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Abstract

Objective: Prostate cancer (PCa) is a malignant neoplasm of the urinary system. This study

aimed to use bioinformatics to screen for core genes and biological pathways related to PCa.

Methods: The GSE5957 gene expression profiles were obtained from the Gene Expression

Omnibus (GEO) database to identify differentially expressed genes (DEGs). Gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of

the DEGs were constructed by R language. Furthermore, protein–protein interaction (PPI) net-

works were generated to predict core genes. The expression levels of core genes were examined

in the Tumor Immune Estimation Resource (TIMER) and Oncomine databases. The cBioPortal tool

was used to study the co-expression and prognostic factors of the core genes. Finally, the core

genes of signaling pathways were determined using gene set enrichment analysis (GSEA).

Results: Overall, 874 DEGs were identified. Hierarchical clustering analysis revealed that these 24

core genes have significant association with carcinogenesis and development. LONRF1, CDK1, RPS18,

GNB2L1 (RACK1), RPL30, and SEC61A1 directly related to the recurrence and prognosis of PCa.

Conclusions: This study identified the core genes and pathways in PCa and provides candidate

targets for diagnosis, prognosis, and treatment.
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Introduction

Prostate cancer (PCa) is currently a major
cause of cancer morbidity and mortality.1

In China, the rates of incidence and mortal-
ity of PCa have increased in all age groups

from 1990 to 2017, and timely intervention
should be done for individuals less than
40 years old.2 Although prostate-specific
antigen (PSA) levels have been widely
used to detect PCa, overdiagnosis and over-

treatment of PCa are still limitations of
such screening methods.3 Now, numerous
dependable and efficient biomarkers have
been identified and proved to be prognostic.

Therefore, exploring core genes in PCa has
important clinical significance.

Because of high-throughput sequencing
technology and bioinformatics methods, it
is easier to screen for differentially
expressed genes (DEGs) to discover inner
signaling networks and relationships

between genes.4 Fibroblast growth factor
2 (FGF2),5 cyclin kinase subunit 2
(CKS2),6 RING finger protein 7 (RNF7),7

cyclin-dependent kinase 1 (CDK1),8 and

other core genes were screened out based
on their significant effects on the develop-
ment and progression of PCa. However,
several studies have indicated that there
are clear differences among them.

Consequently, potential genes still need to
be explored and verified.

Until now, the gene profile GSE5957 had
not been reported or previously screened.
This dataset contains 25 experiments that
were performed for PCa tissues and three
for normal prostate (NP) tissues. All sam-

ples and common cases were labeled with
Cy5-dUTP. In the present study, a total of
874 DEGs were detected between PCa and
NP tissues. To predict the core genes and

molecular mechanisms, protein–protein
interaction (PPI) networks and Cytoscape
software were applied, respectively.

The Tumor Immune Estimation Resource

(TIMER) database, multiple databases

from cBioPortal, and the Oncomine public

database were used to examine the expres-

sion and prognostic value between cancer

and normal tissues.

Materials and methods

Microarray data

The GSE5957 dataset, which contains 25

PCa tissue samples and three matched NP

tissue samples, were obtained from the

Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/).

GPL4381 (UGI Human 14112 V1.0) was

converted to official gene symbols based

on Database for Annotation Visualization

and Integrated Discovery (DAVID; https://

david.ncifcrf.gov/), which contains 14,112

probes. The construction of the microarrays

used in this study was carried out following

Brown’s method (available at http://cmgm.

stanford.edu/pbrown/protocols/index.

html). A “genome-wide” cDNA microarray

consisting of 14,061 sequences was generat-

ed. These included full-length and partial

cDNAs representing novel, known, and

control genes provided by United Gene

Holdings Group Co., Ltd. The genes repre-

sented in the arrays were identified based

on high similarity to the sequences in the

Unigene database of NCBI by performing

Blast (http://www.ncbi.nlm.nih.gov/).

