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Middle East respiratory syndrome coronavirus (MERS-CoV), capable of zoonotic
transmission, has been associated with emerging viral pneumonia in humans. In this
study, a set of highly potent peptides were designed to prevent MERS-CoV fusion
through competition with heptad repeat domain 2 (HR2) at its HR1 binding site. We
designed eleven peptides with stronger estimated HR1 binding affinities than the wild-
type peptide to prevent viral fusion with the cell membrane. Eight peptides showed strong
inhibition of spike-mediated MERS-CoV cell-cell fusion with IC50 values in the nanomolar
range (0.25–2.3 µM). Peptides #4–6 inhibited 95–98.3% of MERS-CoV plaque formation.
Notably, peptide four showed strong inhibition ofMERS-CoV plaques formationwith EC50�
0.302 µM. All peptides demonstrated safe profiles without cytotoxicity up to a concentration
of 10 μM, and this cellular safety, combined with their anti-MERS-CoV antiviral activity,
indicate all peptides can be regarded as potential promising antiviral agents.
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INTRODUCTION

The Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory
manifestations, including fever, persistent cough, and pneumonia, with occasional
gastrointestinal symptoms such as vomiting, diarrhea, and death from renal failure (Assiri et al.,
2013; Nassar et al., 2018). MERS-CoV is fatal for approximately one-third of people infected
(Ahmadzadeh et al., 2020), which is regarded as a high fatality rate.

There is no vaccine or drug currently approved to prevent or treat MERS-CoV. The current
preventative measures comprise avoidance of behaviors that lead to transmission and general health
practices of handwashing, avoiding contact between the hands and the eyes and nose, and covering
the nose and mouth when sneezing. Medical care comprises general supportive treatment of body
organs and the use of previously known antivirals in combination with interferon (Sheahan et al.,
2020). However, there is still no specific treatment produced specifically for MERS-CoV control.

The MERS-CoV genome produces four structural proteins: spike (S), membrane (M), envelope (E),
and nucleocapsid (N). Fusion between the viral and cell membrane is accomplished by the two subunits
of viral S protein (S1 and S2), important for completing the virus replication cycle (Bosch et al., 2003).
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The S1 subunit recognizes the host cell receptor, while S2 mediates
the fusion process (Song et al., 2018; Hoffmann et al., 2020).
Membrane fusion starts with the interaction of the HR1 and
HR2 domains of S2, bringing the viral and cell membranes in
proximity. Virus entry inhibitors, including attachment and fusion
inhibitors, comprise an important class of antiviral drugs.
Attachment inhibitors usually interfere with S binding to its
receptors, which is more frequently affected by the high
mutation rate (Xia et al., 2019). Fusion inhibitors interfere with
the replication cycle following the attachment step and interfere
with the consecutive steps of viral and cell membrane fusion.
Therefore, fusion inhibitors remain an attractive strategy for
discovering new antiviral drugs, especially as they affect
conserved viral sequences.

Drug discovery trials against MERS-CoV comprised the
production of monoclonal antibodies (Widjaja et al., 2019;
Hussen et al., 2020) or repurposing previously utilized
antiviral agents (Falzarano et al., 2013). In addition, a peptide
sequence found in the HR2 region of wild-type MERS-CoV has
been shown to have some inhibitory effect on MERS-CoV
membrane fusion (Lu et al., 2014). However, this previous
work has not resulted in new MERS-CoV inhibitors.

Our research group recently revealed the structure of new
potential small inhibitors of the MERS-CoV fusion process by
targeting cavities on the surface of HR1 (Kandeel et al., 2020). In
this study, stronger fusion inhibitor peptides were designed by
modification or mutation of the wild-type MERS-CoV HR2
domain, a portion of the fusion protein. The designed peptides
inhibited spike protein-mediated MERS-CoV cell-cell fusion and
MERS-CoV infection of cells. Thus, these peptides may be useful
in preventing or treat MERS-CoV infection.

MATERIAL AND METHODS

Peptide Design
S2 HR2 was selected as the targeted peptide design site based on
the findings of several studies targeting SARS-CoV, MERS-CoV,
and HIV. These studies demonstrated that HR2-derived peptides
were more potent than HR1 analogs (Liu et al., 2004; Lu et al.,
2014; Shabane et al., 2019). In this study, the 36-amino acids wild-
type HR2 peptide (Table 1, peptide 1 or SEQ ID NO: 1) was
modified to obtain analogs demonstrating stronger inhibition of
MERS-CoV replication (Accepted Patent, USPTO application no.
16/857136). This parent peptide was synthesized and used as a
reference for comparison with the other eleven mutant peptides.

