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Since its global emergence in 2020, severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has caused multiple epidemics in the United States. Because medical treatments for the 

virus are still emerging and a vaccine is not yet available, state and local governments have 

sought to limit its spread by enacting various social distancing interventions such as school 

closures and lockdown, but the effectiveness of these interventions is unknown. We applied an 

established, semi-mechanistic Bayesian hierarchical model of these interventions on SARS-

CoV-2 spread in Europe to the United States, using case fatalities from February 29, 2020 up to 

April 25, 2020, when some states began reversing their interventions. We estimated the effect 

of interventions across all states, contrasted the estimated reproduction number, Rt, for each 

state before and after lockdown, and contrasted predicted future fatalities with actual fatalities 

as a check on the model’s validity. Overall, school closures and lockdown are the only 

interventions modeled that have a reliable impact on Rt, and lockdown appears to have played a 

key role in reducing Rt below 1.0. We conclude that reversal of lockdown, without 

implementation of additional, equally effective interventions, will enable continued, sustained 

transmission of SARS-CoV-2 in the United States. 

 

Bayesian hierarchical model; intervention effect size; severe acute respiratory syndrome 

coronavirus 2; social isolation; reproduction number 

 

Abbreviations: IFR, infection fatality ratio; SARS-CoV-2, severe acute respiratory syndrome 

coronavirus 2; Rt, time-varying reproduction number; COVID-19, coronavirus disease 2019. 

 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus 

disease 2019 (COVID-19).  Discovered in Wuhan, China in December 2019, SARS-CoV-2 

rapidly spread to the rest of the world, initially through travelers from Wuhan, but later through 

community transmission in Asia, Europe, Australia, and North America, until it was declared a 
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pandemic by the World Health Organization on March 11, 2020. The rapid spread of SARS-

CoV-2 is attributable to its transmissibility by aerosol and fomites1,2, by 

presymptomatic/asymptomatic carriers3,4, and by the relatively mild clinical characteristics of 

symptomatic carriers, which often include fever, cough, and fatigue5. However, approximately 

20% of confirmed cases develop severe or critical forms of COVID-19, including complications 

of respiratory failure, myocardial dysfunction, and acute kidney injury, with approximately 50% 

mortality for critically-ill patients6. 

 As of July 2020, outbreaks or epidemics of SARS-CoV-2 have emerged in all 50 states, 

with over 2.5 million confirmed cases reported. Because medical treatments and vaccines are 

still emerging, state and local governments have sought to limit the virus’s spread by enacting 

various social distancing interventions. Social distancing interventions have varied widely within 

states and across states. Within states, interventions typically begin with public health directives 

like washing hands and staying home if sick, followed by restrictions on or closures of places 

housing vulnerable populations like nursing homes or schools, followed by successive, 

increasingly restrictive bans on gathering in groups, culminating in stay-at-home orders or so-

called lockdown. Across states, interventions have been adopted with different speeds, such 

that some states moved rapidly to lockdown and others never entered lockdown at all. Likewise, 

states are currently lifting lockdown and reversing social distancing interventions at different 

rates. 

To explore the association between social distancing interventions and fatalities, we 

applied an established, semi-mechanistic Bayesian hierarchical model of these interventions on 

SARS-CoV-2 spread in Europe7,8 to the United States. We estimated the effect of interventions 

and the time-varying reproduction number (Rt) for each state using state-level daily case fatality 

counts.  

METHODS 

Data 
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We used data from three different sources: state-level intervention data, infection fatality 

rate data, and confirmed case fatality data. 

State-level intervention data. We created a dataset9 of state-level intervention dates by 

inspecting the executive orders, public health directives, and official communications (e.g., 

press releases) from state governments. For each intervention date, we used the effective date, 

unless the timing of the intervention was so close to midnight as to only practically take place 

the next day. Interventions were only counted if they targeted the general population. The 

interventions themselves closely parallel those in the European model we used, but with slightly 

different operationalizations which we describe in turn. Self-isolating if ill is a recommendation to 

stay home if sick. Social distancing encouraged is a recommendation to avoid nonessential 

travel and/or contact; the mere words “social distancing” were not counted unless elaborated 

with examples of what social distancing entails. Schools or universities closing is the date at 

which schools partly or completely close; the earlier of schools or universities closing was used. 