Data processing and screening of DEGs

The affy package of the R programing lan-

guage (Ver. 4.0.2; R Core Team, 2014) was

used to read the GSE5957 dataset. Robust

Multi-array Average method was precondi-

tioned. The DEGs were screened based

on P-value< 0.05 and |log2FC| (fold

change) �1.9
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Gene ontology (GO) and pathway
enrichment analysis

Gene ontology (GO) annotation and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment information
of DEGs were adopted in DAVID previ-
ously. The standards of screening were
P< 0.05 with count number �1.5. The visu-
alization of results was generated by R pro-
graming language.

PPI network construction and module
analyses

The Search Tool for the Retrieval of
Interacting Genes (STRING) database
online tool (http://string-db.org/)10 was
used to construct the PPI network map-
ping, which served as a unique resource
for further experimentation and analysis
leading to the identification of disease-
modifier genes and new drug targets.11

Criteria of degree cutoff �2, node score
cutoff �2, K-core �2, and max
depth¼ 100, as well as the MCODE and
Centiscape 2.2 App of Cytoscape (Ver.
3.7.2) based on all DEGs,12,13 were used
for network visualization and identification
of core genes.

Core gene selection and prognosis
analysis

Based on the degrees � 12, the most signif-
icant model was established as the PPI net-
work. cBioPortal (http://www.cbioportal.
org) (Table 1) was used to present the co-
expression network. Afterwards, to qualify
the individual prognostic value for PCa,
log2 mRNA expression data (The Cancer
Genome Atlas Prostate Adenocarcinoma
(TCGA PRAD)) were submitted to
TIMER (https://cistrome.shinyapps.io/
timer/).14 We analyzed the Kaplan–Meier
(KM) curves of the candidate core genes,

which are presented with cBioPortal. A P-
value< 0.05 was the criterion for statistical
significance. Five databases15–19 are includ-
ed in cBioPortal, which verified the effects
on patient overall survival (OS) in large
samples.

External dataset evaluation and
verification

Based on Oncomine (http://www.onco
mine.com),20 the interactions between the
core genes and metastasis state were vali-
dated. To map all human proteins in cells,
tissues, and organs and the pathology of
core genes on transcriptional and transla-
tional levels, the Human Protein Atlas
(HPA) (http://www.proteinatlas.org/) was
applied to evaluate the core genes. With
the clinical data from Oncomine and
TCGA, we investigated the mutual relation-
ships between core gene expression levels
and clinical stage. Based on the UALCAN
(http://ualcan.path.uab.edu/index.html)
online tool,21 we examined the relevance
between the core genes and Gleason scores.

Gene set enrichment analysis (GSEA)

GSEA (http://software.broadinstitute.org/
gsea/index.jsp)22 is a productive tool to pre-
dict the functional effect of the core genes.
The most significant pathways were screened
by P-values< 0.05. “ggplot2” packages were
applied to visualize the result in R program-
ing language (Ver. 4.0.2).

Results

Screening of DEGs and data processing

Information regarding mRNA expression is
included in dataset GSE5957. A total of
6901 official gene symbols were identified
and the expression of each gene was estab-
lished. Limma R package was applied to
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filter the DEGs (criteria: P< 0.05 and |log 2
fold change| � 1). A total of 874 DEGs
were discerned between PCa and NP sam-
ples, including 226 upregulated genes and
648 downregulated genes. A cluster heat-
map of the 874 DEGs and a volcano plot
are presented in Figure 1.

KEGG and GO enrichment of DEGs

The functional classifications of the 874

DEGs were generated using DAVID.

Regulation of cell cycle process, regulation

of cellular protein localization, and cellular

component disassembly of biological

Table 1. Detailed results of Module 1 and Module 2.