Several computational trials were performed to optimize a new
sequence related to peptide 1. Several systematic point mutations
were initially generated for each amino acid in the peptide 1
sequence, providing 684 candidates with potentially improved
binding energies between HR1 and HR2 (Dehouck et al., 2013).
Several point mutations were then combined to yield peptides
with a lower free energy of binding with HR1. Finally, eleven
peptides were synthesized (Cambridge, ON, Canada, Table 1,
Peptides 2-12 or SEQ ID NOs: 2-12). The peptides were purified
by HPLC, and the exact mass was determined by mass
spectrometry to ensure maximal purity.

Cell Lines and Virus
Two 293FT-based reporter cell lines that constitutively express
individual split proteins (DSP1-7 and DSP8-11 proteins) were
used for cell-cell fusion assays (Wang et al., 2014). The cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM)
containing 10% fetal bovine serum (FBS) and 1 g/ml puromycin.

Vero cells were purchased from the American Type Culture
Collection (ATCC, Manassas, VA, United States) for the plaque
assay. The cells were maintained in DMEM containing 10% FBS
(Thermo Fisher Scientific, Waltham, MA, United States), 25 mm
HEPES, 100 U/ml penicillin, and 100 μg/ml streptomycin.

MERS-CoV was obtained with permission from the Korea
Centers for Disease Control and Prevention (CoV/KOR/KNIH/
002_05_2015, Permission No. 1-001-MER-IS-2015001). MERS-
CoV amplification and quantification were performed as
described previously (Kandeel et al., 2020).

Dual Split Protein Assay to Monitor Middle
East Respiratory Syndrome Coronavirus
Membrane Fusion
MERS-CoV-S-mediated membrane fusion was quantitatively
evaluated via DSP assay using 293FT cells as previously
described (Yamamoto et al., 2016). The dimerization of
DSP1-7 and DSP8-11 after cell-cell fusion can be quantified
based on the values of fluorescence/luminescence upon
formation of tight DSP complexes. The effector cells express
MERS-CoV-S protein with DSP8-11, while the target cells
express the MERS-CoV receptor and transmembrane serine
protease 2 (TMPRSS2) with DSP1-7. The cells were grown in
10 cm culture dishes (4 × 106 cells/10 ml) 24 h before the assays.
Cells were treated with 6 µM EnduRen (Promega, Madison, WI,
United States), a substrate for Renilla luciferase, for 2 h to
activate EnduRen. Each peptide was dissolved in dimethyl
sulfoxide (DMSO) and added to 384-well plates (Greiner
Bioscience, Frickenhausen, Germany), then 50 µl of each
single-cell suspension (effector and target cells) was added to
the wells using a Multidrop dispenser (Thermo Fisher
Scientific). After incubation at 37°C for 4 h, luciferase activity
was measured using a Centro xS960 luminometer (Berthold,
Germany).

TABLE 1 | The sequence of peptides used in this study. The sites of WT peptide
mutations are underlined.

Name Peptide sequence

Peptide 1 (WT) SLTQINTTLLDLTYEMLSLQQVVKALNESYIDLKEL
Peptide 2 SLTQINTTLLDLTYEMLSLQQVVKALNESYIDLKHL
Peptide 3 SLTQINTTLLDLTYEMKSLQQVVKALNESYIDLKEL
Peptide 4 SLTQINWTLLDLTYEMESLQQVVKALNESYIDLKEL
Peptide 5 SLTQINWTLLDLTYEMESLQQVVKALNEYYIDLKEL
Peptide 6 SLTQINWTLLDLTYEMESLQQVVKALNEYYIDLKHL
Peptide 7 SLTQINWTLLDLTYEMESLQQVMKALNEYYIDLKHL
Peptide 8 SLTQINTTLLDLEYEMLSLQQVVKALNESYIDLKEL
Peptide 9 SLTQINTTLLDLEYEMRSLQQVVKALNESYIDLKEL
Peptide 10 SLTQINTTLLDLEYEMRSLEEVVKALNESYIDLKEL
Peptide 11 SLTQINTTLLDLEYEMRSLEEVVKKLNESYIDLKEL
Peptide 12 SLTQINTTLLDLEYEMRSLEEVVKKLNESYIDEKEL
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Plaque Assay After Treatment With Middle
East Respiratory Syndrome Coronavirus
Inhibitor Peptides and Cytotoxicity Studies
The plaque reduction assay was performed as reported previously
(Kandeel et al., 2020). Briefly, Vero cells were cultivated on six-
well plates for 12 h at 6 × 105 cells/well. In an initial study, MERS-
CoV was mixed with each peptide at a final concentration of
10 µM for 30 min at 37 °C. The mixtures of MERS-CoV and each
peptide were added to Vero cells in each well and then incubated
for 1 h. The supernatants were subsequently removed, and
DMEM/F12 medium (Thermo Fisher Scientific) containing
0.6% oxoid agar was transferred to each well. Four days after
infection, plaque formation was observed by staining with crystal
violet, and plaque numbers were counted. The plaque reduction
assay was repeated in a dose-dependent manner using 2-fold
serially diluted samples of Peptides 4, 5, or 6 to investigate the
inhibitory properties of candidate peptides.

