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A B S T R A C T   

Rationale and Objectives: Based on radiomics signature and clinical data, to develop and verify a radiomics 
nomogram for preoperative distinguish between benign and malignant of small renal masses (SRM). 
Materials and Methods: One hundred and fifty-six patients with malignant (n = 92) and benign (n = 64) SRM were 
divided into the following three categories: category A, typical angiomyolipoma (AML) with visible fat; category 
B, benign SRM without visible fat, including fat-poor angiomyolipoma (fp-AML), and other rare benign renal 
tumors; category C, malignant renal tumors. At the same time, one hundred and fifty-six patients included in the 
study were divided into the training set (n = 108) and test set (n = 48). Respectively from corticomedullary 
phase (CP), nephrogram phase (NP) and excretory phase (EP) CT images to extract the radiomics features, and 
the optimal features were screened to establish the logistic regression model and decision tree model, and 
computed the radiomics score (Rad-score). Demographics and CT findings were evaluated and statistically sig
nificant factors were selected to construct a clinical factors model. The radiomics nomogram was established by 
merging Rad-score and selected clinical factors. The Akaike information criterion (AIC) values and the area under 
the curve (AUC) were used to compare model discriminant performance, and decision curve analysis (DCA) was 
used to assess clinical usefulness. 
Results: Seven, fifteen, nineteen, and seventeen distinguishing features were obtained in the CP, NP, EP, and 
three-phase joint, respectively, and the logistic regression and decision tree models were built based on this 
features. In the training set, the logistic regression model works better than the decision tree model for dis
tinguishing categories A and B from category C, with the AUC of CP, NP, EP and three-phase joint were 0.868, 
0.906, 0.937 and 0.975, respectively. The radiomics nomogram constructed based on the three-phase joint Rad- 
score and selected clinical factor performed well on the training set (AUC, 0.988; 95% CI, 0.974-1.000) for 
differentiation of categories A and B from category C. In the test set, the AUC of clinical factors model, radiomics 
signature and radiomics nomogram for discriminating categories A and B from category C were 0.814, 0.954 and 
0.968, respectively; for the identification of category A from category C, the AUC of the three models were 0.789, 
0.979, 0.985, respectively; for discriminating category B from category C, the AUC of the three models were 
0.853, 0.915, 0.946, respectively. The radiomics nomogram had better discriminative than the clinical factors 
model in both training and test sets (P < 0.05). The radiomics nomogram (AIC = 40.222) with the lowest AIC 
value was considered the best model compared with that of the clinical factors model (AIC = 106.814) and the 
radiomics signature (AIC = 44.224). The DCA showed that the radiomics nomogram have better clinical utility 
than the clinical factors model and radiomics signature. 
Conclusions: The logistic regression model has better discriminative performance than the decision tree model, 
and the radiomics nomogram based on Rad-score of three-phase joint and clinical factors has a good predictive 

Abbreviations: AIC, Akaike information criterion; AML, angiomyolipoma; ANOVA, analysis of variance; AUC, area under the curve; ccRCC, clear cell renal cell 
carcinoma; CP, corticomedullary phase; DCA, decision curve analysis; EP, excretory phas; fp-AML, fat-poor angiomyolipoma; ICC, intra-class correlation coefficients; 
LASSO, least absolute shrinkage and selection operator; NP, nephrogram phase; Rad-score, radiomics score; RCC, renal cell carcinoma; ROC, receiver operating 
characteristic; ROI, regions of interest; SRM, small renal masses; 95% CI, 95%, confidence interval; 3-D, three-dimensional. 
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effect in differentiating benign from malignant of SRM, which may help clinicians develop accurate and indi
vidualized treatment strategies.   

Introduction 

The small renal masses (SRM) are defined as the maximum size in 
abdominal imaging is 4 cm or less contrast enhanced mass [1]. With the 
continuous development and widespread application of advanced 
cross-sectional imaging, the number of detection of SRM has been 
increasing [2,3]. Previous study have shown that more than 50% of 
renal masses are incidental findings during routine imaging [4]. Ac
cording to statistics, 48% to 66% of the renal tumors discovered in the 
examination were SRM and 38% of the removed renal tumors were SRM 
[1,5,6]. However, up to 25% of SRM are benign tumors [7], with renal 
AML being the most common. In addition, fp-AML is similar to renal cell 
carcinoma (RCC) in imaging characteristics because it lacks macroscopic 
fat, which makes it difficult to distinguish these lesions from RCC in 
conventional CT analysis, which is prone to misdiagnosis. Current 
guidelines believe that surgery remains the primary treatment modality 
for malignant renal tumors, while for benign renal tumors such as AML, 
active surveillance is the most appropriate option, especially for SRM 
[8]. Therefore, preoperative identification between benign and malig
nant of SRM is very necessary, which can reduce unnecessary excessive 
surgery and satisfy the current requirements for precise and individu
alized treatment. 