Sport is the banning of sporting events or public gatherings of more than 1000 persons. Public 

events is the banning of public gatherings of more than 100 participants. Finally, lockdown 

includes banning of non-essential gatherings or business operations, which is sometimes 

formalized as a stay-at-home or safer-at-home order. Notably some more restrictive 

interventions imply others, e.g., lockdown implies all other interventions, and public events 

implies sport. 

Infection fatality rate data. The infection fatality rate (IFR), or ratio of fatalities to true 

infections, was derived via the methods outlined in Flaxman et al. Briefly, IFR estimates from 

Verity10 et al were adjusted using an age-specific UK contact matrix to account for non-uniform 

attack rates across age groups (see Ferguson et al.11 for details and previous US application). 

The resulting IFRs were weighted by state-level age demographics and averaged to produce 

estimates adjusted for both age and location. Demographic data were obtained from the 2018 

ACS survey 5-year estimates12. 
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Confirmed case fatality data. SARS-CoV-2 fatality data was obtained from the New York 

Times public data repository13, which describes the data collection process along with subtle 

issues in counting cases, e.g. cruise ship passengers. In general, the dataset counts confirmed 

cases according to where they were treated and on the days they were reported up to midnight 

Eastern Time. Because this dataset provides cumulative counts, we transformed these into daily 

counts by taking the difference between successive daily cumulative counts (setting this 

difference to zero in the rare instances where cumulative counts decreased due to reporting 

corrections). 

Model 

 We applied an established, semi-mechanistic Bayesian hierarchical model of 

interventions on SARS-CoV-2 spread in Europe to the United States, and the design and details 

of this model are presented elsewhere7,8 (see the Web Appendix for a brief overview). Notably, 

a recent variant of this model has been applied to the United States at the state level, but this 

variant uses mobility data rather than interventions as the basis of predictions14. Briefly stated, 

daily death counts in the model follow a negative binomial distribution such that their 

expectation is a function of infections on previous days. The model is semi-mechanistic in the 

sense that it incorporates classical Susceptible-Infected-Removed concepts15 in a Bayesian 

framework. The number of infected is modeled using a discrete renewal process, and death 

counts are similarly linked to the number of infected based on the state country IFR and the 

distribution of times from infection to death. Importantly, the model assumes the effect of 

intervention is that same regardless of location and that the implementation of an intervention 

instantaneously reduces Rt. Making these assumptions allows pooling of data from states for 

estimating intervention effects. The model was specified using Stan16, and model inference was 

performed using adaptive Hamiltonian Monte Carlo. We fit our model with a time series for each 

state 30 days before the state has experienced seven deaths, from February 29, 2020 up to 

April 25, 2020, when some states began reversing their interventions. Seven deaths is a 
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somewhat arbitrary threshold for excluding imported cases, and other work has used five14 or 

ten8 deaths for this threshold. We chose seven because it is the highest number we can use 

and still obtain valid data for states like Alaska, which had a relatively low case count during this 

period. 

RESULTS 

 States implemented the six interventions at different rates. The mean period between 

the first and last intervention of a state was 18.64 days (SD=6.51, range: 4-31). The mean 

number of directives (e.g., executive orders) implementing interventions in a state was 4.32 

(SD=0.94, range: 2-6), and the mean number of interventions per order was 1.40 (SD=0.35, 

range 1-3). Some interventions were more likely to co-occur in a single directive than others, 

with sport (M=1.08, SD=0.83) and public events (M=1.04, SD=0.81) occurring the most 

frequently with other interventions and schools or universities closing (M=0.40, SD=0.81) and 

lockdown (M=0.14, SD=0.50) occurring the least frequently with other interventions. Despite 

these differences, 96.33% of the interventions were implemented across states, with lockdown 

being the least implemented (n=43). The decision to implement lockdown was not clearly data-

driven across states: on the date of the last intervention, there was no significant difference 

between states that implemented lockdown and those that did not in the cumulative case rate 

(P=0.052) or the cumulative death rate (P=0.059) using 2-sided rank-sum tests.  