For the cytotoxicity assay, Vero cells (1 × 103 cells/well) were
incubated in 96-well plates for 12 h. The peptides were dissolved
in dimethyl sulfoxide (DMSO), and cells were treated with the
peptides or DMSO only for three days. The proliferation of Vero

cells was analyzed using Cell Counting Kit-8 (CCK-8) (Dojindo,
Rockville, MD, United States). CCK-8 solution was added to each
well and incubated for 4 h at 37 °C. CCK-8 absorbance was read at
450 nm using a microplate reader (Thermo Fisher Scientific).

Peptide Properties
Markers of peptide properties were computationally analyzed by
CLC genomics software. The parameters included α-helix
(residues range), α-helix%, counts of the negative charge,
positive charge and non-charged residues, counts of
hydrophobic, hydrophilic, other residues, and half-life in
mammals.

RESULTS

The Peptide Sequences
The site of peptide design is shown in Figure 1. TheMERS-CoV S
protein is composed of two subunits S1 and S2 (Figure 1A). The
S2 subunits share in the membrane fusion process, and in the full
fusion state, trimers of HR1 and HR2 form the fusion core
(Figure 1B). The peptides were designed to target the HR1

FIGURE 1 | The design and sequence of peptides 1–12. (A) The structure of MERS-CoV spike ectodomain showing the spike S1 and S2 subunits. (B) The fusion
core showing trimers of HR1 and HR2 in a full fusion state. (C)Monomers of the fusion core showing HR1-HR2 binding. The site of fusion peptide design is represented
by the bidirectional arrow. (D) The sequence of the synthesized peptides 1–12. The color scale indicates the degree of residue conservation.
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cavity that binds HR2 during the fusion core formation. The
designed peptides were 36 amino acids long, similar to the wild
type HR2 or mutated with an estimated stronger binding with
HR1. The site and alignment of peptides are provided in Figures
1C,D. The peptides contained from 1 to 10 amino acid mutations,
with predicted improved binding with MERS CoV HR1. The
upper diagonal panel in Figure 2 shows the number of amino acid
differences between each peptide. The lower diagonal panel
provides the % identity, between 72.22 and 97.22%. Peptides 9,
11, and 12 showed the largest differences in amino acid
composition from the wild type.

DSP Assay for Middle East Respiratory
Syndrome Coronavirus S-Mediated
Cell-Cell Fusion
The strength of the 12 synthesized peptides on S protein-
mediated MERS-CoV fusion was evaluated as previously
established (Yamamoto et al., 2016). All peptides showed
significant inhibition at 10 µM (Figure 3A), yet no peptide
demonstrated direct inhibition of DSP reporter activity at
10 µM (Figure 3B). The peptides inhibited MERS-CoV
fusion in a dose-dependent manner. The IC50 values were
from the low nanomolar to the low micromolar range
(Table 2). The most effective peptides were 11 and 12
(IC50 � 0.25 µM), followed by three peptides (#5, 8, and 10)
with IC50 � 0.3–0.6 µM.