As an emerging auxiliary and diagnostic technology, radiomics can 
improve the accuracy of tumor diagnosis and provide clinicians with 
more objective and quantitative auxiliary support through high- 
throughput, non-invasive extraction of lesion information and a 
deeper understanding of tumor heterogeneity [9,10]. Studies have 
shown that radiomics shows great potential in the field of oncology, such 
as predicting tumor type, distinguishing benign from malignant tumors, 
and tumor aggressiveness, among many other aspects [11,12]. In this 
study, we validated the value of the radiomics nomogram in preopera
tive diagnosis of benign and malignant of SRM. 

Materials and methods 

Patients 

Retrospective analysis of 156 patients with SRM who underwent 
preoperative contrast-enhanced CT from January 2015 to April 2022, 
including 92 malignant tumors (79 clear cell renal cell carcinoma 
(ccRCC), 7 papillary renal carcinoma, 6 chromophobe renal carcinoma) 
and 64 benign tumors (25 fp-AML, 1 metanephricadenoma, 1 renal 
oncocytoma, 37 typical AML). The inclusion criteria of the research 
subjects are as follows: (1) Postoperatively diagnosed with renal tumor 
and with clear pathological classification; (2) Complete three-phase CT 
scan (CP, NP, EP) with good image quality, meeting the analysis re
quirements; (3) Renal tumors with maximal diameter ≤4 cm on CT: 
category A, typical AML with visible fat; category B, benign SRM 
without visible fat, including fp-AML, oncocytoma, and other rare 
benign renal tumors; category C, malignant renal tumors. Below were 
the criteria for exclusion: (1) Patients receiving interventions such as 
radiotherapy or chemotherapy therapy before surgery; (2) Image arti
facts and overlaps lead to poor or damaged image quality and cannot be 
diagnosed. 

CT image acquisition 

The CT scanning was acquired using 256-slice multidetector CT 
equipment (Brilliance, Philips Healthcare). The specific parameters: 
tube voltage 120-kVp, tube current variable, layer thickness was 3.0mm, 
layer spacing was 3.0mm, matrix 512×512. Eighty milliliters of 

nonionic contrast agent (Ioversol, Jiangsu Hengrui Medicine Co., Ltd., 
Nanjing, China) were administered into an antecubital vein at a dynamic 
rate of 3.3 ml/s. The CP, NP and EP were obtained at 30s, 65s, and 180s 
following the start of contrast injection, respectively. 

Drawing tumors and extracting features 

All three-phase enhanced CT images were transferred from the pic
ture archiving and communication system to 3D Slicer software 
(version: 4.10.2.) in DICOM format with original dimensions and reso
lution. The three-dimensional (3-D) regions of interest (ROI) were 
drawn along no more than 1mm of the lesion edge on CP, NP, and EP 
images. Fig. 1 showed an example of segmentation. 

All CT images were resampled to a voxel size of 1 × 1 × 1 mm and 
discretized to grayscale with the bandwidth set to 25 before extracting 
radiomics features. In total, 107 imaging features were extracted in each 
patient, including 14 shape features, 18 first order features and 75 
texture features. Finally, 479 radiomics features were obtained using 
LoG (σ: 0.5, 1.0, 1.5, 2.0). For more information on radiomics capabil
ities, visit https://pyradiomics.readthedocs. io/en/latest/#. 

The radiomics signature was evaluated by calculating inter-class and 
intra-class correlation coefficients (ICC) using 35 randomly selected CT 
images (15 benign tumors and 20 malignant tumors). Reader 1 and 
reader 2 delineate the ROI respectively. The same procedure was 
repeated by reader 1 two weeks later to assess the consistency and sta
bility of the extracted features. When the ICC is greater than 0.75, it was 
considered to be in good agreement. Reader 1 segmented the remaining 
images. 

