
sensors

Article

An Enterprise Time Series Forecasting System for Cloud
Applications Using Transfer Learning †

Arnak Poghosyan 1,2,* , Ashot Harutyunyan 1,* , Naira Grigoryan 1, Clement Pang 1, George Oganesyan 1,
Sirak Ghazaryan 1 and Narek Hovhannisyan 3

����������
�������

Citation: Poghosyan, A.;

Harutyunyan, A.; Grigoryan, N.;

Pang, C.; Oganesyan, G.; Ghazaryan,

S.; Hovhannisyan, N. An Enterprise

Time Series Forecasting System for

Cloud Applications Using Transfer

Learning. Sensors 2021, 21, 1590.

https://doi.org/10.3390/s21051590

Academic Editor: Loris Nanni

Received: 16 January 2021

Accepted: 18 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 VMware, Inc., Palo Alto, CA 94304, USA; ngrigoryan@vmware.com (N.G.); pangc@vmware.com (C.P.);
goganesyan@vmware.com (G.O.); sghazaryan@vmware.com (S.G.)

2 Institute of Mathematics of NAS RA, Yerevan 0019, Armenia
3 TeamViewer Armenia, Yerevan 0018, Armenia; narek.hovhannisyan@teamviewer.com
* Correspondence: arnak@instmath.sci.am (A.P.); aharutyunyan@vmware.com (A.H.)
† This paper is an extended version of our paper published in Second CODASSCA Workshop on Collaborative

Technologies and Data Science in Artificial Intelligence Applications, Yerevan 2020, Armenia.

Abstract: The main purpose of an application performance monitoring/management (APM) soft-
ware is to ensure the highest availability, efficiency and security of applications. An APM software
accomplishes the main goals through automation, measurements, analysis and diagnostics. Gartner
specifies the three crucial capabilities of APM softwares. The first is an end-user experience moni-
toring for revealing the interactions of users with application and infrastructure components. The
second is application discovery, diagnostics and tracing. The third key component is machine learn-
ing (ML) and artificial intelligence (AI) powered data analytics for predictions, anomaly detection,
event correlations and root cause analysis. Time series metrics, logs and traces are the three pillars of
observability and the valuable source of information for IT operations. Accurate, scalable and robust
time series forecasting and anomaly detection are the requested capabilities of the analytics. Ap-
proaches based on neural networks (NN) and deep learning gain an increasing popularity due to their
flexibility and ability to tackle complex nonlinear problems. However, some of the disadvantages
of NN-based models for distributed cloud applications mitigate expectations and require specific
approaches. We demonstrate how NN-models, pretrained on a global time series database, can be
applied to customer specific data using transfer learning. In general, NN-models adequately operate
only on stationary time series. Application to nonstationary time series requires multilayer data
processing including hypothesis testing for data categorization, category specific transformations
into stationary data, forecasting and backward transformations. We present the mathematical back-
ground of this approach and discuss experimental results based on implementation for Wavefront by
VMware (an APM software) while monitoring real customer cloud environments.

Keywords: time series analysis; anomaly detection; neural networks; hypothesis testing; trend
analysis; periodicity analysis; cloud applications; pretrained models; transfer learning

MSC: 37M10; 62M45; 62M20; 68T07

1. Introduction

One of the main goals of IT infrastructure and application monitoring/management so-
lutions is the full visibility into performance, health and security with growing intelligence.
The prediction of performance degradations, root cause analysis as well as self-remediation
of issues before they affect a customer environment are anticipated features of modern
cloud management solutions. Self-driving data centers require the availability of proactive
Analytics with AI for IT operations (AIOps) [1] in view of nowadays very large and dis-
tributed cloud environments. The key capabilities of the AIOps are predictions, anomaly

Sensors 2021, 21, 1590. https://doi.org/10.3390/s21051590 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6037-4851
https://orcid.org/0000-0003-2707-1039
https://orcid.org/0000-0003-0909-8473
https://doi.org/10.3390/s21051590
https://doi.org/10.3390/s21051590
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21051590
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/5/1590?type=check_update&version=2

Sensors 2021, 21, 1590 2 of 28

detection, correlations and root cause analysis on all acquired data including traces, logs
and time series (see [2–10] with references therein).

Time series collection and analysis is of great importance for various reasons like
anomaly detection, anomaly prediction, correlations and capacity planning [11–15]. The
administrators of cloud environments require automated forecasts of the future metric-data
values for the prediction of the future states of application or infrastructure components.
The capacity planning requires trend analysis for resource consumption to predict addi-
tional needed processor bandwidth or mass-storage capacity in order to prevent delays
and failures. Time series data can also be used for correlation analysis and as the source of
anomaly events for further root cause analysis.

Time-series analysis is a significant branch of mathematics and computing that in-
cludes a variety of different types of analytical procedures, computational tools and fore-
casting methods. It is sufficient to mention the well-known and powerful approaches like
Fourier analysis, time series decompositions, forecasting by SARIMA and Holt-Winters’
methods (see [16–20] with references therein). However, distributed cloud infrastructures
and applications require relatively quick forecasts and are associated with significant
temporal constraints, forestalling lengthy and computationally intensive analyses.

In this paper (see also [2]), we focus our attention to time series forecasting with
further application to an anomaly detection problem. The application of NN-models and
other ML techniques may produce efficient methods [21,22], but a naive implementation
in a cloud-computing environment fails to provide adequate response times and would
likely be far too expensive for most clients. The training and storing of neural networks
are both time-consuming and expensive with respect to the necessary resources (central
processor unit (CPU), graphical processor unit (GPU) and memory). Hence, it is not
feasible to train those models in demand for the specified time series data. Moreover, it
would not be attainable to train and store special-purpose neural networks for all of the
different possible types of time series. From the other side, a naive attempt to train a single
neural network to analyze all of the various different types of time-series data would also
likely fail, since different types of time-series data exhibit different types of behaviors and
temporal patterns. A single neural network would need a vast number of nodes and even
vaster sets of training data to produce reasonable forecasts for global time-series data. The
truth should be somewhere in the middle.

The purpose of the paper is application of NN-based models to time series forecasting
in cloud applications. The main idea is in training of a generic NN-model and transferring
the acquired knowledge to a customer specific time series data never seen before. This
should be the only way of overcoming the challenges regarding the resource utilization
(GPU trainings of the networks) as the application of the pretrained model does not require
on-demand network training. This solution is feasible if the problem can be narrowed
down to some classes of time series data with specific behaviors for which the application
of pretrained models are attainable. Moreover, those classes should be large enough to
cover the sufficient portion of unseen customer data and specific enough by the behavior
to deal with moderate network configurations. We found that the class of stationary time
series can be properly handled by NN-models. Unfortunately, this class is not common in
the discussed domain. Conversely, the majority of time series data contain nonstationary
patterns like trend, seasonality or stochastic behavior. However, the class of stationary
time series data can be extended to time series categories which can be transformed into
the needed class by some simple transformations. This observation outlines the main idea
of our approach through the utilization of a pretrained NN-model with preliminary time
series classification and transformation into a stationary data via class-specific rules. We
develop the theoretical foundation of the approach and show the results of its realization
in a real cloud-computing environment. Implementation and testing are performed in
Wavefront by VMware [23]. Wavefront offers a real-time metrics monitoring and analytics
platform designed for optimization of cloud and modern applications.

Sensors 2021, 21, 1590 3 of 28

It is worth noting that our main goal is the performance of the approach for cloud
environments rather than the accuracy of predictions compared to the well-known classical
techniques that perform individual training for each specified time series data in the
GPU accelerated environments. For us, the performance is trade-off between accuracy
and resource utilization. We observed that the accuracy is comparable to the classical
ARMA related approaches while preserving resource consumption on acceptable levels. In
particular, the application of the pretrained network to a specified time series in a cloud
environment can be performed without GPU acceleration and with moderate number of
CPU cores.

One of the important applications of time-series forecasts is the detection or prediction
of infrastructure and application performance degradations or failures. Accurate and fast
anomaly/outlier detection leads to proactive problem resolution and remediation before it
affects a customer environment. This means that timeliness and preciseness of anomaly
detection are of great importance for distributed systems. However, it is worth noting that
forecasts based anomaly detection may be associated with low response times especially
for longer forecast horizons. Moreover, precautionary procedures should be taken for
reduction of false positive anomalies that can unnecessary disturb users with alarms.

Another important aspect tightly related to the problem is association of time series
outliers with system anomalies which is roughly speaking not always true. In any case,
such problems are unsolvable without intrusion of domain expertise into mathematical
models or their outcomes. Our solution to anomaly detection utilizes a test window which
is smaller than the forecast window for providing adequate response times and meanwhile
contains enough data points for the reduction of false positives. The fraction of violations
of the confidence bounds of the forecasts in the test window generates an anomaly signal.
The anomaly monitor generates alarms and warnings or launch preventive procedures
whenever the anomaly score rises above a particular threshold.