The mean IFR across states was 1.11% (SD=0.12%, range: 0.76-1.35%). Because 

confirmed case fatality data across states increased dramatically over the time period 

examined, similar statistics are not reported for these data.  

 Estimated national intervention effects on Rt are shown in Table 1. It is evident that only 

schools or universities closing and lockdown have a nontrivial impact on Rt, with mean relative 

reductions of 23.7% and 54.4% respectively.    Moreover, schools or universities closing and 

lockdown are the only interventions whose 95% credible interval is not close to zero. 
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 State-level measures and estimates of the model are shown in Table 2 (see also Web 

Figure 1). Of primary interest are Rt estimates before and after lockdown and corresponding 

forecasted death counts 2 weeks into the future. Across states, the mean Rt before lockdown 

was 1.86 (SD=0.56, range: 1.00-3.37) and the mean Rt after lockdown was 0.88 (SD=0.25, 

range: 0.50-1.41). Notably, no state had a mean Rt below 1.0 pre-lockdown, but 29 states had a 

Rt below 1.0 after lockdown. While lockdown was associated with reduced Rt in all states that 

underwent lockdown (a 54.4% reduction, see Table 1), in these 29 states, lockdown appears to 

have been the single critical intervention allowing containment of the disease. In the remaining 

states, pre-lockdown Rt was too high (i.e., greater than 2.2) for lockdown to bring Rt below 1.0.  

Predicted deaths vs. actual deaths two weeks into the future in each state serve as a 

validity check on the model’s estimates of intervention effects (see also Web Figure 2). Forty-

five states (90%) had actual deaths that were within the 95% CI of predicted deaths. Notably, 

the mean predicted deaths were well above actual (>100 deaths) for Connecticut, New Jersey, 

Massachusetts, and New York. The mean absolute error of mean predicted deaths was 50.80, 

and without these four states the mean absolute error was 10.08. As expected, the model fit to 

actual deaths was even closer on the observed data, with mean absolute error at 5.90 

(N=2951). 

DISCUSSION 

 Social distancing interventions are important for limiting the spread of SARS-CoV-2, 

because medical treatments for COVID-19 are still emerging and a vaccine is not available. To 

our knowledge, we are the first to apply an established, semi-mechanistic Bayesian hierarchical 

model of these interventions on SARS-CoV-2 spread in Europe to the United States. We 

estimated the effect of interventions across all states, contrasted the estimated Rt for each state 

before and after lockdown, and contrasted predicted fatalities with actual fatalities as a check on 

the model’s validity. Overall, school closures and lockdown are the only interventions modeled 

that have an estimated effect where the 95% credible interval is not close to zero, i.e. no effect. 
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No state had an estimated Rt below 1.0 before lockdown, but 29 states reached an Rt below 1.0 

after lockdown. The model’s ability to successfully predict deaths supports the validity of 

estimated intervention effects. These results suggest that reversal of lockdown, without 

implementation of additional, equally effective interventions, will enable continued, sustained 

transmission of SARS-CoV-2 in the United States.  

 Our study has several limitations. First, the assumption that all interventions have the 

same implementation and effect in all states is a strong assumption. For example, the public 

events intervention banning gatherings of 100 persons or more could be met by a ban on 10 

persons or more or 50 persons or more; it is unlikely that such bans are truly equivalent. 

Schools or universities closing treats primary, secondary, and higher education the same, 

though emerging evidence suggests that younger children may be less effective at spreading 

the virus than adults17. This limitation has since been partially addressed in the European model 

by allowing random effects for lockdown only. Second, the assumption that interventions are 

binary, instantaneous, and non-harmful are strong assumptions and oversimplifications that do 

not account for time-varying compliance with intervention or unintended consequences. Using 

mobility data as a measure of population mixing14,18,19 partially addresses this. Third, the 

parameters of the model are estimated using reasonable, but still uncertain, assumptions about 

prior distributions. We have used the same assumptions as in the European model, but these 

assumptions may be contradicted by future empirical work.  