Selecting features and creating radiomics signature 

A ratio of 7:3 was used to randomly divide the acquired character
istics of patients into the training set (n = 108) and the test set (n = 48). 
Before feature selection, z-score normalization was performed to remove 
the unit limits of the data. Further analysis focused on stable and 
reproducible radiomics features with ICC greater than 0.75. One-way 
analysis of variance (ANOVA) and least absolute shrinkage and selec
tion operator (LASSO) were used to select the optimal features and 
eliminate irrelevant or redundant features through tenfold cross- 
validation. Using the selected features, the decision tree and logistic 
regression prediction models were constructed respectively, and the 
generalization of the models were verified in the independent test set. 
Rad-score was computed per patient, weighted by the LASSO coefficient 
for each patient. The discriminative effect of each model was evaluated 
by receiver operating characteristic (ROC) curve and AUC, and speci
ficity, sensitivity and accuracy were also computed. 

Developing clinical factor model 

Univariate analysis and multivariate logistic regression were used to 
test the significant differences of clinical factors between the two groups, 
and the clinical factors model was established. 

Radiomics nomogram construction and model performance evaluation 

The radiomics nomogram was constructed in the training set by 
multiple logistic regression, incorporating statistically significant clin
ical factors and Rad-score of the best radiomics signature. The Hosmer 
and Lemeshow test was used to measure the goodness of fit of the model, 
and the correction curve was drawn. The AUC of the training set and test 
set were computed to evaluate the diagnostic efficacy of the radiomics 
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nomogram, radiomics signature, and clinical factors model, while 
specificity, sensitivity, and accuracy were also computed. The Akaike 
information criterion (AIC) value was used to measure the goodness of 
the model fit. DCA was used to evaluate the clinical benefit of nomogram 
in differentiating benign from malignant of SRM. 

Statistical analysis 

Data analysis R software, version 4.2.0 was used for statistical 
analysis. Comparison of clinical factors between groups was done using 
univariate analysis. The Fisher’s exact test or Chi-square test was 
employed to compare the qualitative data, while the t-test or Mann- 
Whitney U test was used to compare quantitative data. The develop
ment and calibration plots of the nomogram using the "rms" package, 
and the "generalhoslem" package is used to carry out the Hosmer- 
Lemeshow test. We performed LASSO regression model analysis with 
"glmnet" package. We plotted ROC curves with the "pROC" package. The 
Delong test was used to estimate the difference of AUC values between 
three models. We performed the DCA with the package "dca.R.". The 
level of statistical significance was set at P < 0.05. 

Results 

Patients with clinical factors and clinical factors model building 

A total of 156 patients were enrolled in this study, including 37 
typical AML with visible fat (category A), 27 benign SRM without visible 
fat (category B), and 92 malignant SRM (category C), and the mean age 
of categories A, B, and C masses were 43.89±11.12 years, 45.00±12.54 
years and 54.64±12.12 years, respectively; the average sizes were 28.73 
±8.41 mm, 21.91±8.15 mm and 31.19 ±8.04 mm, respectively. The 
clinical features of benign SRM (categories A+B) and malignant SRM 
(category C) were shown in Table 1. As shown in Table 2, the univariate 
and multivariate logistic regression found that male sex, larger tumor, 
and older age were significant risk indicators for malignancy. Tumor 
location, height, weight and BMI were not statistically significant 

between groups. 

Radiomics feature analysis and model construction 

Of the 420, 396 and 310 radiomics features with good agreement 
were obtained in CP, NP and EP CT images, respectively, with ICC from 
0.750 to 1.000. After one-way ANOVA and LASSO logistic regression, 
the features dimensionality reduction was performed (Fig. 2), and 7, 19, 
15, and 17 most valuable radiomics features were obtained in the CP, 
NP, EP, and three-phase joint, respectively. Finally, logistic regression 
and decision tree models were constructed, ROC curve was drawn and 
AUC value, specificity, sensitivity and accuracy were computed. In the 
training set, the logistic regression model works better than the decision 
tree model for distinguishing categories A and B from category C, with 
the AUC of CP, NP, EP and three-phase joint were 0.868, 0.906, 0.937 
and 0.975, respectively (Supplementary Table 1). The following is the 
formula for calculating Rad-score: 

Rad-score=13.562-0.878*A-0.063*B+0.056*C+1.149*D-0.543*E- 
0.824*F+0.668*G-10.335*H-0.240*I+0.454*J+0.516*K-1.845*L- 
0.468*M-1.019*N-0.076*O+1.352*P+0.264*Q. The A to Q indicate the 
significant radiomics features of the three-phase joint, as shown in 
Supplementary Table 2. And the radiomics signature was established 
based on the Rad-score of three-phase joint. 