The current paper is organized as follows. Section 2 performs literature review
for time series forecasting methods, data categorization via hypothesis testing and time
series anomaly detection. Section 3 presents the main idea of time series data forecasting
via pretrained NN-models for cloud environments. The main barrier towards effective
application of NN-models is data stationarity. Section 4 describes hypothesis testing
approaches for data categorization. Each category identifies the set of rules that transforms
a time series into a stationary one. Section 5 shows the method of application of NN-models
to different data categories with corresponding forecasts and confidence bounds. Those
bounds serve as baseline for a time series normality behavior, and Section 6 describes its
application for time series anomaly/outlier detection. Section 7 outlines the configuration
of the pretrained NN-model and the process of its training for a global database of time
series data. Section 8 demonstrates the results of implementation of the forecasting engine
and performs comparisons with some of the classical approaches. Section 9 provides some
conclusive remarks.

2. Related Work

Application of pretrained NN-models to solution of different problems is a well-
founded approach for many domains like classification, image processing, voice recog-
nition, text mining, etc. (see [24–28] with references therein). It is known as transfer
learning for some applications [28] and is a natural approach for knowledge generalization
and complexity reduction. Such pretrained networks (VGG, ResNet, BERT, etc.) have
deep learning sophisticated architectures requiring serious resources and datasets for their
trainings. Application of this idea to time series forecasting is a novel approach. We only
consider the first steps and many questions still need clarifications. We trained the simplest
networks like MLP or LSTM, but the exact required architecture remains unknown and
extended research will be carried out elsewhere.

Time series forecasting is an important area for many diverse areas such as economet-
rics, signal processing, astrophysics, etc. The classical theory of forecasting [16–18] deals

Sensors 2021, 21, 1590 4 of 28

with time series data with the wide range of properties. ARMA models are very powerful
for stationary time series data. However, in many problems (e.g., economy, business) time
series exhibit nonstationary variations due to trend or seasonality (deterministic or stochas-
tic). Models that analyze nonstationary data require knowledge of those patterns. Some
models assume that variations are deterministic and apply regression analysis to handle
both trend and seasonality. One of the interesting approaches is time series decompositions
known as STL [20]. Other approaches model data as having stochastic trend as in ARIMA
and stochastic seasonality as in SARIMA. Holt-Winters’ seasonal and SARIMA models
represent a broad and flexible class relevant for many applications. It has been found
empirically that many time series can be adequately fit by those models, usually with a
small number of parameters.

Naturally, models based on artificial neural networks should have better performance
due to their nonlinearity, flexibility and ability of generalization [21,29,30]. It was assumed
that no any specific assumptions need to be made about the model which should be one
of the most important advantages. Different authors showed in their studies and experi-
ments [31] that better results compared to SARIMA and related models could be achieved
only by combination of transformations that “stabilize” the behavior (e.g., detrending, de-
seasoning) of the specified time series [32]. However, the results regarding the forecasting
of nonstationary time series data via NN models are very controversial [31,33–35].

Time series data categorization is the crucial milestone for our approach. Applica-
tion of NN-models and deep learning for time series classification should be explored
elsewhere [36]. In the current research, we restrict ourselves by the classical hypothesis
testing methods for trend and seasonality detection. Each data category identifies the
set of transformations that will convert any class-representative into a stationary time
series. For example, we detect deterministic and stochastic trends via KPSS-test [37] and
ADF-test [38–42], respectively. They have the best combined power for data with moderate
length. Deterministic seasonality can be tested via Fourier analysis which treats data in
the frequency domain [19]. It reveals only sinusoidal patterns in data. We implemented
the simplest approach known as phase dispersion minimization (PDM) test [43–45] which
treats data in the time domain. It is applicable for data with few observations, with nonreg-
ular sampling, with gaps and with nonsinusoidal periodicities. In general, multiseasonality
can be tested with several period-lags which should be considered elsewhere. Stochastic
seasonality can be tested via CH-test [46], HEGY-test [47], OCSB-test [48] and more [49–52].
In this article, we only test the deterministic seasonality. Stochastic seasonality will be
considered elsewhere.

Time series anomaly/outlier detection has been investigated by numerous authors for
many applications [11–14,53–58]. It is known as a very hard problem with many diverse
ramifications. NN-based methods and deep learning are becoming very popular and
powerful [55,59].

3. Main Idea

Application of NN-based models to time series forecasting in cloud applications faces
several challenges. One of the main ones is the restriction on the computing resource
utilization. Complex network trainings require powerful GPUs and sufficient volume of
data. Those are real issues in cloud environments, and the solution is in transfer learning, or
in other words, in the utilization of pretrained NN-models. We train a network on a global
dataset collected across different customers and store it for further application to a specific
time series data definitely never seen before. This means application of the NN-models
on-demand for a specified time series via several CPU cores without GPU acceleration.
The training of the models will be performed in private powerful data centers with enough
GPU resources. Figure 1 shows (see also Figure 1 in [2]) the outline of this idea.

The entire system consists of two separate and independent subsystems called as
offline and online engines. The offline engine performs a model training for a network
with some predefined configuration and on a global training database containing time

Sensors 2021, 21, 1590 5 of 28

series with diverse behaviors. The final weights, together with the configuration, define
the pretrained NN-model. We store the configuration and weights in a cloud (as a file in
the “json” format) for on-demand access. The global database should be regularly updated
by new time series data across different customers and environments. As a result, the
pretrained model would be regularly updated. The online engine corresponds to a customer
cloud-computing environment. An APM software restores the weights and configuration
of the pretrained network from the file. First, the engine retrieves the configuration for data
processing. Second, it restores also the weights and applies the model to the processed
time series data for a forecasting. The offline mode requires GPU-powered data centers.
The online mode is the customer common computing space without a GPU-acceleration.

Figure 1. Utilization of pretrained NN-models for cloud applications.

The diversity of time series data behaviors is a crucial milestone connected with the
system of Figure 1 that probably will not allow a naive realization of the approach. We
already mentioned the role of data categorization for proper model construction. One of
the possible scenarios is the selection of some data classes and the corresponding class-
specific network models. Those pretrained networks can be stored and called on-demand.
Preliminary data categorization should be performed in both online and offline modes for
treating with the required models. This scenario should be considered elsewhere.

Another scenario, developed in this paper, is the selection of a single class that can
be adequately treated by a unique NN-model. The other time series data can be treated
properly after some preliminary transformations to the specified class. This scenario should
be more optimal as only one model should be trained, stored and applied. How does
one find the class with the best trainable and transformable characteristics? Our previous
discussion indicated that the class of stationary time series should be the first candidate
for experiments. They can be properly modeled by NN-models, and the techniques of
transformation of a nonstationary time series into a stationary (called before as stabilization)
are theoretically well-founded. The set of stabilizing transformations is the class-specific. A
deterministic trend can be stabilized by linear or nonlinear regression. A stochastic trend
can be removed by a differencing. A seasonality can be removed via seasonal-means or
lag-differencing. We apply different well-known hypothesis testing algorithms for time
series classification. We use KPSS-test and ADF-test for the detection of deterministic and
stochastic trends. We test a deterministic periodicity via PDM-test. A stochastic-periodicity
can be verified via CH-test.

Sensors 2021, 21, 1590 6 of 28

As a result, we perform model trainings only for stationary time series data. We have
two possibilities. Either collect only stationary time series for a global database or collect
all available time series and use them after preliminary stabilization. We implemented the
second scenario and the flowchart of Figure 2 describes it. The training dataset contains
time series of any behavior. Hypothesis testing engine performs data categorization which
defines the set of required transformations. The resulting stationary time series is used for
the model training. It is possible that hypothesis testing fails to categorize data. We assign
it to an unknown class without further utilization for the training or forecasting.

Figure 2. Offline training of an NN-model for stationary time series data.

Application of the pretrained neural network to a user specified time series data
will similarly pass through the hypothesis testing engine for data categorization (see
Figure 3). The model will be straightforwardly applied to a stationary data. A nonstationary
time series should be transformed into a stationary one, and then the corresponding
inverse transformations should be applied to the forecast for recovering the original scale
and behavior.

Figure 3. Online forecast for a user specified time series data.

The next challenge connected with the application of NN-models is in the limited
number of predefined input/output nodes of the networks. It means utilization of a small
number of history and forecast data points for training and prediction. In the current
implementation, we use networks with 40 inputs and 20 outputs resulting in utilization of
40 history points to get 20 forecast values. It restricts the model capability to use bigger
number of history points even when they are available. NN-models require uniformly
sampled input points. The forecast points will appear with the same monitoring interval
as the history points. Figure 4 shows a sparse grid (the red dots) selected from a history
window (red and black dots together) by a comb-like procedure. Our idea is in mobilization
of the entire history window as the collection of sparse grids (see Figure 4). We take N
uniformly sampled history points multiple to the size of the input of the pretrained-
network. In our specific implementation, it should be multiple to 40 and N = k ∗ 40 where

Sensors 2021, 21, 1590 7 of 28

k = 1, 2, · · · can be selected from the complexity considerations. This is the entire history
window (see the “full grid” in Figure 4). We divide the full grid into k different uniformly
sampled sparse grids containing 40 data points by the same comb-like procedure. All
sparse grids have the same monitoring interval and together they combine the full grid.
The sparse grids will be used independently for a network training and predictions. The
corresponding forecast window will contain 20 ∗ k uniformly sampled data points.