 Modeling of SARS-CoV-2 is emerging and rapidly diversifying, including classical SEIR 

models and derivatives20, deep learning21, and piecewise models for sub-exponential growth22. 

State and local governments are likewise rapidly adjusting policy decisions regarding 

interventions based on case data and economic concerns. As the United States adopts an 

increasingly fragmented response to SARS-CoV-2, modeling approaches like ours that focus on 

shared interventions may not be tenable. While our results give valuable insights into which 

interventions did and which did not change the transmission rate substantially, we recommend 
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that future studies measure the change in behaviors resulting from interventions and then 

strengthen the predictive relationships between these behaviors and disease transmission.  
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Table 1. Intervention Effects on the Time-Varying Reproduction Number, United States, 

February 29 to April 25, 2020 

Intervention Mean relative 
% reduction 

95% CI
a
 

Self-isolating if ill 1.2 0.0, 5.7 

Sport 2.1 0.0, 9.7 

Social distancing encouraged 3.2 0.0, 15.0 

Public events 9.8 0.0, 31.5 

Schools or universities closing 23.7 0.7, 40.4 

Lockdown 54.4 44.7, 62.7 

Abbreviations: CI, credible interval 

a 
The model assumes reductions in Rt are non-negative. See Web Appendix for details.  
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Table 2. State-level Measures and Estimates of Infection, Fatality, and Lockdown Intervention, 

United States, February 29 to April 25, 2020 

  Pre-Lockdown Lockdown
a
    

State IFR 
(%) 

Rt
 

95% CI Rt
 

95% CI Predicted 
Deaths

b 
95% CI

b
 Actual 

Deaths
c
 

Alabama 1.076 1.334 1.083, 1.619 0.610 0.476, 0.767 5.618 0, 15 7 

Alaska 0.813 1.224 0.176, 2.466  0.558 0.081, 1.110 0.067 0, 1 0 
Arizona 1.147 1.667 1.373, 1.998 0.762 0.603, 0.942 8.993 1, 23 15 
Arkansas 1.125 1.005 0.715, 1.336    2.081 0, 8 0 
California 0.986 2.290 1.869, 2.786 1.042 0.913, 1.178 84.400 23, 201 82 
Colorado 0.955 1.887 1.536, 2.294 0.859 0.723, 1.011 24.600 6, 60 7 
Connecticut 1.190 3.100 2.575, 3.722 1.411 1.227, 1.617 287.897 76, 707 58 