Plaque Inhibition Assay
The peptides were initially screened at 10 µM concentration in
MERS-CoV plaque assay (Figure 4). All peptides inhibited
MERS-CoV plaque formation. Based on the degree of plaque
inhibition, three peptide classes were identified: strong, moderate,
and weak inhibitors. Three peptides (Bosch et al., 2003; Bosch
et al., 2003; Song et al., 2018; Sheahan et al., 2020) strongly
reduced MERS-CoV plaque formation by more than 95%. Five

other peptides, 2, 7, 10, 11, and 12, showed 69–74% inhibition of
plaque formation. Peptides 1 and 3 showed a 64% decrease in
MERS CoV replication. To quantitatively evaluate the effect of
peptides on viral replication, the plaque assay was repeated at
different concentrations of peptides 4, 5, and 6 using two-fold
serially diluted concentration from 50 µM. As shown in Figure 5,
MERS-CoV plaque formation decreased in a concentration-
dependent manner.

Cytotoxicity and Viability
The cytotoxicity of peptides 4, 5 or 6, or DMSO (control) was
examined in Vero cells for 3 days using concentrations up to
50 µM. No cytotoxicity was observed at or below 10 µM for any
tested peptide (Figure 6). Thus, peptides 4, 5, and 6 have a safe
cellular profile without cytotoxicity.

Molecular Properties of Peptides
The designed peptides computationally demonstrated stronger
binding with MERS-CoV HR1. The peptides showed 1–6
mutations relative to the wild type. Despite the mutations, all
peptides maintained high α-helix content with a constant residues
range of 2–34 and a high helix content rate of 91.7% (Table 3).
The negative and positive charged residues were in the ranges 4–9
and 2–4, respectively. Most of the peptide compositions were
from the non-charged regions (23–30 residues).

DISCUSSION

Despite the emerging and fatal nature of MERS-CoV, structure-
based drug discovery studies to combat this virus are very limited.
Computational studies have substantially contributed to the drug
discovery process, especially through lead identification and
optimization (Koutsoukas et al., 2011). Small molecule
inhibitors against several MERS-CoV targets were provided to
the research community (Xia et al., 2014; Kumar et al., 2016;

FIGURE 2 | Pairwise comparison of the synthesized MERS-CoV inhibitor peptides. The upper diagonal panel shows the number of amino acid differences. The
lower diagonal panel shows the identity. The color scale indicates extreme values.
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Galasiti Kankanamalage et al., 2018). Recently, we designed the
first generation of small chemical MERS-CoV fusion inhibitor
molecules (Kandeel et al., 2020). In addition, several designed
peptides were proven efficient in inhibiting SARS-CoV-2
replication (Kandeel et al., 2021). Complementing these efforts
were short peptides demonstrating stronger inhibition in the
nanomolar range than the previously provided small molecules,
which showed inhibition of MERS-CoV fusion in the low
micromolar range. The discovery of new drugs and the design
of novel vaccines are the two most powerful tools for controlling
viral diseases. In this context, fusion inhibitors were a promising

class of antiviral drugs extensively studied in treating influenza
virus (Kadam et al., 2017), dengue virus (De La Guardia &
Lleonart, 2014), respiratory syncytial virus (Feng et al., 2015),
African swine fever virus (Hakobyan et al., 2018), measles virus
(Welsch et al., 2013), HIV (Jing et al., 2002), SARS-CoV (Liu
et al., 2004; Sainz et al., 2006; Chu et al., 2008; Liu et al., 2009), and
MERS-CoV (Lu et al., 2014).

Recently, peptide-based therapeutics have contributed
enormously in terms of improved stability and systemic
bioavailability. The advantages of developing peptide drugs
are their predictable and optimizable absorption distribution,

FIGURE 3 | The effect of peptides on the TMPRSS2-dependent cell-cell fusion assay of MERS-CoV. (A) The effect of each peptide on coculture fusion using DSP
as a reporter. Peptides were tested at different concentrations, and the proteins in addition to the reporters (DSPs) transduced into the effector and target cells are
indicated below the graph. Nafamostat was used as an inhibitor of the TMPRSS2 pathway. The relative cell fusion was represented as the DSP value (RL activity
measured in RLU) normalized to that of the control assay with DMSO alone. (B) The effect of each peptide on RL measurement. Each peptide was added to cells
co-expressing DSP1-7 and DSP8-11 to evaluate its direct inhibitory effects on RL. The relative DSP signal is indicated on the vertical axis by representing the control
value with DMSO alone to 100%.
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metabolism, and excretion properties (Fosgerau & Hoffmann,
2015). The premise of using peptide drugs as fusion inhibitors
has successfully delivered a clinical drug for treating HIV (Ding
et al., 2017). Cell membranes and body barrier penetration have
been improved using optimized amphipathic and α-helical
peptides (Stalmans et al., 2015). More robust tools have been
used to improve the oral bioavailability of therapeutic peptides,
e.g., oral application of insulin-polyarginine conjugates
(Morishita et al., 2007). Inhalable peptides were also used
with promising results in treating pulmonary and systemic
diseases (Greene et al., 2020; Waxman et al., 2021). These
technologies offer a promising future for peptide drug
development.