It is worth noting that the hypothesis testing should be applied to the entire full grid
to have sufficient statistics for revealing the behavior of a time series. Then, the same
class-specific transformations should be applied to each sparse grid.

Full Grid

Current Time

Current Time

Sparse Grid

Figure 4. A full grid generation as the collection of sparse grids ready for a network utilization.

4. Hypothesis Testing for Data Categorization

In this paper, we restrict ourselves by some specific data categories that contain
deterministic and stochastic trends, deterministic and stochastic-periodicities. In all those
cases, we are aware how to transform a nonstationary data into a stationary one with further
application of NN-models. The list of categories can be enlarged if the corresponding
transformations are known. It should be reasonable to add more domain specific data
categories based on some expertise. The flowchart of Figure 5 illustrates the workflow of a
time series categorization engine.

Figure 5. Data categorization engine.

Sensors 2021, 21, 1590 8 of 28

The engine starts with the periodicity analysis. It tests for the three data categories
called as stationary-periodic, trend-periodic and stochastic-periodic time series. The PDM-
test inspects the first two categories and CH-test the last one. The PDM-test starts with
the stationary-periodic class. It runs across different lags for a time series, measures their
significance (see below) and either assigns the original data to the stationary-periodic
class with a specific period-lag or rejects it. In the last case, it tests for the trend-periodic
class. The test removes a possible deterministic trend (without checking its existence) via
linear regression and verifies a periodicity once more. It runs across different lags for
the detrended data and either assigns it to the stationary-periodic class with a specific
period-lag or rejects it. In the first case, the original data should be assigned to the trend-
periodic class with the known trend component and periodicity-lag. In the second case, the
CH-test inspects data for a stochastic periodicity. Time series is assumed to be nonperiodic
if all mentioned periodicity tests fail. A nonperiodic time series data should be scanned
for a stationarity or trend. The combination of the KPSS-test and ADF-test will classify
data into one of the following data categories: stationary, trend-stationary (the trend is
deterministic), stochastic-trendy (the trend is stochastic also known as unit-root process)
and an unknown type if all other tests fail to recognize a time series behavior. We do not
utilize unknown types.

4.1. Periodicity Analysis

We restrict ourselves by stationary-periodic and trend-periodic categories. The
stochastic-periodic time series will be considered elsewhere although the idea is iden-
tical to the discussed.

Let yt, t = 1, . . . , T be the observed time series data. We say that `0 is the period-lag
for time series yt if

yt+k∗`0 = yt, k = 1, 2, . . . (1)

In reality, we can only expect approximate equality due to noise and instability in a
time series

yt+k∗`0 ≈ yt, k = 1, 2, . . . (2)

We perform inspection of a periodicity by the PDM-test [43–45]. The idea is very
simple and Figure 6 illustrates it. It shows a pure periodic time series data with `0 = 37
(see (1)). We consider two different subsequences uniformly sampled from the data. The
sampling rate of the first subsequence coincides with the true period-lag ` = `0 = 37 (see
the top chart). It is a constant subsequence with zero variance due to the periodicity of
the original time series. The sampling rate of the second subsequence does not match the
period-lag ` 6= `0 (see the bottom chart). The variance of the second subsequence is close to
the variance of the original time series. This observation is the cornerstone of the PDM-test.

More precisely, let σ2 be the variance of time series yt

σ2 =
1

T − 1

T

∑
t=1

(yt − ȳ)2, (3)

where ȳ is the average. Assume M distinct samples collected from the time series with the
same lag ` and containing nj data points with variances s2

j (`), j = 1, . . . , M. We denote by

s2(`) the average variance of the samples as follows

s2(`) =
∑M

j=1(nj − 1)s2
j (`)

∑M
j=1(nj −M)

. (4)

A preliminary goal is the minimization of s(`) via lag selection.

Sensors 2021, 21, 1590 9 of 28

Let us reformulate the problem that allows more efficient implementation. We define
the phase of each data point yi at the time stamp ti by the following expression

Φi =
ti
`
−
[

ti
`

]
, Φi ∈ [0, 1], (5)

where [·] stands for the integer part. If data points are sampled regularly, then ti = i,
i = 1, 2, In order to detect data points with similar phases, we divide the full phase
interval (0, 1) into fixed bins (20 in our experiments) and pick M samples from the same bin.

Figure 6. Illustration of the idea of the phase dispersion minimization (PDM) test.

Now, consider the following statistic

θ(`) =
s2(`)

σ2 . (6)

If ` 6= `0
s(`) ≈ σ and θ(`) ≈ 1. (7)

Otherwise, if ` = `0, statistic θ will reach a local minimum compared with neighboring
periods, hopefully near zero

θ(`) ≈ 0. (8)

We define “importance” of each lag as follows

importance(`) = 1− θ(`). (9)

Time series is assumed to be periodic if one of the local maximums of the importance(`)
is greater than a predefined threshold (say 0.6). Period-lag `0 can be identified as the
solution of the following optimization problem{

`0 = argmin s(`)
importance(`0) > threshold

(10)

Sensors 2021, 21, 1590 10 of 28

The PDM-test has another interpretation connected with time series decompositions.
Assume the following additive decomposition of a time series depending on a lag = `
(details see in [16])

Time Series = Seasonal Component(`) + Residual Time Series(`). (11)

The strength of the seasonal component corresponding to a lag = ` can be measured
as the fraction of variances

variance(Seasonal Component(`))
variance(Time Series)

(12)

which exactly coincides with the importance defined via (9).
Figure 7 illustrates the process of identification of a trend-periodic time series data.

The top chart shows almost periodic time series data (see (2)) with added trend shown as
a straight line. The middle chart shows the graph of importance(`) for the original time
series. All local maximums have importances smaller than the threshold. It rejects the
periodicity of the original time series. The bottom chart shows the graph of importance(`)
for the detrended time series via linear regression. The first local maximum corresponding
to lag (` = 19) has the importance above the threshold. The time series can be categorized
as from the trend-periodic class with `0 = 19 period-lag.

4.2. Trend Analysis

We restrict ourselves by stationary, trend-stationary and stochastic-trendy (a unit-root
process) categories. Data categorization will be performed via KPSS-test and ADF-test.
We follow [37–39]. Let yt, t = 1, . . . , T be the observed time series data. The KPSS-test
considers the following decomposition of yt into the sum of a deterministic trend, a random
walk and a stationary error

yt = ξt + rt + εt, (13)

where rt is the random walk
rt = rt−1 + ut (14)

with r0 = c and ut from iid(0, σ2
u). Under the null-hypothesis, yt is trend-stationary if

σ2
u = 0. We call this test as KPSSct. In a special case ξ = 0, yt will be stationary around a

level c or simply, a stationary. We call the test as KPSSc. Thus, we consider the following
two hypothesis testing scenarios:

KPSSc test :

−Null Hypothesis : stationarity

− Alternative Hypothesis : unit− root process

(15)

and

KPSSct test :

−Null Hypothesis : trend stationarity

− Alternative Hypothesis : unit− root process

(16)

Both tests apply ordinary least squares (OLS) for coefficient determination and let et,
t = 1, 2..., T be the corresponding residuals. The idea of the KPSS-test is in verification of
the hypothesis σ2

u = 0 via LM-statistic defined as

LM =
T

∑
i=1

S2
i

σ̂2
ε

, (17)

Sensors 2021, 21, 1590 11 of 28

where

St =
t

∑
i=1

ei, t = 1, 2, . . . , T, (18)

and σ̂2
ε is the estimate of variance of εt (see (13)). The corresponding p-values (Pv) can be

found in [37].

Figure 7. Categorization of a trend-periodic time series.

The ADF-test uses the following data model for time series yt

∆yt = yt − yt−1 = c + α0yt−1 +
m

∑
s=1

αs∆yt−s + εt, (19)

where c is the level, εt is a stationary process and m is the order of the model. The value
m = 0 corresponds to DF-test (Dickey–Fuller test). ADF-test uses OLS for the coefficients
determination. Akaike information criterion is used for the order selection. The test is

Sensors 2021, 21, 1590 12 of 28

carried out under the null hypothesis α0 = 0. Alternatively, test verifies the condition
α0 < 0 that corresponds to a stationary process. We call this test as ADFc:

ADFc :

−Null Hypothesis : unit− root process

−Alternative Hypothesis : stationarity

(20)

The value c = 0 corresponds to a unit-root process without a drift. The ADFc-test
applies DF-statistic [38] for determination of the corresponding p-values (Pv).

The flowchart of Figure 8 illustrates the workflow for trend and stationarity testing.
It shows the priority of test applications. We sequentially apply KPSSc, KPSSct, ADFc
and inspect the corresponding p-values of the tests. If the corresponding Pv ≥ 0.05 (corre-
sponding to 95% confidence level), we stop the procedure and categorize data accordingly.
The data type is unknown if all tests fail. Figure 9 shows application of this flow for
specific examples.

