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Abstract: Parkinson’s disease (PD) is the second most common progressive neurodegenerative
disease, after Alzheimer’s disease. In our previous study, we found that amber—a fossilized plant
resin—can protect cells from apoptosis by decreasing the generation of reactive oxygen species (ROS).
In this study, we focused on the effect of amber on 6-hydroxydopamine-induced cell apoptosis
in the human neuroblastoma cell line SHSY5Y (one model for PD). Initially, we determined the
protective effect of amber on the PD model. We found that amber extract has a protective effect
against 6-hydroxydopamine-induced cell apoptosis. The decrease in ROS, cleaved caspase-3, pERK,
and extracellular signal-regulated kinase (ERK) protein levels confirmed that amber extract decreases
apoptosis via the ROS-mediated ERK signaling pathway. Furthermore, we determined the effects
of amber extract on autophagy. The results showed that amber extract increased the levels of LC3II
and Beclin-1, suggesting that amber extract can protect neuronal cells against 6-hydroxydopamine-
induced cell apoptosis by promoting autophagy.

Keywords: 6-hydroxydopamine; amber; extracellular signal-regulated kinase pathway; autophagy

1. Introduction

Parkinson’s disease (PD) is the second most common progressive neurodegenera-
tive disease, after Alzheimer’s disease, and is characterized by movement disorders such
as resting tremor, bradykinesia, rigidity, and postural instability [1]. The prevalence of
PD increases with age, affecting approximately 1% of the population aged over 60 years,
and 2–4% of the population aged over 80 years [2,3]. Similar to many other neurological
disorders, the cause of PD is still not completely understood. The death of dopaminer-
gic neurons in the substantia nigra pars compacta, striatal dopamine depletion, and the
presence of α-synuclein aggregates are the neuropathological hallmarks of PD [4,5]. Mito-
chondrial dysfunction, neuroinflammation, and oxidative stress have also been reported
to be associated with PD [6–8]. Recently, α-synuclein aggregation has been identified as a
therapeutic target for PD [5]. A previous study reported that α-synuclein has two types of
degradation pathways: proteasomal and autophagic proteolysis [9,10]. Unlike unfolded
proteins, aggregated proteins are usually resistant to unfolding, and their degradation is
highly dependent on autophagy [11]. The autophagy enhancer rapamycin has been shown
to have a protective effect on PD-related dopaminergic neurodegeneration [10]. According
to a previous study, autophagy, which eliminates aggregated α-synuclein, may represent a
potential neuroprotective strategy in PD [9,12].

6-Hydroxydopamine (6-OHDA) is commonly used to develop in vitro models of
PD [13]. The structure of 6-OHDA is similar to that of dopamine, and it can easily oxidize
into hydrogen peroxide and para-quinone [14]; it can enter neuronal cells and generate
intracellular reactive oxygen species (ROS), ultimately causing neuronal cell death [15].
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Amber is a type of fossilized plant resin that is commonly used as jewelry and in
decorative objects. In China, amber has been used as a medicine for more than a thousand
years to enhance mental stability, stop bleeding, aid in wound healing, and act as a diuretic.
The medicinal effects of amber had already been mentioned in the book Lei’s Treatise on the
Preparation of Medicinal Substances (Lei Gong Pao Zhi Lun) around the 5th century CE. In
Russia, amber is commonly used in folk medicine [16]. In recent years, the effects of amber
on allergy [17], anti-inflammation [18], suppression of melanin production, promotion
of collagen production [19], and reduction in fat accumulation [20] have been identified.
A previous study by our group found that amber extract has a protective effect against
amyloid-β-induced neuronal cell death [21]. In this study, we aimed to investigate the
protective effects of amber extracts against 6-OHDA-induced neuronal cell apoptosis.

