Calus, M. P. L. (2016).
Empirical determination of breed-of-origin of alleles in three-breed cross pigs.
Genet. Sel. Evol. 48:55. doi: 10.1186/s12711-016-0234-9

Sørensen, M. K., Norberg, E., Pedersen, J., and Christensen, L. G. (2008). Invited
review: crossbreeding in dairy cattle: a danish perspective. J. Dairy Sci. 91,
4116–4128. doi: 10.3168/jds.2008-1273

Su, G., Brøndum, R. F., Ma, P., Guldbrandtsen, B., Aamand, G. P., and Lund, M. S.
(2012). Comparison of genomic predictions using medium-density ( 54,000)
and high-density ( 777,000) single nucleotide polymorphism marker panels in
Nordic Holstein and Red Dairy Cattle populations. J. Dairy Sci. 95, 4657–4665.
doi: 10.3168/jds.2012-5379

Toosi, A., Fernando, R. L., and Dekkers, J. C. M. (2010). Genomic selection in
admixed and crossbred populations. J. Anim Sci. 88, 32–46. doi: 10.2527/jas.
2009-1975

van den Berg, I., MacLeod, I. M., Reich, C. M., Breen, E. J., and Pryce, J. E. (2020).
Optimizing genomic prediction for Australian Red dairy cattle. J. Dairy Sci. 103,
6276–6298. doi: 10.3168/jds.2019-17914

van den Berg, I., Meuwissen, T. H. E., MacLeod, I. M., and Goddard, M. E. (2019).
Predicting the effect of reference population on the accuracy of within, across,
and multibreed genomic prediction. J. Dairy Sci. 102, 3155–3174. doi: 10.3168/
jds.2018-15231

van Grevenhof, I. E. M., and van der Werf, J. H. J. (2015). Design of reference
populations for genomic selection in crossbreeding programs. Genet. Sel. Evol.
47:14. doi: 10.1186/s12711-015-0104-x

Vandenplas, J., Calus, M. P. L., Sevillano, C. A., Windig, J. J., and Bastiaansen,
J. W. M. (2016). Assigning breed origin to alleles in crossbred animals. Genet.
Sel. Evol. 48:61. doi: 10.1186/s12711-016-0240-y

Frontiers in Genetics | www.frontiersin.org 13 December 2020 | Volume 11 | Article 598580

https://doi.org/10.1534/genetics.107.084301
https://doi.org/10.1534/genetics.107.084301
https://doi.org/10.3168/jds.2011-5019
https://doi.org/10.1186/s12711-015-0155-z
https://doi.org/10.1186/s12711-015-0099-3
https://doi.org/10.1186/s12711-015-0099-3
https://doi.org/10.1073/pnas.0308518100
https://doi.org/10.1534/genetics.107.081190
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.3168/jds.2019-17170
https://doi.org/10.1080/00480169.2005.36582
https://doi.org/10.3168/jds.2009-2619
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.3168/jds.2013-7761
https://doi.org/10.3168/jds.2013-7761
https://doi.org/10.2527/jas.2014-7375
https://doi.org/10.2527/jas.2014-7375
https://doi.org/10.1093/bioinformatics/btw012
https://doi.org/10.1038/ng.3679
https://doi.org/10.1017/S1751731115003031
https://doi.org/10.1186/s12864-016-2443-6
https://doi.org/10.1534/genetics.114.168344
https://doi.org/10.1371/journal.pone.0205629
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.1534/g3.117.040550
https://doi.org/10.3168/jds.2011-5006
https://doi.org/10.3168/jds.2010-3719
https://doi.org/10.3168/jds.2010-3719
https://doi.org/10.1086/519795
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.1186/s12711-016-0234-9
https://doi.org/10.3168/jds.2008-1273
https://doi.org/10.3168/jds.2012-5379
https://doi.org/10.2527/jas.2009-1975
https://doi.org/10.2527/jas.2009-1975
https://doi.org/10.3168/jds.2019-17914
https://doi.org/10.3168/jds.2018-15231
https://doi.org/10.3168/jds.2018-15231
https://doi.org/10.1186/s12711-015-0104-x
https://doi.org/10.1186/s12711-016-0240-y
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-598580 December 8, 2020 Time: 19:35 # 14

Khansefid et al. Exploiting Crossbreds in Genomic Prediction

VanRaden, P. M., and Cooper, T. A. (2015). Genomic evaluations and breed
composition for crossbred U.S. dairy cattle. Interbull Bull. 49, 19–23.