Figure 8. The priority order for a trend detection.

Figure 9 presents the corresponding p-values of the tests. We use in our experiments
implementation of KPSSc, KPSSct and ADFc from Python module “statsmodels”. The
p-value of the KPSSc-test for the first example is larger than 0.05. Although, the p-value of
the KPSSct is also bigger than 0.05, the priority order categorizes data as the stationary. By
the way, in the production, we don’t need to verify the second p-value if the first one is
already the winner. The p-value of the KPSSc-test for the second example is smaller than
0.05 and the categorization engine rejects the stationarity (null hypothesis). The p-value
of KPPSct-test equals to 0.05. We cannot reject the null hypothesis by 95% confidence and
classify data as from the trend-stationary class. However, it is interesting to see that the
p-value of the ADFc-test is also very big. This means that data can be categorized either
as trend-stationary or as stochastic-trendy, but the priority order (actually based on the
simplicity principle) selects the trend-stationarity as the winner. For the third example, the
p-values of KPSSc and KPSSct tests are smaller than 0.05. The time series belongs to the
stochastic-trendy class as the Pv of the ADFc-test is bigger than 0.05.

Sensors 2021, 21, 1590 13 of 28

Figure 9. The process of trend testing.

5. Time Series Forecasts with Confidence Bounds

In this section, we discuss the application of the pretrained NN-models to time series
forecasting in the online mode. The entire engine was described in Figure 3. Recall that
NN-models were only pretrained for stationary time series data. A nonstationary time
series should be converted into a stationary one and the corresponding forecast should be
reconverted by backward transformations. We restrict ourselves by the five specific data
types mentioned before: stationary, trend-stationary (deterministic trend), stochastic-trendy
(unit-root process), stationary-periodic and trend-periodic. More extended version of data
categorization will be considered elsewhere.

5.1. Stationary Time Series Data

We treat with the class of stationary time series directly without forward and backward
transformations. We only perform scaling into interval [0, 1] as the well-known standard

Sensors 2021, 21, 1590 14 of 28

procedure before application of neural networks. We apply the following transformation
for the scaling

Xscaled =
X− Xmin

Xmax − Xmin
, (21)

where X is the original time series and Xmin, Xmax are its minimum and maximum values,
respectively. We apply reverse scaling to the corresponding forecast by multiplying with
(Xmax − Xmin) and summing by Xmin.

The confidence bounds of the forecasts are one of the important pieces of any approach.
Ideally, we need rather long historical data with different forecasts that will help to extract
the bounds based on some confidence levels (say 95%). Unfortunately, we have only one
history window with the corresponding forecast window and forced to extrapolate that
available information to future data points without a strong evidence.

Assume yk, k = 1, . . . , T be the observed data points from a stationary time series,
µ = mean{yk} be the average and ŷj, j = T + 1, . . . , T + Tf be the corresponding forecast

values. Let yhigh
s , s = 1, . . . , Nhigh be the data points from the history window that are

bigger or equal than µ. Similarly, let ylow
s , s = 1, . . . , Nlow be the data points from the

history window that are smaller or equal than µ. Then, the higher and lower “standard
deviations” can be estimated as follows

σhigh =

 1
Nhigh − 1

Nhigh

∑
s=1

(
yhigh

s − µ
)2
 1

2

, (22)

and

σlow =

(
1

Nlow − 1

Nlow

∑
s=1

(
ylow

s − µ
)2
) 1

2

, (23)

respectively. We define upper and lower bounds (UB and LB as confidence bound vectors)
for each of the point in the forecast window as follows

UBj = ŷj + z ∗ σhigh, LBj = ŷj − z ∗ σlow, j = T + 1, . . . , T + Tf , (24)

respectively, where parameter z stands for the criticality levels z = 1, 2, 3, · · · .
The confidence bounds for any data category can be found similarly. We perform

forward transformations for converting a time series into a stationary, calculate the corre-
sponding forecast with the confidence bounds and apply the backward transformations.

Figure 10 illustrates an example of a stationary time series. The history window
contains 400 points (see the green curve in Figure 10). The KPSSc-test applied to the history
window returns the p-value larger than 0.05 and the null hypothesis for data stationarity
cannot be rejected. This means application of the pretrained neural network to the sparse
grids without any forward/backward transformations. The history consists of 10 sparse
grids with 40 points in each. They provide with 10 forecasts with 20 points in each. We
collect those forecasts with the confidence bounds together and get 200 points in the forecast
window (see the red curve in Figure 10). The gray area corresponds to the confidence
bounds with z = 3 (see (24)). We see from the figure that the forecast is smoother (less
variable) than the observed data points which is common for the NN-based models. Only a
few data points violate the confidence bounds. There are no changes or anomalies/outliers
in data to report.

Sensors 2021, 21, 1590 15 of 28

Figure 10. The forecast of a stationary time series.

5.2. Trend-Stationary Time Series Data

The class contains time series data with deterministic linear trend that can be removed
via ordinary least squares (linear regression). In general, a nonlinear trend also can be
considered along the same ideas. The trend removal procedure should be applied to each
sparse grid with the further calculation of the forecasts and confidence bounds. The original
behavior should be recovered via trend addition as the backward transformation applied
to each sparse grid.

Figure 11 shows an example of a trend-stationary time series. We apply the KPSSc-test
to the history window (see the green curve in Figure 11). Its p-value is smaller than 0.05
and the null-hypothesis is rejected. This means that the time series is not stationary and
the KPSSct-test should be tried. Its p-value is larger than 0.05. We cannot reject the null-
hypothesis and assume that data is from the trend-stationary class. The linear regression
is applied to each sparse grid for identifying the corresponding slopes (ks) and intercepts
(bs). We remove the trends (kst + bs) from all sparse grids. There are 7 sparse grids with
40 points in each. We apply the pretrained NN-model to each detrended time series on
the sparse grids and get the forecasts with the confidence bounds. Finally, the forecasts,
together with the bounds, are modified by the backward transformations as trend additions.
As a result, we get 140 forecast data points shown as a red curve in Figure 11. The gray
area shows the final confidence bounds. Almost all observed data points lay between
the bounds. There are no changes or outliers in data to report which is in line with our
visual perception.

Figure 11. The forecast of a trend-stationary time series.

Sensors 2021, 21, 1590 16 of 28

5.3. Stochastic-Trendy Time Series Data

The class contains time series data that can be transformed into a stationary via
differencing. Those time series are known also as unit-root processes or unit-root processes
with a drift. The differencing should be applied to each sparse grid with further calculation
of the forecasts and confidence bounds. The original behavior should be restored via
backward-differencing.

Figure 12 shows an example of a time series with the stochastic trend.

Figure 12. The forecast of a stochastic-trendy time series.

We sequentially apply KPSSc and KPSSct tests to the entire history window (see the
green curve in Figure 12). Both p-values are smaller than 0.05 and both null-hypotheses
are rejected. The p-value of the ADFc-test is larger than 0.05. We cannot reject the null-
hypothesis and categorize data as from the stochastic-trendy class.

The process of forecasting for the stochastic-trendy class has some peculiarities com-
pared to the previous examples. Our implementation of the pretrained model requires 40
inputs. However, after the differencing, the number of points in a grid will be reduced by
one. That is why 41 points should be selected in a sparse grid as the starting point. The
history window in Figure 12 (the green curve) contains 7 sparse grids with 41 points in
each. Let vt, t = 0, . . . , 40 be the time series across one of the sparse grids. We assume the
following model for vt

vt − vt−1 = c + ut, t = 1, . . . , 40, (25)

where c is the intercept (responsible for a drift) and ut is a stationary process. Let zt be the
differenced time series

zt = vt − vt−1, t = 1, . . . , 40 (26)

with the corresponding model

zt = c + ut, t = 1, . . . , 40. (27)

This means that zt is a stationary time series containing 40 data points for application
of the pretrained model. Let ẑ40+j, j = 1, . . . , 20 be the corresponding forecast. The
forecast v̂40+j, j = 1, . . . , 20 for the original time series can be derived via application of
the backward-differencing

v̂41 = v40 + ẑ41, (28)

and
v̂40+j = v̂40+j−1 + ẑ40+j, j = 2, . . . , 20. (29)

The same procedure should be applied to confidence bounds and other sparse grids.
Those forecasts and bounds are shown in Figure 12 as red curve and gray area, respectively.
Normally, the forecast window for time series from this class should be rather short. We see

Sensors 2021, 21, 1590 17 of 28

that data points closer to the current time lay within the bounds while the farther points
mostly lay outside. It is a normal behavior for time series data with the stochastic trend
due to its unpredictable behavior.

5.4. Stationary-Periodic Time Series Data

The class contains periodic (see (1)) or almost periodic (see (2)) time series with known
period-lags `0. We consider two different approaches for the corresponding forecasts.