The spike-activated CoV entry into cells was proven to be
by either direct membrane fusion or endocytosis (Seyedpour

et al., 2020). In these entry paths, the viral spike must be
activated by cellular proteases such as TMPRSS2 and
cathepsin L for membrane fusion and endocytosis,
respectively. The expression of TMPRSS2 in human tissues
was found to be specific for each cell type (Sungnak et al.,
2020; Ziegler et al., 2020). In mouse models, the spread of
SARS-CoV and MERS-CoV was limited by a TMPRSS2-
knockout (Iwata-Yoshikawa et al., 2019). In this study, the
S-mediated dual split cell-cell fusion in 293FT cells was
dependent on TMPRSS2 expression. Thus, these findings
suggest that the peptides may inhibit the TMPRSS2-
dependent plasma membrane fusion of MERS-CoV. The
293FT cell lines utilized were overexpressing TMPRSS2. As
Vero cells lack expression of TMPRSS2, viruses enter by the
endocytic pathway (Hoffmann et al., 2020). Therefore, the
observed effect of peptides suggests the potential dual action
of the peptides on both membrane fusion and
endocytosis paths.

The selection of a peptide 36 amino acids in length was
based on previous cell-cell fusion assays (Lu et al., 2014). In this
study, the 36-mer peptide inhibited MERS-CoV S-mediated
cell-cell fusion in the low nanomolar to the low micromolar
range. In the drug discovery process, the binding of the
fragment to its target is usually in the millimolar to
micromolar range (Li, 2020). Current clinically used drugs
operate within the micromolar range (Lomenick et al., 2009).
Weak binding affinity has been defined as within the
millimolar or high micromolar range (Li, 2020). Novel
antiviral compounds with IC50 values in the low
micromolar range are expected to be promising lead

TABLE 2 | EC50 values of peptides determined by cell-cell fusion assay.

Peptide EC50 (µM)

1 (SEQ. ID NO:1) 1.3
2 (SEQ. ID NO:2) 0.94
3 (SEQ. ID NO:3) 0.93
4 (SEQ. ID NO:4) 1.7
5 (SEQ. ID NO:5) 0.58
6 (SEQ. ID NO:6) 0.82
7 (SEQ. ID NO:7) 2.3
8(SEQ. ID NO:8) 0.34
9 (SEQ. ID NO:9) 1.2
10 (SEQ. ID NO:10) 0.48
11 (SEQ. ID NO:11) 0.25
12(SEQ. ID NO:12) 0.25

FIGURE 4 | The plaque formation assay for MERS-CoV inhibitor peptides. MERS-CoV was pre-incubated with 10 µM of each peptide for 30 min at 37°C. The
mixture of the virus and each peptide was added to the Vero cells and incubated for 1 h. After the incubation, the mediumwas replaced with DMEM/F12 containing 0.6%
oxoid agar. The plaques were stained with crystal violet 4 days after infection. Plaque number was quantified and relative production of viral particles is shown, with virus
production of a DMSO-treated control representing 100%.
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structures (Liu et al., 2004). One example is enfuvirtide, an
FDA-approved fusion inhibitor of HIV-1 that showed
extended IC50 values from 10 ng/ml to 7 μg/ml (2 nm–7 µM
concentrations) (Greenberg, 2007). Based on these data, the
reported peptides in our work could have clinical implications
in controlling MERS-CoV infection.

The mechanism of action of fusion inhibitors is provided
in Figure 7. The MERS-CoV S protein is composed of the S1
and S2 subunits (Figure 7A). The S1 subunit recognizes
the host cell membrane through the receptor binding
domain (RBD). After cleavage by host proteases, the fusion
protein (FP) of S2 binds the host cell membrane in the

presence of viral proteins across the host membrane (TM)
and an intracellular portion called the cytoplasmic domain
(CP). For fusion to occur, the host and viral membranes come
in close apposition via the interaction of HR1 and HR2
(Figure 7C). The peptides developed in this study were
designed to target a surface cavity on HR1, thus competing
with HR2 for their binding sites on HR1 and preventing the
viral fusion process.