SUID MCODE cluster MCODE node status MCODE score Gene name

91 Cluster 2 Clustered 13 RPL5

86 Cluster 2 Clustered 13 RPL18

84 Cluster 2 Clustered 13 RPL9

82 Cluster 2 Clustered 13 RPL18A

81 Cluster 2 Clustered 13 RPL30

79 Cluster 2 Clustered 13 MRPL3

78 Cluster 2 Clustered 13 MRPL13

108 Cluster 2 Clustered 13 EIF1AX

76 Cluster 2 Clustered 13 RPS18

75 Cluster 2 Clustered 13 GNB2L1

167 Cluster 2 Clustered 13 MRPL1

164 Cluster 2 Clustered 13 SEC61A1

419 Cluster 2 Clustered 12 MTIF2

193 Cluster 2 Seed 13 MRPS14

97 Cluster 2 Clustered 13 MRPL15

2271 Cluster 1 Clustered 21 RBX1

1887 Cluster 1 Clustered 21 ANAPC7

2494 Cluster 1 Clustered 21 RNF19A

2493 Cluster 1 Clustered 21 RNF130

2301 Cluster 1 Clustered 21 ASB7

1945 Cluster 1 Clustered 21 ATG7

2295 Cluster 1 Clustered 21 RNF7

2103 Cluster 1 Clustered 21 UFL1

2772 Cluster 1 Clustered 13 LONRF1

2420 Cluster 1 Clustered 21 UBR2

1908 Cluster 1 Clustered 21 CDC27

2323 Cluster 1 Clustered 21 FBXW4

2609 Cluster 1 Clustered 21 PJA2

2704 Cluster 1 Clustered 21 HERC6

2383 Cluster 1 Clustered 21 UBE2J1

1935 Cluster 1 Clustered 21 CDC16

1934 Cluster 1 Clustered 21 ANAPC13

2630 Cluster 1 Clustered 21 RNF41

2374 Cluster 1 Clustered 21 RNF4

2469 Cluster 1 Clustered 21 TRIM37

2373 Cluster 1 Clustered 21 UBE2V2

2788 Cluster 1 Seed 21 TRIM4
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procession were the most significantly

enriched groups by GO analysis. For

molecular function, DEGs were significant-

ly enriched for actin, ubiqutin-like protein

ligase, 3’-5’ exonuclease activity, and tran-

scription factor binding. For the cellular

component group of genes, mitochondrial

envelope, focal adhesion, and dendrite

were extremely enriched. KEGG pathway

analysis indicated that cell cycle, N-Glycan

biosynthesis, and Hippo signaling pathway

were largely enriched. (Figure 2).

PPI and module analysis

Cytoscape software and the online database

STRING (available online: https://string-

db.org/) were used to identify core genes,

which consisted of 862 nodes interacting

with each other via 3124 edges. Based on

the APP of Centiscape and MCODE, the

most statistically significant module 14

core genes that were screened are shown

in Figure 3 with degreeMCODE scores

�13 (including LONFR1 and all genes in

Module 2 (C)) in MCODE (Table 1) and

the top 10-degree genes in Centiscape
(Table 2). The GO and KEGG enrichment
analyses of this module were generated
using DAVID. The most significant

module 14 core genes were mainly enriched
for ribosomal subunit, translational
elongation, ubiquitin-dependent protein
catabolic process, ribosome, and cell cycle.

(Table 3).

Candidate gene selection and survival

analysis

Candidate core genes (24 core genes) were
obtained from the results of MCODE and
Centiscape above. The co-expression net-

work was generated using cBioPortal
(Table 4). Data from TCGA were analyzed
with the platform TIMER, which was
applied to indicate the expression differen-

ces of core genes between PCa and NP tis-
sues. As suggested in Figure 4, the mRNA
levels of LON Peptidase N-Terminal
Domain And Ring Finger 1 (LONRF1),

Figure 1. Volcano plot and cluster heatmap of the differentially expressed genes (DEGs). (a) Volcano plot:
Significantly upregulated DEGs, significantly downregulated DEGs, and insignificantly changed genes are
represented as blue, purple, and gray dots, respectively, in prostate cancer (PCa) and normal prostate (NP)
tissues. The top 24 candidate DEGs are noted. (b) Cluster heatmap of the DEGs.
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CDK1, Ring Finger Protein 130 (RNF130),
Ribosomal Protein L18A (RPL18A),
Mitochondrial ribosomal protein L3
(MRPL3), MRPL13, RPL5, RPL18,
RPL9, RPL18A MRPL15, guanine
nucleotide-binding protein subunit beta-2-
like 1 (GNB2L1/RACK1), RPL18, RPL30,
and Protein transport protein Sec61 subunit
alpha isoform 1 (SEC61A1) had statistically
significant values (P< 0.001). The prognos-
tic values of the core genes based on