The first approach is connected with the structure of history windows described
above. The number of points in a history window is multiple to the size of the input of
the pretrained NN-model. We already mentioned that the current model has 40 inputs
and the history window will have 40 ∗ k data points with any k = 1, 2, Hence, we
have k different sparse grids for separate forecasts. The selection of k should be a trade-off
between the needed resolution and the complexity of computations. The first approach
requires selection k = `0. A stationary-periodic time series with period-lag `0 will be
almost a constant across all sparse grids sampled with the same lag (see Figure 6) allowing
us direct application of the pretrained model.

Figure 13 shows an example of a stationary-periodic time series with `0 = 19 revealed
via PDM-test, where the forecasts are estimated based on the mentioned procedure. The
history window contains 40 ∗ 19 = 760 data points (we show only the part of it). The
forecast window contains 380 data points. We also show the data points of the history
window for better visual perception.

The mentioned approach may cause problems due to several reasons. The first
problem is the connection of the history and forecast windows with the period-lag. The
latest can be rather large leading to unreasonable extensive computations. The second
problem is in unknown period-lag. It means time series sampling with some preselected
k and then resampling according to its period. It will cause time consuming duplicated
data processing.

Figure 13. The forecast of a stationary-periodic data.

The second approach does not require the connection between the number of sparse
grids and the period-lag. A time series can be sampled with any value of parameter k.
Deseasoning of the time series can be performed via seasonal means (details see in [16]).
We can remove the seasonal component, apply the pretrained neural network and return
the seasonal component back. Similarly, the confidence bounds can be estimated. The
forecast will be identical to the one presented in Figure 13.

5.5. Trend-Periodic Time Series Data

This class contains periodic or almost periodic time series with some linear trend. The
process of data categorization was discussed before. We need to remove the detected trend,
get the forecast as it was discussed in the previous subsection and return the trend back.

Sensors 2021, 21, 1590 18 of 28

Figure 14 shows an example of a time series from the trend-periodic class. We applied the
PDM-test to the history window (see the green curve) before and after the linear trend
removal. In the first case, the PDM-test fails to detect any significant period-lag. In the
second case, it observed a periodicity with period-lag `0 = 19.

Figure 14. The forecast of a trend-periodic data.

We take 19 sparse grids with 40 data points in each and directly apply the pretrained
NN-model, according to the first approach of the previous subsection, to the detrended
time series. Later, we recover the removed trend for the forecast and confidence bounds.
We see that almost all observed data points are within the confidence bounds.

6. Anomaly Signals from Time Series Data Forecasts

In this section, we discuss an approach to anomaly signal time series generation based
on the confidence bounds of the forecasts. Each data point in the anomaly signal shows the
percentage (fraction) of observed data points in a test window that violate upper and/or
lower confidence bounds. The anomaly signal may detect or predict anomalous conditions
whenever its values exceed a particular threshold. In such situations, an anomaly monitor
will generate alarms indicating some behavioral changes in a specified time series. We
consider details for NN-based forecasting methods described in the previous sections,
although the approach is applicable to any predictive model.

One of the principle problems in time series data anomaly/outlier detection is setting
of the proper trade-off between the timeliness and confidence of the detections. From the
one side, the alarms should be detected as faster as possible for preventive actions before
the alarms will impact customers’ environments. From the other side, the big number
of false positive alarms overwhelms system administrators and decreases the confidence
towards the anomaly detection system. The trade-off may be resolved by the proper
selection of underlying parameters for the anomaly signal generation.

An initial indication that the state of a monitored system has begun to change in an
unexpected fashion is that an observed data point diverges from its forecast. However,
no one is expecting that this single indication will be used as a detectable signal due to
a significant noise in time series data and its nondeterministic nature which makes very
accurate predictions impossible. Another indication can be violation of a confidence bound
by an observed data point. Nevertheless, no one will pay attention to that signal if the
subsequent observed time series data are within the bounds or even close to the predicted
values. The violation may possibly be an outlier due to noise or some sudden instability
rather than an indication of a serious malfunctioning of a system. It is likely that many
false-positive alarms will appear if alarms and warnings will be generated based on single-
data-point or short-term departures of observed time series data values from the forecast

Sensors 2021, 21, 1590 19 of 28

ones. However, by waiting until a pattern of detected preliminary behavioral change will
emerge, the problem may have already cascaded to a point when proactive actions can no
longer be possible due to some catastrophic impacts on the system. The period of time
between the initial indication of an anomaly and the onset of serious degradation depends
on the nature of time series and the process that it describes.

Figures 15 and 16 illustrate the basis of the solution to the mentioned problems.
Recall that there are three forecast time series data that should be used for anomaly signal
generation. The first one is the predicted time series (forecast window) and the next two
are predicted upper and lower bounds. We are not showing the last two time series data
in the figures for the simplicity but the term violation always refers to the bounds. In
addition, we refer to a history window which contains time series data points from which
the mentioned forecasts were calculated. Moreover, observation window contains actually
monitored time series data points. It is assumed that the history and forecast windows
contain uniformly sampled time series data points with the same monitoring intervals.

Figure 15. The hidden background of an anomaly monitor.

Figure 15 represents the hidden background of an anomaly monitor while following
a specific time series data. The monitoring will be started by indication of the length
of the forecast window. We describe below the process of parameter selection in more
details. Now, we assume that the forecast window contains T uniformly sampled data
points. To be more precise, parameter T must be a multiple of the size of the output of
the pretrained NN-model. Moreover, in the previous sections it was indicated the strict
connection between the sizes of a history window and the corresponding forecast window.

The current pretrained network uses 40 historical points to predict 20 future points.
It means that the history window is twice as long as the forecast window for the current
model. For generality, assume that a history window is r times longer than a forecast
window (see Figure 15). The user will not see the history window. His UI chart will contain
several forecast windows, as much as possible to fit. We show m such intervals in Figure 15.
The engine will calculate the forecast for the first window and the corresponding anomaly
signal will be estimated for all observed data points. Then, the engine will repeat the
process for the other forecast windows by shifting the history window to the right by T
data points until it will reach the final forecast window. There are different reasons why
we did not calculate a unique forecast for the entire UI chart (for m · T data points). The
first reason is the complexity of data preprocessing. If a user opens a rather big UI chart (T
is big), then the forecast engine will fail to process r · T data points. The second reason is

Sensors 2021, 21, 1590 20 of 28

the desire of immediate incorporation of the latest observed data points into the process of
anomaly signal generation.

Figure 16 shows the process of calculation of the anomaly signal for each of the forecast
windows. Moreover, the anomaly score must be assigned to each data point in a forecast
window. As the entire forecast window can be rather large and by recalling the requirement
for the timeliness, we incorporate a test window (smaller or equal to the forecast window)
for the percentage calculation (see the “blue” rectangles in Figure 16) for faster reaction to
possible anomalies. To each just observed time series data point a test window should be
assigned extending to the left by the time axis where the point of interest is the last point of
the window. The percentage of violations in the test window is the anomaly score of that
last point. Then, the anomaly monitor can visualize the anomaly signal or trigger an alarm
based on some threshold value (say 0.8).

Figures 17–19 show some specific time series data with the corresponding anomaly
signals. “Blue” curves correspond to time series data and “red” ones to the anomaly signals.
The values of time series data are shown on the left y-axes, and the values of the anomaly
scores on the right. Anomaly scores take values from interval [0, 1]. Value 0 means that all
observed data points in the test window arrived within the confidence bounds. Value 1
means that all observed data points in the test window violated the confidence bounds.

Figure 16. Utilization of test windows for the anomaly signal calculation.

Let us explain some peculiarities regarding time series visualization in Wavefront.
Figures 17–19 refer to the Wavefront UI. The UI cannot handle all time series data points
available in a database and it applies a method known as summarizing. The figures show
that in the current situation the summarizing function uses averaging of data points within
a bucket with 7200 s duration. However, NN-model utilizes totally different data points
derived from the database via interpolation for uniform sampling. Unfortunately, it means
that the actual time series data utilized by the NN-model is not the one that we see in the UI.
This was one of the big challenges for the current implementation as the situation should
be explained to our product users for increasing the confidence towards the forecasts and
anomaly detection visualization.

Figure 17 shows the example of a stationary time series data without visible out-
liers/anomalies and the corresponding anomaly score is almost flat near the zero value.
Small fluctuations in the anomaly score are outcomes of random outliers that go out of
confidence bounds but are not visible due to Wavefront data summarization procedure.
Figure 18 shows piecewise constant data with two change points. In both cases the anomaly

Sensors 2021, 21, 1590 21 of 28

score detect the behavioral changes with the values bigger than 0.8 (the threshold for an
alarm generation). It is important that the jumps in the anomaly scores ideally coincide
with the jumps in time series data. Figure 19 shows almost constant time series data with
some spikes. The behavior of the anomaly signal mimics those spikes. In two cases, the
scores became bigger than 0.8, so alarms should be announced. In other cases, the changes
and spikes should be ignored.

Figure 17. An example of a stationary time series with the anomaly signal.

Figure 18. An example of a piecewise-constant time series with the anomaly signal.

Figure 19. An example of a constant time series with random spikes with the anomaly signal.