2. Results
2.1. Amber Extract Protects SHSY5Y Cells against 6-OHDA-Induced Cytotoxicity

Cell viability was measured using the MTT assay. Low concentrations of amber extract
(below 50 µg/mL) showed no cytotoxicity. However, cells treated with 100 µg/mL amber
extract showed significantly decreased viability compared with the cells in the control
group (Figure 1A).
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Figure 1. Effect of amber extract on 6-hydroxydopamine (6-OHDA)-induced cytotoxicity: SH-SY5Y
cells were cultured in DMEM/F12 medium with 10% FBS. After 24 h of seeding, the cells were
pretreated with amber extract for 24 h, and then the medium was replaced with fresh 6OHDA-
containing medium for another 24 h, after which cell viability was measured using the MTT assay.
Control (Ct): (6-OHDA/amber) −/−, 6-OHDA: (6-OHDA/amber) +/−, Amber: (6-OHDA/amber)
(+/15 µg/mL; +/25 µg/mL, +/50 µg/mL). (A) Cytotoxicity of amber extract. (B) Effect of amber
extract on 6-OHDA-induced cell death. Cell viability was determined using the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenylterazolium bromide assay. The results are expressed as the mean ± standard
deviation. n ≥ 3, * p < 0.05 vs. Control, ** p < 0.01 vs. Control, ## p < 0.01 vs. 6-OHDA.

Compared with the control group, a significant decrease in viability was observed
for cells treated with 75 µM 6-OHDA, whereas treatment with amber extract showed a
protective effect against 6-OHDA -induced cytotoxicity (Figure 1B).

2.2. Amber Extract Decreases 6-OHDA-Induced Apoptosis in SHSY5Y Cells

To evaluate the effect of amber extract on apoptosis, the apoptosis assay was per-
formed, and the protein expression levels of caspase-3 were measured. Cells treated with
75 µM 6-OHDA showed a significant increase in cell death and cleaved caspase-3 protein
levels when compared with cells in the control group. In contrast, apoptosis and cleaved
caspase-3 protein levels were lower in the amber-extract-treated group than in the 6-OHDA
group (Figure 2A–C).
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Figure 2. Effect of amber extract on 6-hydroxydopamine (6-OHDA)-induced cell apoptosis: SH-SY5Y
cells were cultured in DMEM/F12 medium with 10% FBS. After 24 h of seeding, the cells were pre-
treated with amber extract for 24 h, and then the medium was replaced with fresh 6OHDA-containing
medium for another 6 h for apoptosis assay, and 24 h for WB. Control (Ct): (6-OHDA/amber)
−/−, 6-OHDA: (6-OHDA/amber) +/−, Amber: (6-OHDA/amber) (+/15 µg/mL; +/25 µg/mL,
+/50 µg/mL). (A) Apoptosis analyzed using a fluorescence microplate reader. (B) Representative
Western blot image of caspase-3 and cleaved caspase-3. (C) The protein bands of cleaved caspase-3
were quantified using ImageJ. The results are expressed as the mean ± standard deviation. n ≥ 3,
** p < 0.01 vs. Control, # p < 0.05 vs. 6-OHDA, ## p < 0.01 vs. 6-OHDA.

2.3. Amber Extract Decreases 6-OHDA-Induced ROS Generation in SHSY5Y Cells

Cells treated with 75 µM 6-OHDA showed a significant increase in ROS levels com-
pared with the cells in the control group; however, the levels decreased with amber extract
treatment (Figure 3A).

We also measured pERK protein levels, which are related to ROS generation. The
pERK/ERK ratio was increased in the 6-OHDA group compared with that in the control
group, and decreased in the amber extract treatment (Figure 3B,C).