multiple databases were evaluated with
the cBioPortal online tool. As shown in
Figure 5, six of the abovementioned 15 can-
didate core genes with the lowest P-values
for both expression and OS results of the
above 15 candidate genes demonstrated
great prognostic value for PCa patients.
Furthermore, we used the Oncomine data-
base to create an overview of core genes in
PCa tissues compared with NP tissues
(Figure 6).

Figure 2. The Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses of the differentially expressed genes (DEGs). (a) GO terms of biological process in DEGs. (b) GO
terms of molecular function in DEGs. (c) GO terms of cell component in DEGs. (d) KEGG pathway terms
in DEGs.
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Collection of true core genes

Six genes were predicted to be the core fac-

tors affecting PCa based on the above anal-

yses. To clarify our predictions on

transcriptional and translational levels,

HPA databases provided the cases of

immunohistochemistry (IHC)23, which
were applied to verify the differential pro-
tein expression of key factors. As suggested
in Figure 7, the PCa group showed stronger
staining than the NP group for upregulated
genes. The reverse was true for the down-
regulated genes. Furthermore, the

Figure 3. (a) Protein-protein interaction (PPI) network for differentially expressed genes (DEGs).
(b) Module 1 of DEGs. (C) Module 2 of DEGs.
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Oncomine database was used to identify the
mRNA expression differences of core genes
between local lesions and metastatic
patients. The results indicated that the
core genes played a significant role in the
carcinogenesis of PCa.

GSEA, clinical correlation

Using the UALCAN online tool, LONRF1,
CDK1, RPL18, GNB2L1 (RACK1),
RPL30, and SEC61A1 were determined to
have close relationships with patients’
Gleason scores (Figure 8). Generally, as

the Gleason score elevated, the expression

levels of the core factors also increased. We

then observed that ribosome, oxidative

phosphorylation, Parkinson’s disease, spli-

ceosome, and Alzheimer’s disease were

highly enriched with high expression levels

of the six core genes, except for CDK1

(Figure 9). The P-values of the different

core genes are shown in Table 5.

Discussion

Although several studies on the molecular

processes and progression of PCa have been

performed, PCa remains a common malig-

nant tumor of the genitourinary system in

elderly men.24 A full understanding of the

pathogenesis of PCa remains indeterminate.

Thus, it is crucial to explore the underlying

biomarkers for clinical treatment of PCa to

improve patient outcomes.25

In this study, 874 (226 upregulated 648

downregulated) DEGs were sorted from the

GEO dataset GSE5957. GO/KEGG path-

way analyses suggested that the DEGs were

enriched for cell cycle, cellular component,

and protein localization. The cell cycle

Table 2. Detailed results of the Centiscape app.

Betweenness Closeness Degree Gene name

36647.74 4.79E-04 57 CDK1

24255.41 4.60E-04 54 RBX1

18095.66 4.40E-04 42 POLR2K

13717.48 4.49E-04 41 CDC27

19510.11 4.61E-04 39 GNB2L1

8274.128 4.41E-04 38 RPL5

17344.4 4.35E-04 38 BPTF

9148.067 4.36E-04 37 RPL9

7421.087 4.29E-04 36 CDC16

18538.91 4.55E-04 36 PSMC6

Table 3. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis of differentially expressed genes (DEGs) in the most significant module 14 core genes.