The biggest problem that the Wavefront customers encountered while consuming the
described system for anomaly detection was the large number of false positive alarms. Our
experience shows that the customers agree with the reduction of false positives even at the
expense of the rising number of false negatives. The common approach to reduction of false
positives is through smoothing methods. Paper [60] describes such a kernel-smoothing
simple procedure. The kernel smoothing can be applied both to time series data and/or
anomaly scores. It actually performs a weighted averaging of data points or anomaly
scores where the weights can be extracted via some kernel function. The Gaussian kernel is
the most common kernel

Kh(x, y) = exp
(
−α
||x− y||2

h

)
, (30)

where h is the width (window) of the kernel, α > 0 is some sensitivity parameter and ‖ · ‖
stands for the Euclidian distance. Assume that xi are time series data points and si are the

Sensors 2021, 21, 1590 22 of 28

corresponding anomaly scores. A new anomaly score ŝi ([60]) is estimated as follows (the
weighted mean of anomaly scores detected before the current time)

ŝi =

i

∑
j=i−n

Kh(xj, xi)sj

i

∑
j=i−n

Kh(xj, xi)

,

where n is the number of points within the window h. We can set h to be equal to the test
window mentioned above. It is possible to calculate two-sided averages if time allows
us to wait for new data points to arrive. Similarly, instead of the anomaly scores, we can
smooth time series data points. Let x̂i be the estimate:

x̂i =

i

∑
j=i−n

Kh(xj, xi)xj

i

∑
j=i−n

Kh(xj, xi)

.

Then, a new anomaly score estimate ŝi based on x̂i can be calculated. Experiments
showed that the first approach is preferable. However, more experiments should be
performed for the final decision. Probably, time series category (semiconstant, trendy, etc.)
should be important for the approach.

7. Materials and Methods

In this section, we introduce the NN-model training process in the offline mode. The
training was performed in VMware private data centers equipped with powerful GPUs.
However, our experimental training database is not big. It includes around 3300 time series,
taken from real customer cloud environments. The database contains around 1500-“cpu” ,
400-“disk”, 110-“IOps”, 320-“memory”, 450-“network bandwidth”, 100-“network packets”
and 410-”workload” metrics. Metrics in the database have 1-min monitoring interval and,
in average, 1-month duration. It does not contain any specific information crucial for the
model training and similar results should be possible to get via other datasets of time series.
Moreover, interesting should be application of synthetic datasets of time series.

The current network has 40 inputs and 20 outputs. We experimented with different
dimensions without any serious difference. We noticed that longer input compared to
the output resulted in better forecast accuracy. Taking into account the grid structure, we
can utilize 40 ∗ k data points in history window to estimate 20 ∗ k points in the forecast
window with k = 1, 2, · · · . We applied a sliding window containing 600 points to each
time series. The sliding window had 400 = 10 ∗ 40 history points and 200 = 10 ∗ 20
forecast points. We performed hypothesis testing to the entire sliding window, identified
needed transformations and applied those transformations to each sparse grid containing
60 training data points (presumably stationary) for the network input (40 points) and
output (20 points).

We tried different network architectures. The first was LSTM networks with stateless
configuration and 2 hidden layers with 256 nodes in each. The next was MLP networks
with identical configuration. We did’n find significant differences between LSTM and MLP
networks for our small dataset. The current model is the MLP network which is very easy
to implement without special libraries. We used “relu” activation function for the hidden
layers and “linear” activation for the output layer. ‘Adam’ optimizer and mean average
error (“mae”) as a loss function were used. We applied 5 epochs for each time series and
20 epochs for the entire database and batchsize = 1500. The idea was in getting a generic
model for the entire database. The trainings took from several hours to a day depending
on the available GPUs.

Sensors 2021, 21, 1590 23 of 28

8. Discussion

We tried different implementations of the online mode in Java as enterprise cloud
service. The first attempt was utilization of Deep Learning for Java (DL4J) library [61].
It caused some problems due to bigger memory consumption and longer response time.
The second attempt was total independent implementation of the MLP network without
external libraries. The latest approach is more reasonable as the online mode does not
require on-demand trainings and complete deep learning functionality of DL4J is wasteless.
Figure 20 shows comparison of timings for both implementations while forecasting a
stationary time series. The y-axis shows the timings in milliseconds. The x-axis illustrates
different runs for averaging purposes. We see that “DL4J” is far behind compared to “MLP”
especially while loading the library.

Figure 20. Comparison of different implementations.

We performed some comparisons of the current model and classical ARIMA (our
internal implementation without the periodicity analysis for both approaches). We applied
both models to a database of time series data from our internal cloud environments with
different history windows sliding across the time axis. We experimented with 120 points
(2 h), 1440 points (1 day), 11,520 points (1 week) and 30,240 points (2 weeks). We calculated
the corresponding root mean square relative errors (RMSRE) for each forecast. Table of
Figure 21 summarizes the results. It shows overall 279,148 forecast cases. Each column
shows the number and percentage of the forecasts for which the corresponding RMSRE is
smaller than the mentioned value 0.5, 1, 2, 5 and 10. For example, the last column of the
table shows that 126,682 forecasts via NN-model or 45% of all cases have errors smaller than
0.5 while for the ARIMA the same number is bigger by 1%. The difference is insignificant.
On average, both methods perform similarly, although ARIMA is slightly better as it
was expected.

Figure 21. Comparison of root mean square relative errors for different models.

It should be interesting to compare the average errors across all metrics from the same
class. For example, for the class of stationary metrics, NN-model shows an average error
1.2 while ARIMA shows 1.3. For the class of trend-stationary time series, NN-model has an
average error 1.57 while ARIMA has 1.52.

Sensors 2021, 21, 1590 24 of 28

Figure 22 represents an example from the Wavefront AI Genie UI [62]. It illustrates
the online mode for a specific time series data. AI Genie UI of Wavefront simplifies and
automates time series forecasting and anomaly detection capabilities. It requires minimal
set of parameters to start running the AI engine. A user can specify (or use defaults) a time
series, select the forecast period and the corresponding sensitivity of the confidence bounds.
In Figure 22, the red curve corresponds to the historical data, the black curve to the forecast,
and the green area to the confidence bounds. The forecast window is 1 week. It means that
the history window is 2 weeks as the pretrained network works with 2:1 ratio. Confidence
bounds correspond to “moderate” setting (the others are “conservative” and “aggressive”).

Figure 22. An example of a trend-stationary time series in the Wavefront AI Genie UI.

The current NN-model uses 4000 data points (uniformly sampled via interpolation)
for 2 weeks history, 8640 points for 2 months history and 12,960 points for 6 months. Those
selections are the trade-offs between the complexity and grid density. We think that those
numbers can be reduced without affecting the accuracy especially for some data categories.

9. Conclusions and Future Work

We considered application of NN-based models to time series forecasting and anomaly
detection in cloud applications. Throughout the paper, we discussed approaches for
overcoming some of the challenges.

The first and main challenge is restrictions on resource consumption in distributed
cloud environments. Neural networks require intensive GPU utilization and sufficient data
volume which make on-demand training and application of NN-based models unrealistic
due to additional costs and unacceptable response times. We proposed a solution along
with the ideas of transfer learning. We generate a global database for time series data
collected across different cloud environments and customers, train a model in a private
GPU-accelerated data centers and apply the acquired knowledge in the form of a pretrained
model to a user specified time series data never seen before without GPU utilization. The
weights and configuration of the pretrained network are stored in a cloud and monitoring
tools can easily access the corresponding files and retrieve the required information for
on-demand application to forecasting and anomaly detection.

The second challenge is the weakness of NN-models for analyzing nonstationary
time series data. It is a well-known problem and many researchers suggest application
of stabilizing procedures like detrending and deseasoning before feeding the network.

Sensors 2021, 21, 1590 25 of 28

The stabilizing transformations convert a nonstationary time series into a stationary one,
and properly trained NN-models can adequately treat those metrics. We utilize this
common idea and train models only for stationary time series. We detect the stabilizing
transformations via hypothesis testing. In the offline mode, we perform hypothesis testing
to all time series data within the database for finding the set of required transformations
for all examples. Those transformations convert all nonstationary time series data into
stationary ones before sending to a model for the training. In the online mode, we transform
a user specified time series into a stationary data, calculate the corresponding forecast and
by application of the backward transformations return to the original scale and behavior.
Throughout the paper, we demonstrated the main capabilities of the approach. Moreover,
the approach was implemented as a SaaS solution for Wavefront by VMware and it passed
full validation in real cloud environments. Our customers mainly utilize the service for
anomaly detection.

However, many questions need further investigations. One of the key problems is
improvement of the current approach via different networks and configurations. The
second interesting problem should be hypothesis testing via NN-based models. We already
received some results with one-dimensional convolutional neural networks for data classifi-
cation. It should be natural to combine both networks to automate data categorization and
forecasting. Another interesting problem is designing new models for some new classes of
time series data that should improve the accuracy. We also need to check whether bigger
datasets will improve the accuracy of the current models.