VanRaden, P. M., Null, D. J., Sargolzaei, M., Wiggans, G. R., Tooker, M. E.,
Cole, J. B., et al. (2013). Genomic imputation and evaluation using high-
density Holstein genotypes. J. Dairy Sci. 96, 668–678. doi: 10.3168/jds.20
12-702

VanRaden, P. M., Tooker, M. E., Chud, T. C. S., Norman, H. D., Megonigal, J. H. Jr.,
et al. (2020). Genomic predictions for crossbred dairy cattle. J. Dairy Sci. 103,
1620–1631. doi: 10.3168/jds.2019-16634

VanRaden, P. M., Tooker, M. E., O’Connell, J. R., Cole, J. B., and Bickhart, D. M.
(2017). Selecting sequence variants to improve genomic predictions for dairy
cattle. Genet. Sel. Evol. 49, 32. doi: 10.1186/s12711-017-0307-4

Wang, T., Chen, Y.-P., Goddard, M., Meuwissen, T., Kemper, K., and Hayes, B.
(2015). A computationally efficient algorithm for genomic prediction using a
Bayesian model. Genet. Sel. Evol. 47:34.

Winkelman, A. M., Johnson, D. L., and Harris, B. L. (2015). Application of genomic
evaluation to dairy cattle in New Zealand. J. Dairy Sci. 98, 659–675. doi: 10.3168/
jds.2014-8560

Xiang, R., Berg, I. V. D., MacLeod, I. M., Hayes, B. J., Prowse-Wilkins, C. P.,
Wang, M., et al. (2019). Quantifying the contribution of sequence variants with
regulatory and evolutionary significance to 34 bovine complex traits. Proc. Natl.
Acad. Sci. U.S.A. 116, 19398–19408. doi: 10.1073/pnas.1904159116

Xiang, R., van den Berg, I., MacLeod, I. M., Daetwyler, H. D., and Goddard, M. E.
(2020). Effect direction meta-analysis of GWAS identifies extreme, prevalent

and shared pleiotropy in a large mammal. Commun. Biol. 3:88. doi: 10.1038/
s42003-020-0823-6

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt,
D. R., et al. (2010). Common SNPs explain a large proportion of the
heritability for human height. Nat. Genet. 42, 565–569. doi: 10.1038/
ng.608

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: a tool
for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82. doi:
10.1016/j.ajhg.2010.11.011

Conflict of Interest: KK and EJ were employed by DataGene. CS, GJ, and EO’C
were employed by CRV, but they were not involved in the analysis of the data.

The remaining authors declare that the research was conducted in the absence of
any commercial or financial relationships that could be construed as a potential
conflict of interest.

Copyright © 2020 Khansefid, Goddard, Haile-Mariam, Konstantinov, Schrooten, de
Jong, Jewell, O’Connor, Pryce, Daetwyler and MacLeod. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 14 December 2020 | Volume 11 | Article 598580

https://doi.org/10.3168/jds.2012-702
https://doi.org/10.3168/jds.2012-702
https://doi.org/10.3168/jds.2019-16634
https://doi.org/10.1186/s12711-017-0307-4
https://doi.org/10.3168/jds.2014-8560
https://doi.org/10.3168/jds.2014-8560
https://doi.org/10.1073/pnas.1904159116
https://doi.org/10.1038/s42003-020-0823-6
https://doi.org/10.1038/s42003-020-0823-6
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.608
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.ajhg.2010.11.011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles

	Improving Genomic Prediction of Crossbred and Purebred Dairy Cattle
	Introduction
	Materials and Methods
	Animals
	Reference Sets
	Validation Sets
	Phenotypes
	Genotypes
	Breed Allocation
	Genomic Prediction
	GBLUP
	emBayesR
	Validation


	Results
	Breed Group Allocation
	Reference Populations: Refs. 1–5
	Genotypes: Marker Sets 50k, XT_50k, and Pruned HDnGBS (Refs. 1–5)
	Methods: GBLUP Versus emBayesR (Refs. 1–5)
	Equalizing Breed Proportions in Reference Sets

	Discussion
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