2.4. Effect of Amber Extract on Autophagy-Related Gene Expression in SHSY5Y Cells

To confirm the effect of amber extract on autophagy, the protein expression levels of
autophagy-related genes, Beclin-1, and LC3 were measured. We observed that 6-OHDA
decreased the protein levels of Beclin-1, but had no significant effect on LC3-II levels.
However, the protein levels of Beclin-1 and LC3-II were higher in the amber-extract-treated
group than in the 6-OHDA group (Figure 4A–C). Furthermore, we measured the LC3
II/LC3 I ratio as another marker of autophagy. Cells treated with 6-OHDA showed no
significant differences in the LC3 II/LC3 I ratio compared with cells in the control group;
however, the LC3 II/LC3 I ratio was increased in the amber extract group (Figure 4D).
These results suggest that amber extract promotes autophagy in SHSY5Y cells.
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Figure 3. Effect of amber extract on 6-hydroxydopamine (6-OHDA)-induced intracellular reactive
oxygen species (ROS) generation: SH-SY5Y cells were cultured in DMEM/F12 medium with 10%
FBS. After 24 h of seeding, the cells were pretreated with amber extract for 24 h, and then the medium
was replaced with fresh 6OHDA-containing medium for another 6 h for ROS assay, and 24 h for WB.
Control (Ct): (6-OHDA/amber) −/−, 6-OHDA: (6-OHDA/amber) +/−, Amber: (6-OHDA/amber)
(+/15 µg/mL; +/25 µg/mL, +/50 µg/mL) (A) ROS analyzed using a fluorescence microplate reader.
(B) Representative Western blot image of pERK and extracellular signal-regulated kinase. (C) The
protein bands were quantified using ImageJ. The results are expressed as the mean ± standard
deviation. n ≥ 3 * p < 0.05 vs. Control, ** p < 0.01 vs. Control, # p < 0.05 vs. 6-OHDA.
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Figure 4. Effect of amber extract on autophagy-related gene expression: SH-SY5Y cells were cultured
in DMEM/F12 medium with 10% FBS. After 24 h of seeding, the cells were pretreated with amber
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extract for 24 h, and then the medium was replaced with fresh 6OHDA-containing medium for
another 24 h. Control (Ct): (6-OHDA/amber) −/−, 6-OHDA: (6-OHDA/amber) +/−, Amber:
(6-OHDA/amber) (+/15 µg/mL; +/25 µg/mL, +/50 µg/mL) (A) Representative Western blot image
of Beclin-1 and LC3. (B) The protein bands of Beclin-1 were quantified using ImageJ. (C) The protein
bands of LC3 II were quantified using ImageJ. (D) The relative ratios of LC3 II/LC3 I bands’ density.
The results are expressed as the mean ± standard deviation. n ≥ 3 * p < 0.05 vs. Control, # p < 0.05 vs.
6-OHDA, ## p < 0.01 vs. 6-OHDA.

3. Discussion

Amber is a type of fossilized resin obtained from plants. At present, the largest known
deposit of amber is the Baltic region. Baltic amber is the most popular, and is commonly
used in folk medicine in Russia [16]; it contains many bioactive compounds, such as
monoterpenes, succinic monoterpenoids, sesquiterpenoids, and other compounds [16,22].
Monoterpenes and monoterpenoids are a series of chemicals that are widely diffused in
plants; their basic structure is composed of two bound isoprene units [23]. Monoterpenes
have been reported to have antioxidant, anti-inflammatory, antidiabetic, hepatoprotective,
and antitumor activities, and can also modulate autophagy [24]. Monoterpenoids also
have been reported to have anti-inflammatory effects [25], and as a kind of treatment
for chronic pain [26]. Moreover, sesquiterpenoids have also been reported to have anti-
inflammatory [27] and neuroprotective effects [28]. Previous studies have shown that
Baltic amber contains several different active compounds [16,29], such as p-cymene and
dehydroabietic acid, which have been reported to have anti-inflammatory effects [30,31];
camphor, which has been reported to have antifungal activity [32]; pimaric acid, which has
been reported to have anti-atherosclerotic activity [33], etc. However, there are still many
other unknown components in amber, and future studies should focus on identifying all
components of the amber extract and elucidating the exact components that have potential
neuroprotective effects.

In previous studies, many effects of amber—such as anti-allergic effects [17], promotion
of collagen production, and suppression of melanin production [19]—have been investi-
gated. In our previous studies, we found that amber extract also has anti-inflammatory
effect [18], the ability to reduce fat accumulation [20], and can protect cells from amyloid-
β1-42-induced cytotoxicity [21].