It is not fair to compare the proposed approach with the methods that train network
models in demand for a specific time series data. Undoubtedly, the latest will be more
accurate or at least comparable to our approach. Our main goal is the balance between the
power and resource utilization. We aimed to develop methods for cloud environments
without consumption of valuable resources and with acceptable accuracy.

10. Patents

Pang, C. Anomaly detection on time series data. Filed: 22 August 2018. Application
No.: 16/109324. Published: 30 January 2020. Publication No.: 2020/0034733A1.

Pang, C. Visualization of anomalies in time series data. Filed: 22 August 2018. Appli-
cation No.: 16/109364. Published: 30 January 2020. Publication No.: 2020/0035001A1.

Poghosyan, A.V.; Pang, C.; Harutyunyan, A.N.; Grigoryan, N.M. Processes and
systems for forecasting metric data and anomaly detection in a distributed computing
system. Filed: 17 January 2019. Application No: 16/250831. Published: 27 February 2020.
Publication No.: 2020/0065213A1.

Poghosyan, A.V.; Hovhannisyan, N.; Ghazaryan, S.; Oganesyan, G.; Pang, C.; Haru-
tyunyan, A.N.; Grigoryan, N.M. Neural-network-based methods and systems that generate
forecasts from time-series data. Filed: 14 January 2020. Application No.: 16/742594.

Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M.; Pang, C.; Oganesyan, G.;
Ghazaryan, S.; Hovhannisyan, N. Neural-network-based methods and systems that gener-
ate anomaly signals from forecasts in time-series data. Filed: 19 December 2020. Appli-
cation No.: 17/128089. This application is a continuation-in-part of US Application No.
16/742594, filed 14 January 2020.

Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M.; Pang, C.; Oganesyan, G.;
Ghazaryan, S.; Hovhannisyan, N. Neural-network-based methods and systems that gener-
ate anomaly signals from forecasts in time-series data. Filed: 18 January 2021. Application
No.: 17/151610. This application is a continuation-in-part of US Application No. 16/742594,
filed 14 January 2020.

Author Contributions: All the authors participated in almost all stages of the research project, but
their more detailed contribution to the project is described below. Conceptualization, A.P., A.H.,
N.G., C.P. and G.O.; methodology, A.P., A.H., N.G., C.P., G.O. and N.H.; software, G.O., S.G. and
N.H.; validation, A.P., A.H., N.G., C.P., G.O., S.G. and N.H.; formal analysis, A.P., A.H., N.G. and
C.P.; investigation, A.P., A.H. and N.G.; resources, C.P. and G.O.; data curation, N.G., G.O., S.G. and

Sensors 2021, 21, 1590 26 of 28

N.H.; writing—original draft preparation, A.P. and A.H.; writing—review and editing, A.P., A.H.,
N.G., C.P., G.O., S.G. and N.H.; visualization, A.P., G.O., S.G. and N.H.; supervision, A.P., G.O. and
C.P.; project administration, C.P.; funding acquisition, A.P. and C.P. All authors have read and agreed
to the published version of the manuscript.

Funding: Arnak Poghosyan was funded by RA Science Committee, in the frames of the research
project No. 20TTAT-AIa014.

Institutional Review Board Statement: Not applicable for studies not involving humans or animals.

Informed Consent Statement: Not applicable for studies not involving humans.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to its size and confidientiality.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ADF-test Augmented Dickey–Fuller test
AI Artificial Intelligence
AIOps AI for IT operations
APM Application Performance Monitoring
ARMA model Auto Regressive Moving Average model
ARIMA model Auto Regressive Integrated Moving Average model
CH-test Canova-Hansen test
CPU Central Processing Unit
DF-test Dickey-Fuller test
DL4J Deep Learning For Java
GPU Graphical Processing Unit
HEGY-test Hylleberg-Engle-Granger-Yoo test
IT Information Technologies
KPSS-test Kwiatkowski-Phillips-Schmidt-Shin test
LB Lower Bound
LOESS Locally Estimated Scatterplot Smoothing
LSTM network Long Short Term Memory network
ML Machine Learning
MLP network Multi Layer Perceptron network
NN Neural Network
OCSB-test Osborn–Chui-Smith-Birchenhall test
OLS Ordinary Least Squares
PDM-test/method Phase Dispersion Minimization test/method
RCA Root Cause Analysis
RMSRE Root Mean Square Relative Error
SaaS Software as a Service
SARIMA model Seasonal ARIMA model
STL decomposition Seasonal and Trend decomposition using Loess
UB Upper Bound
UI User Interface

References
1. Magic Quadrant for Application Performance Monitoring. Available online: https://www.gartner.com/doc/3983892 (accessed

on 10 January 2021).
2. Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M.; Pang, C.; Oganesyan, G.; Ghazaryan, S.; Hovhannisyan, N. W-TSF: Time

series forecasting with deep learning for cloud applications. In Proceedings of the Second CODASSCA Workshop, Collaborative
Technologies and Data Science in Artificial Intelligence Applications, Yerevan, Armenia, 9 January 2020; Hajian, A., Baloian, N.,
Inoue, T., Luther, W., Eds.; Logos Verlag: Berlin, Germany, 2020; pp. 152–158.

https://www.gartner.com/doc/3983892

Sensors 2021, 21, 1590 27 of 28

3. Harutyunyan, A.N.; Poghosyan, A.V.; Grigoryan, N.M.; Hovhannisyan, N.A.; Kushmerick, N. On machine learning approaches
for automated log management. J. Univers. Comput. Sci. 2019, 25, 925–945.

4. Harutyunyan, A.N.; Poghosyan, A.V.; Grigoryan, N.M.; Kushmerick, N.; Beybutyan, H. Identifying changed or sick resources
from logs. In Proceedings of the 2018 IEEE 3rd International Workshops on Foundations and Applications of Self* Systems
(FAS*W), Trento, Italy, 3–7 September 2018; pp. 86–91.

5. Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M. Compression for time series databases using independent and principal
component analysis. In Proceedings of the 2017 IEEE International Conference on Autonomic Computing, ICAC 2017, Columbus,
OH, USA, 17–21 July 2017; Wang, X., Stewart, C., Lei, H., Eds.; IEEE Computer Society: Washington, DC, USA, 2017; pp. 279–284.

6. Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M. Managing cloud infrastructures by a multi-layer data analytics. In
Proceedings of the 2016 IEEE International Conference on Autonomic Computing, ICAC 2016, Wuerzburg, Germany, 17–22 July
2016; Kounev, S., Giese, H., Liu, J., Eds.; IEEE Computer Society: Washington, DC, USA, 2016; pp. 351–356.

7. Marvasti, M.A.; Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M. Ranking and updating beliefs based on user feedback:
Industrial use cases. In Proceedings of the 2015 IEEE International Conference on Autonomic Computing, Grenoble, France, 7–10
July 2015; IEEE Computer Society: Washington, DC, USA, 2015; pp. 227–230.

8. Marvasti, M.A.; Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M. An enterprise dynamic thresholding system. In
Proceedings of the 11th International Conference on Autonomic Computing, ICAC 2014, Philadelphia, PA, USA, 18–20 June 2014;
Zhu, X., Casale, G., Gu, X., Eds.; USENIX Association: Berkeley, CA, USA, 2014; pp. 129–135.

9. Harutyunyan, A.N.; Poghosyan, A.V.; Grigoryan, N.M.; Marvasti, M.A. Abnormality analysis of streamed log data. In
Proceedings of the 2014 IEEE Network Operations and Management Symposium, NOMS 2014, Krakow, Poland, 5–9 May 2014;
pp. 1–7.

10. Marvasti, M.A.; Poghosyan, A.V.; Harutyunyan, A.N.; Grigoryan, N.M. Pattern detection in unstructured data: An experience
for a virtualized IT infrastructure. In Proceedings of the 2013 IFIP/IEEE International Symposium on Integrated Network
Management, IM 2013, Ghent, Belgium, 27–31 May 2013; Turck, F.D., Diao, Y., Hong, C.S., Medhi, D., Sadre, R., Eds.; IEEE:
New York, NY, USA, 2013; pp. 1048–1053.