Delaware 1.221 2.542 1.902, 3.311 1.157 0.891, 1.457 9.387 1, 28 8 
Florida 1.353 1.726 1.465, 1.988 0.789 0.650, 0.942 40.651 10, 97 46 
Georgia 0.938 1.345 1.154, 1.548 0.614 0.511, 0.732 19.987 4, 48 2 
Hawaii 1.260 1.524 0.547, 2.608 0.695 0.247, 1.172 0.331 0, 2 0 
Idaho 1.035 1.684 1.066, 2.509 0.674 0.450, 0.944 1.069 0, 5 0 
Illinois 1.070 2.781 2.272, 3.409 1.265 1.102, 1.438 192.095 51, 461 100 
Indiana 1.062 2.210 1.811, 2.676 1.007 0.845, 1.183 42.399 10, 104 43 
Iowa 1.160 1.409 1.110, 1.744   17.357 2, 51 9 
Kansas 1.087 1.750 1.281, 2.348 0.704 0.521, 0.919 2.850 0, 9 5 
Kentucky 1.090 1.799 1.406, 2.255 0.820 0.645, 1.015 6.422 0, 18 8 
Louisiana 1.036 1.968 1.657, 2.329 0.897 0.772, 1.034 55.047 14, 133 40 
Maine 1.353 1.729 1.180, 2.390 0.790 0.528, 1.090 1.899 0, 7 1 
Maryland 1.057 2.451 2.029, 2.928 1.119 0.913, 1.345 74.977 18, 191 54 
Massachusetts 1.127 3.366 2.694, 4.238 1.379 1.183, 1.580 402.458 108, 942 138 
Michigan 1.149 2.338 1.960, 2.777 1.065 0.923, 1.223 204.275 55, 481 133 
Minnesota 1.081 2.491 1.977, 3.091 1.136 0.906, 1.390 21.938 4, 58 24 
Mississippi 1.063 1.449 1.175, 1.762 0.662 0.523, 0.828 6.381 1, 17 12 
Missouri 1.138 1.436 1.183, 1.720 0.656 0.523, 0.809 9.949 1, 26 11 
Montana 1.215 1.533 0.525, 2.658 0.698 0.237, 1.201 0.424 0, 3 0 
Nebraska 1.071 1.384 0.967, 1.885   8.851 0, 30 3 
Nevada 1.026 1.420 1.131, 1.739 0.648 0.505, 0.814 4.370 0, 12 5 
New Hampshire 1.215 1.871 1.293, 2.572 0.854 0.586, 1.167 2.519 0, 9 10 
New Jersey 1.117 2.949 2.437, 3.556 1.342 1.184, 1.512 746.096 207, 1782 164 
New Mexico 1.145 2.578 1.887, 3.412 1.174 0.876, 1.505 8.435 1, 26 10 
New York 1.126 2.487 2.082, 2.942 1.132 0.995, 1.277 1225.995 345, 2892 226 
North Carolina 1.087 2.183 1.754, 2.684 0.996 0.787, 1.227 20.463 4, 53 17 
North Dakota 1.072 1.310 0.617, 2.139   2.445 0, 12 2 
Ohio 1.149 2.333 1.912, 2.828 1.063 0.899, 1.243 44.063 11, 110 25 
Oklahoma 1.057 1.950 1.468, 2.578 0.783 0.608, 0.982 4.921 0, 14 4 
Oregon 1.141 1.534 1.147, 1.995 0.700 0.527, 0.903 1.342 0, 5 3 
Pennsylvania 1.235 2.332 1.997, 2.693 1.065 0.883, 1.271 165.470 44, 408 69 
Rhode Island 1.188 2.155 1.631, 2.758 0.982 0.756, 1.236 13.197 2, 36 19 
South Carolina 1.150 1.303 1.082, 1.544 0.596 0.464, 0.744 4.460 0, 13 10 
South Dakota 1.120 1.264 0.337, 2.316   1.525 0, 9 3 
Tennessee 1.088 1.149 0.900, 1.437 0.525 0.403, 0.666 2.642 0, 8 1 
Texas 0.862 1.632 1.393, 1.894 0.746 0.616, 0.893 23.321 5, 56 27 
Utah 0.755 1.416 1.037, 1.860   6.216 0, 22 5 
Vermont 1.268 1.095 0.751, 1.525 0.500 0.340, 0.696 0.342 0, 2 0 
Virginia 1.054 2.173 1.822, 2.569 0.993 0.810, 1.200 27.818 6, 69 15 
Washington 1.032 1.191 1.012, 1.392 0.543 0.467, 0.626 5.496 0, 14 10 
West Virginia 1.290 2.045 1.184, 3.057 0.931 0.546, 1.361 2.020 0, 8 1 
Wisconsin 1.144 1.600 1.258, 2.001 0.729 0.581, 0.899 5.382 0, 15 14 
Wyoming 1.093 1.365 0.267, 2.531   1.690 0, 11 0 

Abbreviations: CI, credible interval; IFR, infection fatality ratio; Rt, time-varying reproductive number 

a 
Lockdown effects presented for states that implemented lockdown, otherwise blank 

b
 Forecasted daily deaths on May 9th, 2020 

c
 Actual daily deaths on May 9th, 2020 
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