Construction of radiomics nomogram and performance evaluation of three 
models 

Radiomics nomogram was developed by multivariable logistic 
regression using clinical factors (age, sex, and tumor size) and Rad-score 
of three-phase joint (Fig. 3a). In the calibration curve and Hosmer- 
Lemeshow test, both the training (P = 0.998) and test (P = 0.921) sets 
were well calibrated (Fig. 3b, c). 

Table 3 shows the diagnostic efficacy of the three models (clinical 
factors model, radiomics signature, and radiomics nomogram) in 
differentiating benign (categories A and B) from malignant (category C) 
of SRM in training (AUC = 0.852, 0.975, 0.88) and test (AUC = 0.814, 

Fig. 1. Tumor segmentation in three dimensions manually. (a) Segmentation on the coronal section. (b) Segmentation on the sagittal section. (c) Segmentation on 
the transverse section. (d) Three-dimensional volumetric reconstruction. 
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0.954, 0.968) sets. The ROC curves for the three models in the training 
and test sets were shown in Supplementary Fig. 1 and Supplementary 
Fig. 2. The radiomics nomogram had better discriminative than the 
clinical factors model in both training and test sets (P = 0.0007, 0.0258). 
Compared with the clinical factors model, the radiomics signature AUC 
was better (P = 0.0008) in the training set, while the radiomics signature 
was not significantly different from the clinical factors model in the test 
set (P = 0.0546). In the training and test sets, the AUC of the radiomics 
nomogram and the radiomics signature were not significantly different 

(P = 0.1259, 0.1278). The following is the formula for calculating 
Nomo-score: 

Nomo-score=4.2187+0.8774*Rad-score+1.7101*gender- 
0.0849*age-0.0561*size 

Table 4 shown the diagnostic performance of the three models in the 
test set between categories A and C, and between categories B and C. The 
AUC were 0.789, 0.979, 0.985 and 0.853, 0.915, 0.946, respectively. 
Supplementary Fig. 3 and Supplementary Fig. 4 shows the ROC curves of 
the three models. For the identification of categories A and C, compared 
with the clinical factors model, the radiomics nomogram (P = 0.0082) 
and radiomics signature (P = 0.0115) had better AUC values, but the 
AUC of the radiomics signature and the nomogram were not signifi
cantly different (P = 0.3013). The radiomics nomogram showed the 
highest AUC value for the differentiation between categories B and C, 
but no significant differences were observed between the three models 
(P > 0.05). 

The radiomics nomogram (AIC = 40.222) with the lowest AIC value 
was considered the best model compared with that of the clinical factors 
model (AIC = 106.814) and the radiomics signature (AIC = 44.224). The 
decision curve of the three models were shown in Fig. 4. The DCA 
indicated that radiomics nomograms have better clinical utility than 
clinical factors model and radiomics signatures in distinguishing benign 
from malignant of SRM. 

Discussion 

Differentiating benign from malignant preoperatively is of great 
clinical significance due to the vast differences in treatment 

Table 1 
Clinical factors of benign and malignant small renal masses.  

Clinical factor Age(year) Gender (male/female) Tumor size (mm) Location(left/right) Height(cm) Weight(kg) BMI(kg/m2) 

Malignant renal tumor(n=92) 54.65 ± 12.12 57/35 31.19 ± 8.04 44/48 164.49 ±8.19 64.75 ±11.20 23.83 ±3.18 
Benign renal tumor(n=64) 44.36 ± 11.66 13/51 25.85 ± 8.91 37/27 160.47 ±7.07 60.53 ±11.45 23.59 ±4.11 
t/X2 5.301 24.804 - 1.134 3.188 2.294 0.400 
P <0.001 <0.001 <0.001 0.287 0.002 0.023 0.690  

Table 2 
Univariate and multivariate logistic regression analysis of the clinical factors.  