6-OHDA can be taken up by the dopamine transporter (DAT) into cells and generate
active oxygen, which causes the death of neurons [15,34]. In our pervious study, amber ex-
tract was able to upregulate the mRNA levels of SOD1 and SOD2 in order to downregulate
ROS generation [21]. Therefore, the purpose of this study was to focus on the effects of
amber on 6-OHDA-induced generation of active oxygen and neuron death.

In a previous study, differentiated SHSY5Y cells underwent some alteration in the
AKT pathway, and had higher tolerance to the toxicity of 6OHDA [35], meaning that
undifferentiated SHSY5Y cells may be more suitable for a Parkinson’s disease model.
Therefore, in this study, undifferentiated SHSY5Y cells were used.

Cell viability was no different in the amber extract group (up to 50 µg/mL); however,
it was significantly increased in the amber pretreatment group compared with that in the
6-OHDA group. Thus, we concluded that amber extract protected the cells from 6-OHDA-
induced cytotoxicity. Moreover, this result indicates that amber may have a preventive
effect against 6OHDA cytotoxicity.

An apoptosis assay was performed to confirm the effects of amber extract on 6-
OHDA-induced cell death. The fluorescence intensity of apoptotic cells to healthy cells
was increased in the 6-OHDA group—which is consistent with the findings of a previous
study [36]—and decreased in the amber pretreatment group. Moreover, the protein levels
of caspase-3 and cleaved caspase-3 were measured. The results of the amber group showed
that cleaved caspase-3 levels showed a concentration-dependent decrease compared with
those in the 6-OHDA group. This result suggests that amber has a protective effect against
6-OHDA-induced cell death.
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In recent years, many studies have suggested that mitochondrial dysfunction [37] and
oxidative stress [7,38] play important roles in PD. In previous studies, some compounds—
such as succinate [16]—were reported to have the function of reducing mitochondrial
dysfunction [39] and recovering mitochondrial oxygen consumption [40]. As succinate
is one of the components of amber, this means that amber may also participate in the
regulation of mitochondrial function.

6-OHDA can enter neuronal cells and generate intracellular ROS, causing neuronal
cell death [15,34]. In our study, the increase in ROS in the 6-OHDA group and the decrease
in ROS in the amber group were clearly observed. Therefore, amber reduced cell apoptosis
because of the possible effect of ROS scavenging. In a previous study, oxidative stress
induced by ROS generation led to apoptosis via caspase-3 activation [38]. However, unlike
cleaved caspase-3, ROS generation was not significantly different between the cells treated
with various concentrations of amber extract. This suggests that in addition to its ROS-
scavenging effect, amber may exert its effect via another signaling pathway to protect cells
from apoptosis.

ERK1/2 have been reported as important regulators of neuronal responses [41,42].
Activation of the ERK signaling pathway may be related to increased ROS generation [43]
and cell death [41]. In vitro and postmortem studies have shown that ERK1/2 activation
plays an important role in 6-OHDA-induced cell death [44,45]. Therefore, we measured
the protein levels of pERK and ERK. The results showed that the phosphorylation of ERK
in the 6-OHDA group was significantly increased, consistent with a previous study [41],
whereas amber inhibited the phosphorylation of ERK. In a previous study, the suppression
of the activation of ERK decreased ROS-induced cell death [43]. This also suggests that
amber extract decreases apoptosis via the ROS-mediated ERK signaling pathway.

Pervious research has shown that short-term (30 min) treatment of 6OHDA can lead
to a distinct temporal pattern in the activation of ERK—first at 15 min, and again from 6
h to 24 h. The activation of ERK at early stages exerts a protective effect on cells, and the
inhibition of the first activation leads to the increase in ROS [46] However, the long-term
and toxic concentration (over 50 µM) of 6OHDA treatment leads to sustained ERK1/2
phosphorylation [44,47]. In our experiments, SHSY5Y cells were treated with high con-
centrations of 6OHDA and kept for 24 h, and the sustained ERK1/2 phosphorylation was
decreased by amber treatment, which was consistent with the previous study [44].