11. Amarbayasgalan, T.; Pham, V.H.; Theera-Umpon, N.; Ryu, K.H. Unsupervised anomaly detection approach for time-series in
multi-domains using deep reconstruction error. Symmetry 2020, 12, 1251. [CrossRef]

12. Carta, S.; Podda, A.S.; Recupero, D.R.; Saia, R. A local feature engineering strategy to improve network anomaly detection. Future
Internet 2020, 12, 177. [CrossRef]

13. Burgueño, J.; de-la Bandera, I.; Mendoza, J.; Palacios, D.; Morillas, C.; Barco, R. Online anomaly detection system for mobile
networks. Sensors 2020, 20, 7232. [CrossRef] [PubMed]

14. Zhang, M.; Guo, J.; Li, X.; Jin, R. Data-driven anomaly detection approach for time-series streaming data. Sensors 2020, 20, 5646.
[CrossRef] [PubMed]

15. Bronner, L. Overview of the capacity planning process for production data processing. IBM Syst. J. 1980, 19, 4–27. [CrossRef]
16. Hyndman, R.; Athanasopoulos, G. Forecasting: Principles and Practice; OTexts: Melbourne, Australia, 2018.
17. Hamilton, J.D. Time Series Analysis; Princeton University Press: Princeton, NJ, USA, 1994.
18. Cryer, J.D.; Chan, K.S. Time Series Analysis: With Applications in R; Springer: Berlin, Germany, 2008.
19. Olson, T. Applied Fourier Analysis; Springer: Berlin, Germany, 2017.
20. Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I. STL: A seasonal-trend decomposition procedure based on Loess

(with discussion). J. Off. Stat. 1990, 6, 3–73.
21. Lewis, N. Deep Time Series Forecasting with Python: An Intuitive Introduction to Deep Learning for Applied Time Series Modeling;

CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2016.
22. Rhee, M.J. Nonlinear Time Series Forecasting with Neural Networks; ProQuest LLC: Ann Arbor, MI, USA, 1995; p. 143.
23. Enterprise Observability for Multi-Cloud Environments. Available online: https://tanzu.vmware.com/observability (accessed

on 10 January 2021).
24. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015,

arXiv:cs.CV/1409.1556.
25. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arXiv 2015, arXiv:cs.CV/1512.03385.
26. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. arXiv 2014, arXiv:cs.CV/1409.4842.
27. Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.

arXiv 2019, arXiv:cs.CL/1810.04805.
28. Pan, S.J.; Yang, Q. A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
29. Faraway, J.; Chatfield, C. Time series forecasting with neural networks: A comparative study using the airline data. J. R. Stat. Soc.

Ser. C (Appl. Stat.) 1998, 47, 231–250. [CrossRef]
30. Hansen, J.; Nelson, R. Forecasting and recombining time-series components by using neural networks. J. Oper. Res. Soc. 2003,

54, 307–317. [CrossRef]
31. Zhang, G.P.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [CrossRef]
32. Wang, X.; Smith, K.; Hyndman, R. Characteristic-based clustering for time series data. Data Min. Knowl. Discov. 2006, 13, 335–364.

[CrossRef]

http://dx.doi.org/10.3390/sym12081251
http://dx.doi.org/10.3390/fi12100177
http://dx.doi.org/10.3390/s20247232
http://www.ncbi.nlm.nih.gov/pubmed/33348657
http://dx.doi.org/10.3390/s20195646
http://www.ncbi.nlm.nih.gov/pubmed/33023175
http://dx.doi.org/10.1147/sj.191.0004
https://tanzu.vmware.com/observability
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1111/1467-9876.00109
http://dx.doi.org/10.1057/palgrave.jors.2601523
http://dx.doi.org/10.1016/j.ejor.2003.08.037
http://dx.doi.org/10.1007/s10618-005-0039-x

Sensors 2021, 21, 1590 28 of 28

33. Zhang, G.P. Neural networks for time-series forecasting. In Handbook of Natural Computing; Springer: Berlin/Heidelberg, Germany,
2012; pp. 461–477.

34. Kolarik, T.; Rudorfer, G. Time series forecasting using neural networks. SIGAPL APL Quote Quad 1994, 25, 86–94. [CrossRef]
35. Nelson, M.; Hill, T.; Remus, W.; O’Connor, M. Time series forecasting using neural networks: Should the data be deseasonalized

first? J. Forecast. 1999, 18, 359–367. [CrossRef]
36. Fawaz, H.I.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min.

Knowl. Discov. 2019, 33, 917–963. [CrossRef]
37. Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit

root: How sure are we that economic time series have a unit root? J. Econom. 1992, 54, 159–178. [CrossRef]
38. Dickey, D.A.; Fuller, W.A. Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979,

74, 427–431.
39. Dickey, D.A.; Fuller, W.A. Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 1981,

49, 1057–1072. [CrossRef]
40. Saïd, S.E.; Dickey, D.A. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 1984,

71, 599–607. [CrossRef]
41. Phillips, P.C.B. Time series regression with a unit root. Econometrica 1987, 55, 277–301. [CrossRef]
42. Fuller, W.A. Introduction to Statistical Time Series; Wiley: Hoboken, NJ, USA, 1995; p. 728.
43. Stellingwerf, R.F. Period determination using phase dispersion minimization. Astrophys. J. 1978, 224, 953–960. [CrossRef]
44. Davies, S.R. An improved test for periodicity. Mon. Not. R. Astron. Soc. 1990, 244, 93–95.
45. Davies, S.R. Davies’ periodicity test revisited. Mon. Not. R. Astron. Soc. 1991, 251, 64–65. [CrossRef]
46. Canova, F.; Hansen, B.E. Are seasonal patterns constant over time? A test for seasonal stability. J. Bus. Econ. Stat. 1995,

13, 237–252.
47. Hylleberg, S.; Engle, R.F.; Granger, C.W.J.; Yoo, B.S. Seasonal integration and cointegration. J. Econom. 1990, 44, 215–238.

[CrossRef]
48. Osborn, D.R.; Chui, A.; Smith, J.P.; Birchenhall, C. Seasonality and the order of integration for consumption. Oxf. Bull. Econ. Stat.

1933, 50, 4. [CrossRef]
49. Hylleberg, S. Modelling Seasonality; Oxford University Press: Hong Kong, China, 1992.
50. Dickey, D.A.; Hasza, D.P.; Fuller, W.A. Testing for unit roots in seasonal time series. J. Am. Stat. Assoc. 1984, 79, 355–367.

[CrossRef]
51. Dickey, D.A. Seasonal unit roots in aggregate US data. J. Econom. 1993, 55, 329–331. [CrossRef]
52. Darne, O.; Diebolt, C. Note on seasonal unit root tests. Qual. Quant. 2002, 36, 305–310. [CrossRef]
53. Thudumu, S.; Branch, P.; Jin, J.; Singh, J.J. A comprehensive survey of anomaly detection techniques for high dimensional Big

Data. J. Big Data 2020, 7, 43 – 57. [CrossRef]
54. Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A review on outlier/anomaly detection in time series data. arXiv 2020,

arXiv:cs.LG/2002.04236.
55. Pang, G.; Shen, C.; Cao, L.; van den Hengel, A. Deep learning for anomaly detection: A review. arXiv 2020, arXiv:cs.LG/2007.02500.
56. He, Q.; Zheng, Y.; Zhang, C.; Wang, H. MTAD-TF: Multivariate time series anomaly detection using the combination of temporal

pattern and feature pattern. Complexity 2020, 2020, 1–9. [CrossRef]
57. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly detection: A survey. ACM Comput. Surv. (CSUR) 2009, 41, 1–58. [CrossRef]
58. Hodge, V.; Austin, J. A survey of outlier detection methodologies. Artif. Intell. Rev. 2004, 22, 85–126. [CrossRef]
59. Geiger, A.; Liu, D.; Alnegheimish, S.; Cuesta-Infante, A.; Veeramachaneni, K. TadGAN: Time series anomaly detection using

generative adversarial networks. arXiv 2020, arXiv:cs.LG/2009.07769.
60. Grill, M.; Pevný, T.; Rehak, M. Reducing false positives of network anomaly detection by local adaptive multivariate smoothing.

J. Comput. Syst. Sci. 2017, 83, 43–57. [CrossRef]
61. Deep learning for Java. Available online: https://deeplearning4j.org (accessed on 10 January 2012).
62. Forecasting and Anomaly Detection with AI Genie. Available online https://docs.wavefront.com/ai_genie.html (accessed on 10

January 2012).

http://dx.doi.org/10.1145/190468.190290
http://dx.doi.org/10.1002/(SICI)1099-131X(199909)18:5<359::AID-FOR746>3.0.CO;2-P
http://dx.doi.org/10.1007/s10618-019-00619-1
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.2307/1912517
http://dx.doi.org/10.1093/biomet/71.3.599
http://dx.doi.org/10.2307/1913237
http://dx.doi.org/10.1086/156444
http://dx.doi.org/10.1093/mnras/251.1.64P
http://dx.doi.org/10.1016/0304-4076(90)90080-D
http://dx.doi.org/10.1111/j.1468-0084.1988.mp50004002.x
http://dx.doi.org/10.1080/01621459.1984.10478057
http://dx.doi.org/10.1016/0304-4076(93)90019-2
http://dx.doi.org/10.1023/A:1016032601197
http://dx.doi.org/10.1186/s40537-020-00320-x
http://dx.doi.org/10.1155/2020/8846608
http://dx.doi.org/10.1145/1541880.1541882
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1016/j.jcss.2016.03.007
https://deeplearning4j.org
https://docs.wavefront.com/ai_genie.html

	Introduction
	Related Work
	Main Idea
	Hypothesis Testing for Data Categorization
	Periodicity Analysis
	Trend Analysis

	Time Series Forecasts with Confidence Bounds
	Stationary Time Series Data
	Trend-Stationary Time Series Data
	Stochastic-Trendy Time Series Data
	Stationary-Periodic Time Series Data
	Trend-Periodic Time Series Data

	Anomaly Signals from Time Series Data Forecasts
	Materials and Methods
	Discussion
	Conclusions and Future Work
	Patents
	References