Characteristics Univariate analysis Multivariate analysis 

OR 95% CI P OR 95% CI P 

Gender(male/ 
female) 

8.679 3.404- 
25.507 

<0.0001 9.188 3.174- 
31.206 

0.0001 

Age 0.934 0.899- 
0.965 

0.0001 0.937 0.898- 
0.973 

0.0013 

Tumor size 0.920 0.876- 
0.963 

0.0005 0.912 0.857- 
0.965 

0.0021 

Location(left/ 
right) 

0.809 0.371- 
1.748 

0.5906    

Height 0.920 0.871- 
0.967 

0.0017 0.974 0.878- 
1.080 

0.6196 

Weight 0.957 0.923- 
0.990 

0.0143 0.989 0.937- 
1.044 

0.6911 

BMI 0.948 0.846- 
1.058 

0.3498    

CI, confidence interval;OR, odds ratio. 

Fig. 2. Radiomics features of three-phase joint were selected using the LASSO regression model. A tenfold cross-validation procedure was used for tuning parameter 
(λ) in the LASSO model according to the minimum error criterion. The optimal value of LASSO tuning parameter (λ) is represented by the vertical dashed line, and 
0.035 was chosen as the optimal value. 
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requirements, biologic characteristics, and prognosis between the two 
tumors. The imaging features of fp-AML without obvious necrosis and 
hemorrhage are similar to renal cancer, and the differential diagnosis by 
conventional imaging is difficult, especially when the tumor is smaller 

than 4 cm [13]. In this study, logistic regression model, decision tree 
model, and clinical factors model were constructed by selecting the 
optimal radiomics features and statistically significant clinical factors. 
The results indicated that the logistic regression model had better 

Fig. 3. The radiomics nomogram and calibration curves. (a) The radiomics nomogram is through a combination of gender, tumor size, age and Rad-score. Calibration 
curves of the nomogram in the training (b) and test (c) sets. The 45◦ straight line indicates the ideal prediction. The closer the two curves are, the higher the accuracy. 
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discriminative performance, and the three-stage combined model had 
the best effect. Radiomics nomogram based on Rad-score and selected 
clinical factors has good predictive value and clinical benefits in 
differentiating benign from malignant of SRM. 

CT is one of the most important and most widely used methods of 
SRM diagnosis in current imaging examinations [14]. Various strategies 
have been proposed to obtain conventional CT imaging features to 
distinguish benign from malignant. Xie et al. analyzed 329 patients with 
SRM by constructing a nomogram, and the regression model results 
showed that tumor size and tumor CT profile were predictors of SRM 
histopathological subtypes. After external verification, the C-index is 
0.887 [15]. Yang et al. collected 33 fp-AML and 54 ccRCC patients, 
multivariate analysis shown that the hypodense rim, angular interfaces, 
high unenhanced attenuation, and homogeneous enhancement patterns 
may be specific CT features of fp-AML [16]. Choi et al. studied the 
four-phase CT imaging features of 84 patients with SRM and the results 
suggested that the degree of CP enhancement is the most valuable 
parameter to characterize of SRM [17]. 

Radiomics has been developed recently to identify subtle changes in 

CT images that cannot be detected visually, providing more objective 
diagnostic information. Compared with traditional CT to qualitatively 
evaluate the size and enhancement degree of tumor lesions, radiomics 
can obtain quantitative and high-throughput features from images, 
comprehensively analyze the entire tumor ROI, and assist decision- 
making more scientifically and accurately [18,19]. Several studies 
have demonstrated that radiomics can be used to distinguish benign 
from malignant renal tumors. You et al. performed quantitative texture 
analysis on phase 4 CT enhanced images of renal tumors, and selected 
five texture features with significant discriminative ability for the 
discrimination between fp-AML and ccRCC, with the AUC of 0.850 [20]. 
Feng et al. performed texture analysis on phase 3 CT enhanced images of 
58 patients, and used support vector machine to establish a classification 
model to distinguish RCC from fp-AML, with the AUC of 0.955 [21]. Li 
et al. included 122 patients with renal tumors to establish a radiomics 
nomogram for distinguishing oncocytoma from ccRCC, the AUC in the 
training and test sets were 0.960 and 0.898 [22]. Yap et al. analyzed 735 
patients with CT radiomics features based on shape and texture to 
differentiate benign form malignant renal tumors, and the results 

Table 3 
Diagnostic performance of three models for benign (categories A and B) and malignant (categories C) masses.  