Pathway ID Term Count P-value

GO:0019787 ubiquitin-like protein transferase activity 16 7.852e-19

GO:0000209 ribosomal subunit 12 8.933e-17

GO:0006414 protein polyubiquitination 13 1.618e-15

GO:0042176 translational elongation 7 1.914e-9

GO:0045116 regulation of protein catabolic process 8 1.599e-7

GO:1903008 protein neddylation 3 2.094e-6

GO:0051865 organelle disassembly 4 2.208e-5

GO:0015935 protein autoubiquitination 3 2.099e-4

GO:0006417 small ribosomal subunit 3 2.183e-4

GO:0031330 regulation of translation 5 6.792e-4

hsa03010 Ribosome 11 5.984e-16

hsa04120 Ubiquitin mediated proteolysis 8 4.315e-11

hsa04141 Protein processing in endoplasmic reticulum 3 2.000e-3

The genes were mainly enriched for celubiquitin-like protein transferase activity, ribosomal subunit, protein polyubiqui-

tination, ubiquitin-mediated proteolysis, and protein processing in the endoplasmic reticulum.
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progression score (CCP) has been well dem-
onstrated to be better than existing assess-
ments for elucidating the potential
aggressiveness of PCa in an individual.26

Multiple studies have reported that some
genes can inhibit cell cycle progression
from G0/G1 to S phase, as well as be regu-
lated by certain microRNAs in PCa.27–29 In
androgen receptor (AR) signaling, which
plays a crucial role in the development
and progression of PCa, some RNAs can
activate or inactivate AR signaling to inhib-
it the cell cycle of PCa cells.30,31 Different
proteins with various cell localizations can
affect PCa tumorigenesis, such as Reticulon
4 (RTN4),32 which is a reticulon family pro-
tein localized in the endoplasmic reticulum.
In addition, the overexpression of N-
Glycan in PCa is a possible biomarker for
diagnosis.33 Additionally, the hippo path-
way, which was found to be enriched by
KEGG analysis, has a strong association
with regulating PCa development.34

Furthermore, identification of unknown
immune editing components helps
prostate tumor cells escape from immune
surveillance.35 Overall, these biological
functions and pathways have close correla-
tions with the development and progression
of PCa.

A PPI network was constructed with
DEGs and a total of 24 candidates with
degree � 20 are listed in Table 5. We iden-
tified LONRF1, CDK1, RPL18, GNB2L1
(RACK1), RPL30, and SEC61A1 as real
core genes by five databases (included
TCGA). These genes have significant prog-
nostic value. It is reported that in the
absence of interphase CDKs, CDK1 exe-
cutes all the events that are required to
drive cell division,36 which may lead to the
proliferation of cancer cells. Xie et al.37

indicated that CDK1 controlled mitochon-
drial metabolism, which plays key roles in
the flexible bioenergetics required for tumor
cell survival. Furthermore, the

Table 4. Interaction network between the hub genes and their co-expression genes using cBioPortal.