Recent reports indicate that the improved α–helicity of
HR2 in SARS-CoV-2 produced stronger fusion complexes
with HR1, compared with SARS-CoV (Zhu et al., 2020). In
addition, fusion peptides with enhanced α-helical content
have been associated with higher antiviral efficacy (Sainz
et al., 2006). In this study, all peptides showed similar
α-helical content of 91.7% (Table 3). The strong MERS-
CoV S-mediated inhibition we observed in the cell-cell
fusion assays might be attributed to the combination of the
improved energy of binding as well as the improved peptide
α–helicity. Interestingly, a CoV HR2 derived peptide (HKU4-
HR2P2) from a bat was able to inhibit MERS-CoV-mediated
cell-cell fusion at a concentration of 380 nm (Xia et al., 2019).
In another study, the EC50 of strong peptide P1 against
MERS-CoV infection was 3.013 µM (Gao et al., 2013).
Multiple systematic mutations with charged residues in
MERS-CoV HR2 lead to the discovery of potent peptides
that inhibited cell-cell fusion with IC50 values of
550–930 nm. Based on these data, the present peptides
demonstrated notable potency by inhibiting cell-cell fusion
at 250 nm concentration.

In conclusion, in the search for new anti-MERS-CoV
agents, a structure-based approach was used to develop a
MERS-CoV fusion protein inhibitor. A set of peptides were
provided with potent inhibition of cell-cell fusion and

FIGURE 5 | Effect of inhibitor peptides on MERS-CoV infection. MERS-CoV was pre-incubated with two-fold serially diluted peptide 4, 5 or 6 (n � 3) for 30 min at
37°C. Vero cells were treated with the mixture of the virus and each peptide and then incubated for 4 days in DMEM/F12 containing 0.6% oxoid agar. The plaques were
observed by staining with crystal violet and counted (A) A representative picture showing the plaque reduction assay (B) Quantification of the plaque reduction assay
against MERS-CoV after treatment with each peptide.

FIGURE 6 | Effect of peptides 4, 5, and 6 on the proliferation of Vero
cells. Peptides (100 µM) were dissolved in 10% DMSO, and then the peptides
were two-fold serially diluted in PBS. Vero cells were treated with PBS, 1%
DMSO, or indicated peptide concentrations for 3 days, followed by the
CCK-8 assay.
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TABLE 3 | The protein structure statistics of the MERS CoV inhibitor peptides.

ID α-helix (residues
range)

α-helix % Counts of residues Frequency of residues

Negative charge Positive charge Non-charged Hydrophobic Hydrophilic Other Half-life in
mammals (h)

# 1 2–34 91.7 5 2 29 15 14 7 1.9
# 2 2–34 91.7 4 2 30 15 14 7 1.9
# 3 2–34 91.7 5 3 28 14 14 8 1.9
# 4 2–34 91.7 6 2 28 15 13 8 1.9
# 5 2–34 91.7 6 2 28 15 13 8 1.9
# 6 2–34 91.7 5 2 29 15 13 8 1.9
# 7 2–34 91.7 5 2 29 15 13 8 1.9
# 8 2–34 91.7 6 2 28 15 13 8 1.9
# 9 2–34 91.7 6 3 27 14 13 9 1.9
# 10 2–34 91.7 8 3 25 14 11 11 1.9
# 11 2–34 91.7 8 4 24 13 11 12 1.9
# 12 2–34 91.7 9 4 23 12 11 13 1.9

FIGURE 7 | The mechanism of action of fusion inhibitors. (A) The composition of MERS-CoV S protein. The S1 subunit contains the nucleotide binding domain
(NBD) and the receptor binding domain (RBD). The S2 subunit contains the fusion protein (FP), HR1, HR2, the transmembrane domain (TM) and the cytoplasmic domain
(CP). (B) The prefusion conformation. HR2 assists in the fusion between the viral and host cell membranes. (C) The conformation of fusion state. The viral and cell
membranes move in close position and membrane fusion occurs. (D) The fusion inhibitor peptides bind to HR2 and prevent the recognition of HR2 onto its binding
sites on HR1.
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MERS CoV replication. These peptides may be effective in
optimizing specific anti-MERS CoV agents.
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