Model Training set(n=108) Test set(n=48) 
AUC(95% CI) Sensitivity Specificity Accuracy AUC(95% CI) Sensitivity Specificity Accuracy 

Clinical factor model 0.852(0.782, 0.923) 0.682 0.844 0.778 0.814(0.690, 0.938) 0.450 0.857 0.688 
Radiomics signature 0.975(0.954, 0.997) 0.886 0.922 0.907 0.954(0.902, 1.000) 0.900 0.857 0.875 
Radiomics nomogram 0.988(0.974, 1.000) 0.909 0.938 0.926 0.968(0.928, 1.000) 0.900 0.893 0.886 

CI, confidence interval 

Table 4 
Diagnostic performance of the three models in the test set between categories A and categories C and categories B and categories C.  

Model Categories A and C Test set(n=40) Categories B and C Test set(n=36) 
AUC(95% CI) Sensitivity Specificity Accuracy AUC(95% CI) Sensitivity Specificity Accuracy 

Clinical factor model 0.789(0.648, 0.929) 0.333 0.857 0.700 0.853(0.727, 0.978) 0.625 0.857 0.806 
Radiomics signature 0.979(0.954, 0.997) 0.917 0.857 0.875 0.915(0.823, 1.000) 0.875 0.857 0.861 
Radiomics nomogram 0.985(0.957, 1.000) 0.917 0.893 0.900 0.946(0.878, 1.000) 0.750 0.893 0.861 

CI, confidence interval. 

Fig. 4. An analysis of decision curves for three models, with the y-axis representing the net benefit and the x-axis representing the threshold probability. The yellow, 
blue and red lines reflect the net benefit of the radiomics nomogram, the radiomics signature and the clinical factors model, respectively. 
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showed that shape features also have similar discriminative power to 
texture features [23]. Erdim et al. Selected two-dimensional cross-
sections for texture analysis to identify between benign and malignant of 
renal tumors. Among the eight machine learning classifiers, the random 
forest model showed the best ability to discriminate the features of 
cortical enhanced CT images [24]. Uhlig et al. included 91 patients with 
renal tumors, and based on parenchymal enhanced CT features only, the 
results showed that radiomics features were more accurate in differen
tiating renal tumors than radiologists [25]. 

There are numerous differences and improvements between our 
study and the radiomics studies described above. First, we mainly 
studied renal masses ≤4 cm in diameter. Compared with larger kidney 
cancers, which are prone to necrosis and marked enhancement, the SRM 
are small, slow-growing, and lacks characteristics on conventional CT 
and MRI images. Therefore, the efficient identification of SRM are more 
clinically meaningful than the identification between large renal tu
mors. Second, most previous studies have used the largest cross-section 
to extract features. The 3-D ROI was used in this study. Compared with 
two-dimensional ROI, 3-D analysis is more reliable and comprehensive, 
allowing us to uncover the imaging features of tumors and better un
derstand their heterogeneity [26]. Third, we divided the included pa
tients into three categories, and constructed a logistic regression model, 
a decision tree model, a clinical factor model, and a radiomics nomo
gram. Radiomics nomogram has better predictive ability for dis
tinguishing categories A, B and C, categories A and C, and categories B 
and C, and has a higher accuracy than traditional CT [27,28]. Fourth, 
this study included age, gender, and tumor size, and found that males, 
older age, and larger tumors were more likely to be malignant lesions, 
while gender was a stronger predictor, consistent with Li and other 
studies [29–31]. 

In our study, several limitations were identified: First, our study used 
retrospective data for analysis. We only analyzed three-phase contrast- 
enhanced CT and did not include the plain scan phase. MRI imaging may 
lead to higher levels of evidence in the future. Second, samples were 
derived from one institute only. Prospective studies involving multiple 
centers and diversity are needed. Third, the number of different types is 
unbalanced, no subgroup analysis was performed, and further study 
with larger number of cases is needed. Fourth, we exclude those cases in 
which the surgery were not performed, potentially creating a selection 
bias. 

Conclusion 

In this study, the logistic regression and decision tree models based 
on radiomics optimal features can accurately distinguish benign from 
malignant of SRM, but the radiomics nomogram based on Rad-score of 
three-phase joint and selected clinical factors has higher accuracy and 
better clinical net or benefit. Radiomics nomogram can provide impor
tant support for clinical decision making and meet our current needs for 
accurate diagnosis and treatment of SRM. 
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