In a previous study, α-synuclein aggregates were found to be a neuropathological
hallmark of PD [5]. One of the important degradation pathways of α-synuclein is au-
tophagic proteolysis (autophagy) [9,10]. Autophagy is an intracellular degradative process;
it usually occurs under stress conditions, such as the presence of abnormal proteins and
nutrient deficiency, etc. [48]. Rapamycin, an inducer of autophagy, has been shown to have
a protective effect against PD-related dopaminergic neurodegeneration [10]. These findings
show that autophagy may represent a potential neuroprotective strategy in PD. The results
show that amber promotes autophagy, consistent with our previous study [21]. These
results suggest that amber extract can protect neuronal cells against 6-OHDA-induced cell
apoptosis by upregulating autophagy. Interestingly, an amber concentration of 50 µg/mL
did not show the highest values of results in terms of autophagy, whereas a concentration
of 25 µg/mL induced higher protein levels of both Beclin-1 and LC3II. However, in terms
of the LC3 II/LC3 I ratio—a marker of autophagosome formation—the same effect was
observed in the 25 µg/mL and 50 µg/mL groups. This indicates that a low concentration
of amber extract may have a better therapeutic effect.

Neuroinflammation is also an important part of neurodegenerative diseases such
as PD and AD [8,49,50]. In our study group, amber had an anti-inflammatory effect on
the LPS-induced inflammatory cell model [18]. In previous studies, kujigamberol, which
is isolated from Kuji amber, had anti-allergic effects [17,29]. Moreover, other bioactive
compounds—such as monoterpenes, succinic monoterpenoids, and sesquiterpenoids—also
have anti-inflammatory effects [24,25,27]. Thus, it is possible that the protective effects of
amber extract may be the result of not only a single component, but also the combined action
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of many different types of components. In future research, we will focus on identifying
these bioactive components in amber extract that can protect cells from 6-OHDA-induced
cell death.

4. Materials and Methods
4.1. Materials

Dulbecco’s modified Eagle medium/nutrient mixture F-12 (DMEM/F12), 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenylterazolium bromide (MTT), and 6-OHDA were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Fetal bovine serum (FBS) was purchased
from HyClone Laboratories (Logan, UT, USA). Penicillin and streptomycin were purchased
from Wako (Tokyo, Japan).

An apoptosis/necrosis detection kit (blue, green, red) and a DCFDA/H2DCFDA
Cellular ROS Assay Kit were purchased from Abcam (Cambridge, UK). Antibodies such
as Beclin, caspase-3, pERK, extracellular signal-regulated kinase (ERK), and LC3A/B XP,
along with LumiGLO reagent, were purchased from Cell Signaling Technology (Danvers,
MA, USA). RNAiso Plus was purchased from Takara Bio (Shiga, Japan). The THUNDER-
BIRD SYBR qPCR Mix was purchased from Toyobo (Tokyo, Japan).

4.2. Amber Extract

Baltic amber (Kaliningrad, Russia) was crushed, powdered, and extracted in 50%
ethanol at 40 ◦C for 1 h under stirring, and then filtered. The extracted solution was de-
pressurized and freeze-dried to form a powder (Kohaku Bio. Technology, Tsukuba, Japan).
Amber extract powder was dissolved in dimethyl sulfoxide, and the mixture was stored at
−80 ◦C until use.

4.3. Cell Culture

The human neuroblastoma cell line SHSY5Y (Riken Cell Bank, Tsukuba, Japan) was
used for the experiments. SH-SY5Y cells were seeded in 96-well plates at 2 × 104 cells/well
and in 6 cm culture dishes at 1.3 × 106 cells/dish for WB, cultured in DMEM/F12 medium
with 10% FBS. After 24 h of seeding, the cells were pretreated with amber extract for 24 h,
washed once with PBS, and then the medium was replaced with fresh 6OHDA-containing
medium for another 24 h. The cells were maintained in a humidified atmosphere under 5%
CO2 at 37 ◦C. The DMSO concentration in all experimental groups was unified to 0.05%.