Gene Co-expression gene Log2OR P-Value Gene Co-expression Gene Log2OR P-Value

CDK1 RPS18 2.824 <0.001 RPL30 MRPS14 1.963 <0.001

CDK1 RPL9 2.753 <0.001 RPL30 MRPL1 1.616 0.004

CDK1 MTIF2 2.553 <0.001 RPL30 MTIF2 1.347 0.027

CDK1 MRPL3 2.464 <0.001 RPS18 MRPS14 >3 <0.001

CDK1 SEC61A1 2.392 <0.001 RPS18 MRPL15 1.825 0.005

CDK1 RPL18 2.335 0.006 RPS18 SEC61A1 1.724 0.016

CDK1 RACK1 2.225 <0.001 RPS18 MTIF2 2.32 0.029

CDK1 RPL18A 2.211 0.018 LONRF1 MTIF2 2.284 <0.001

CDK1 MRPS14 2.079 0.002 LONRF1 MRPS14 1.961 <0.001

CDK1 CDC27 1.743 0.006 LONRF1 RPL18 2.463 <0.001

CDK1 POLR2K 1.093 0.004 RPS18 MRPL15 1.825 0.005

RACK1 RPS18 >3 <0.001 LONRF1 TRIM4 1.398 0.01

RACK1 MRPL3 2.325 <0.001 LONRF1 SEC61A1 1.188 0.011

RACK1 RPL18 2.933 0.001 LONRF1 EIF1AX 1.349 0.012

RACK1 MRPS14 2.171 0.004 LONRF1 CDK1 1.181 0.014

RACK1 RPL18A 2.801 0.005 RPS18 SEC61A1 1.724 0.016

RPL30 MRPL13 >3 <0.001 LONRF1 RPL9 1.884 0.02

RPL30 MRPL15 >3 <0.001 RPS18 MTIF2 2.32 0.029

RPL30 SEC61A1 2.218 <0.001 SEC61A1 MRPL15 2.091 <0.001

RPL30 EIF1AX 2.037 <0.001 SEC61A1 MTIF2 2.928 <0.001

RPL30 MRPL3 1.702 <0.001 SEC61A1 MRPS14 1.948 0.003

Guo et al. 9



overexpression of CDK1 correlates with
poor prognosis and metastasis in various
adenocarcinomas, such as pancreatic
cancer and breast cancer.38,39 Several inhib-
itors targeting CDK1 have been tested in
clinical trials (NCT00141297,
NCT00147485, and NCT00292864) for cer-
tain human neoplasias.40 CDK1 is essential
for cell migration and accumulating evi-
dence now demonstrates multiple roles for

RACK1 (GNB2L1) in regulating migration
and invasion of tumor cells.41 RACK1 has
been recognized as an independent bio-
marker for poor clinical outcome in pancre-
atic and breast cancers.42,43 In PCa cells,
high expression of RACK1 promotes cell
growth and metastasis in vivo.41,44

Transient Receptor Potential Cation
Channel Subfamily M Member
8 (TRPM8) promotes hypoxic growth of

Figure 4. Differential analysis of expression between prostate cancer (PCa) and normal prostate (NP)
tissues by Tumor Immune Estimation Resource (TIMER). (a–f) Box plots of core genes (LON Peptidase N-
Terminal Domain And Ring Finger 1 (LONRF1), Cyclin Dependent Kinase 1 (CDK1), Ribosomal Protein S18
(RPS18), guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1), Ribosomal Protein L30
(RPL30), and Protein transport protein Sec61 subunit alpha isoform 1 (SEC61A1)) presented by TIMER. The
six core genes were found to be risk factors in The Cancer Genome Atlas (TCGA) database. (G–X) Box
plots of the other 18 candidate genes.
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PCa cells via RACK1-mediated stabiliza-

tion of Hypoxia-inducible factor (HIF)-

1a.45 High expression of RACK1 also

leads to PCa cell growth. RPS18 is a type

of ribosomal protein that recently has been

determined to promote breast cancer metas-

tasis.46 This protein was first discovered

with the structure of RNA in 1991, but

there are few studies regarding its molecular

functions in cells. Upregulation of RPS18 in

PCa has great statistical importance, as

indicated by TIMER. However, in the

Oncomine database, high expression

(Grasso Prostate) and low expression

(Tomlins Prostate) of RPS18 both have sig-

nificant P-values in PCa. Furthermore, we

suggest that RPS18 overexpression

increases ribosomal content and global

translation in PCa cells compared with

RPL15. RPL30 maintains cell growth and

survival, and it has been associated with

outcomes in medulloblastoma.47

Moreover, methylation of RPL30 downre-

gulated the dysfunction of anti-apoptosis

that is involved in non-alcoholic fatty liver

disease (NAFLD) and non-alcoholic steato-

hepatitis (NASH) pathways, which could

lead to hepatocarcinogenesis.48 In head

and neck squamous cell carcinoma,

RPL30 and other genes49 were determined

as the internal core genes with stable

expression. SEC61A1, as a hallmark DNA

repair gene, was identified as a potential

independent indicator of prognosis in hepa-

tocellular carcinoma in a gene-wide associ-

ation study.50 Beyond carcinoma,

mutations and loss-of-function of

SEC61A1 can cause multiple myeloma

and kidney disease.51,52 For LONRF1, the

only downregulated gene, there are no

existing reports on any correlations with

cancer. However, according to the

Figure 5. Overall survival analyses of prostate cancer (PCa) patients based on high or low expression of six
core genes from multiple databases. Survival curves for (a) Cyclin Dependent Kinase 1 (CDK1), (b) guanine
nucleotide-binding protein subunit beta-2-like 1 (GNB2L1), (c) Protein transport protein Sec61 subunit
alpha isoform 1 (SEC61A1), (D) Ribosomal Protein S18 (RPS18), (e) Ribosomal Protein L30 (RPL30), and (f)
LON Peptidase N-Terminal Domain And Ring Finger 1 (LONRF1), are shown. Log-rank P-values< 0.05
were considered to be statistically significant.