4.4. MTT Assay

Cell viability was measured using the MTT assay. The medium was replaced with 90%
DMEM/F12 and 10% MTT, and the cells were cultured at 37 ◦C for 4 h. Then, 10% sodium
dodecyl sulfate (SDS) was added, and the mixture was kept at room temperature overnight.
Absorbance was measured at 570 nm using a microplate reader (BioTek, Tokyo, Japan).

4.5. Apoptosis Assay

SHSY5Y cells were seeded in 96-well plates at 2× 104 cells/well, cultured in DMEM/F12
medium with 10% FBS. After 24 h of seeding, the cells were pretreated with amber
extract for 24 h, followed by treatment with 6-OHDA for another 6 h. The apopto-
sis/necrosis detection kit (blue, green, red) was used to quantify apoptotic, necrotic, and
live cells, according to the manufacturer’s protocol. Fluorescence was measured using
a fluorescence microplate reader (BioTek, Tokyo, Japan), with fluorescence intensities of
Ex/Em = 490/525 nm, Ex/Em = 550/650 nm, and Ex/Em = 405/450 nm for apoptotic,
necrotic, and live cells, respectively.

4.6. ROS Assay

SHSY5Y cells were seeded in 96-well plates at 2× 104 cells/well, cultured in DMEM/F12
medium with 10% FBS. After 24 h of seeding, the cells were pretreated with amber extract
for 24 h, followed by treatment with 6-OHDA for another 6 h. The DCFDA/H2DCFDA
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Cellular ROS Assay Kit was used to measure intracellular ROS concentration, according to
the manufacturer’s protocol. Fluorescence was measured using a fluorescence microplate
reader (BioTek, Tokyo, Japan), at a fluorescence intensity of Ex/Em = 485/535 nm.

4.7. Western Blotting

SHSY5Y cells were seeded in 6 cm culture dishes at 1.3 × 106 cells/dish, cultured
in DMEM/F12 medium with 10% FBS. After 24 h of seeding, the cells were pretreated
with amber extract for 24 h, followed by treatment with 6-OHDA for another 24 h. The
cells were collected via centrifugation, washed twice with cold phosphate-buffered saline,
and lysed using RIPA buffer (150 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, 10 mM
NaF, 1 mM Na3VO4, 1% Triton X-100, 0.1% SDS, 0.5% Na-deoxycholate, and protein
inhibitor). After electrophoresis and transfer, the membrane was incubated with primary
antibodies, including Beclin, caspase-3, pERK, ERK, and LC3 A/B XP. The membrane
was then incubated with horseradish peroxidase (HRP)-conjugated secondary antibodies
at room temperature for 1 h. LumiGLO reagent was used to detect HRP. The bands
were detected using an AE-9300 Ez-Capture MG system (Atto Corporation, Tokyo, Japan).
Protein expression levels were quantified using ImageJ software (NIH, Bethesda, MD, USA).

4.8. Data Analysis

All experiments were repeated at least thrice. The results are expressed as the
mean ± SD. ANOVA was performed post hoc to compare data between the groups
using SPSS Statistics (SPSS Inc., Chicago, IL, USA). Statistical significance was set at a
p-value of < 0.05.

5. Conclusions

Amber extract protected SHSY5Y cells from 6-OHDA-induced apoptosis. Addition-
ally, it decreased intracellular ROS and phosphorylation of ERK, and promoted autophagy.
These results suggest that amber can protect neuronal cells against 6-OHDA-induced cell
death by upregulating autophagy and downregulating intracellular ROS. These results in-
dicate that amber can potentially be used as a novel therapeutic and prophylactic candidate
for PD.
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32. Ivanov, M.; Kannan, A.; Stojković, D.S.; Glamočlija, J.; Calhelha, R.C.; Ferreira, I.C.F.R.; Sanglard, D.; Soković, M. Camphor and
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