Guo et al. 11



Oncomine data and OS analysis, the signif-
icantly high expression of this gene in
normal tissue samples has great prognostic
value. Consequently, there is much poten-
tial for research on whether four genes
(RPS18, RPL30, SEC61A1, and
LONRF1) play a key role in the pathogen-
esis of PCa. As for CDK1, one study based
on the GEO single database indicated that

CDK1 levels were significantly higher in
PCa tissues compared with normal
tissues.53

CDC27, POLR2K, RNF19A, and RNF7
were several of the 20 candidate genes that
were demonstrated to be risk factors of
PCa. For CDC27, reports found that the
novel CDC27-OAT gene fusion was present
in PCa patients.54 CDC27 has not

Figure 6. Based on Oncomine data, overviews of mRNA levels of core genes in various types of cancer
were constructed. Genes include (a) Cyclin Dependent Kinase 1 (CDK1), (b) guanine nucleotide-binding
protein subunit beta-2-like 1 (GNB2L1), (c) Ribosomal Protein L30 (RPL30), (d) Ribosomal Protein S18
(RPS18), (e) Protein transport protein Sec61 subunit alpha isoform 1 (SEC61A1), and (f) LON Peptidase
N-Terminal Domain And Ring Finger 1 (LONRF1). Statistically significant mRNA overexpression or low
expression of genes are presented in red and blue, respectively. Grid color was determined by the best gene
rank percentile for analysis within the grids. The threshold settings: gene rank percentile¼ top 10%,
P¼ 0.05, and fold change (FC)¼All.
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previously been reported to be significantly
mutated in PCa. Such a mutation landscape
suggests that investigating the biological
functions of these cancer cells is quite
important.55 Additionally, POLR2K and
APT6V1A were screened out between PCa
tissues and normal tissues as novel DEGs.
They both play important roles in support-
ing other pathways that facilitate tumor
growth.56 In our study, we also found that
POLR2K and EIF1AX had significant
prognostic value for OS (Supplementary

Figure) of PCa. RNF19A was identified
as an RNA transcript that is present at sig-
nificantly higher levels in the blood of PCa
patients compared with healthy controls
and is a potential clinically relevant bio-
marker for PCa early detection.57 RNF7
was originally identified as a redox-
inducible antioxidant protein.58 One study
demonstrated that RNF7 knockdown
inhibited PCa cell proliferation and tumor-
igenesis, suggesting that RNF7 may be a
promising target for PCa treatment.7

Figure 7. Gene expression of core genes on transcriptional and translational levels. Verification of the
expression of core genes on transcriptional and translational level was done with the Oncomine database
and the Human Protein Atlas database (immunohistochemistry (IHC)), respectively. Transcriptional data are
shown for normal prostate (NP) tissues, primary prostate cancer (PCa) tumors, and metastatic PCa tumors.
IHC data are shown for NP tissues and PCa tumors. Genes include (a) Cyclin Dependent Kinase 1 (CDK1),
(b) guanine nucleotide-binding protein subunit beta-2-like 1 (GNB2L1), (c) Ribosomal Protein S18 (RPS18),
(d) Ribosomal Protein L30 (RPL30), (e) LON Peptidase N-Terminal Domain And Ring Finger 1 (LONRF1),
and (f) Protein transport protein Sec61 subunit alpha isoform 1 (SEC61A1).
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In our present study, we identified
LONRF1, CDK1, RPL18, GNB2L1
(RACK1), RPL30, and SEC61A1 as crucial
components in the diagnosis and treatment

of PCa. Research into the associations
between molecules in ribosome, oxidative
phosphorylation, Parkinson’s disease, spli-
ceosome, and Alzheimer’s disease could

Figure 8. Gene expression of core genes represented by different Gleason scores. The gene expression of
(a) Cyclin Dependent Kinase 1 (CDK1), (b) guanine nucleotide-binding protein subunit beta-2-like 1
(GNB2L1), (c) Ribosomal Protein L30 (RPL30), (d) Ribosomal Protein S18 (RPS18), (e) Protein transport
protein Sec61 subunit alpha isoform 1 (SEC61A1), (f) LON Peptidase N-Terminal Domain And Ring Finger 1
(LONRF1) represented by different Gleason scores. The results were evaluated by variance analysis.

Figure 9. Gene set enrichment analysis (GSEA) of various pathways for core genes. GSEA pathway
enrichment analysis of high expression groups of (a) Ribosomal Protein S18 (RPS18), (b) guanine nucleotide-
binding protein subunit beta-2-like 1 (GNB2L1), (c) Ribosomal Protein L30 (RPL30), (d) Protein transport
protein Sec61 subunit alpha isoform 1 (SEC61A1), (e) LON Peptidase N-Terminal Domain And Ring Finger 1
(LONRF1), and (f) Cyclin Dependent Kinase 1 (CDK1). Pathways with nominal (NOM) P< 0.05 and false
discovery rate (FDR) q< 0.06 were considered to be statistically significant.
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reveal the underlying causes of cancer and pro-

vide novel ideas for identifying target drugs.

Conclusion

Through bioinformatic analyses including

GO/KEGG enrichment, PPI networks, core

gene identification and validation, module

analysis, and GSEA, the present study qual-

ified LONRF1, CDK1, RPS18, GNB2L1

(RACK1), RPL30, and SEC61A1 as suffi-

cient and reliable molecular biomarkers for

the diagnosis of PCa. More experimental

studies are needed, however, to verify the

mechanisms of these genes in PCa.
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Heterozygous Loss-of-Function SEC61A1
Mutations Cause Autosomal-Dominant
Tubulo-Interstitial and Glomerulocystic
Kidney Disease with Anemia. Am J Hum

Genet 2016; 99: 174–187. DOI: 10.1016/j.
ajhg.2016.05.028.

53. Deng L, Gu X, Zeng T, et al. Identification
and characterization of biomarkers and their
functions for docetaxel-resistant prostate
cancer cells. Oncol Lett 2019; 18:
3236–3248. DOI: 10.3892/ol.2019.10623.

54. Lindquist KJ, Paris PL, Hoffmann TJ, et al.
Mutational Landscape of Aggressive
Prostate Tumors in African American
Men. Cancer Res 2016; 76: 1860–1868.
DOI: 10.1158/0008-5472.Can-15-1787.

55. Lindberg J, Mills IG, Klevebring D, et al.
The mitochondrial and autosomal mutation
landscapes of prostate cancer. Eur Urol

2013; 63: 702–708. DOI: 10.1016/j.
eururo.2012.11.053.

56. Kelly RS, Sinnott JA, Rider JR, et al. The
role of tumor metabolism as a driver of
prostate cancer progression and lethal dis-
ease: results from a nested case-control
study. Cancer Metab 2016; 4: 22. DOI:
10.1186/s40170-016-0161-9.

57. Bai VU, Hwang O, Divine GW, et al.
Averaged differential expression for the dis-
covery of biomarkers in the blood of
patients with prostate cancer. PLoS One

2012; 7: e34875. DOI: 10.1371/journal.
pone.0034875.

58. Duan H, Wang Y, Aviram M, et al. SAG, a
novel zinc RING finger protein that protects
cells from apoptosis induced by redox
agents. Mol Cell Biol 1999; 19: 3145–3155.
DOI: 10.1128/mcb.19.4.3145.

18 Journal of International Medical Research


	table-fn1-03000605211016624
	table-fn2-03000605211016624

