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Abstract
In the clinical practice, automatic image

analysis methods quickly quantizing histo-
logical results by objective and replicable
methods are getting more and more neces-
sary and widespread. Despite several com-
mercial software products are available for
this task, they are very little flexible, and
provided as black boxes without modifiable
source code. To overcome the aforemen-
tioned problems, we employed the com-
monly used MATLAB platform to develop
an automatic method, MIAQuant, for the
analysis of histochemical and immunohisto-
chemical images, stained with various
methods and acquired by different tools. It
automatically extracts and quantifies mark-
ers characterized by various colors and
shapes; furthermore, it aligns contiguous
tissue slices stained by different markers
and overlaps them with differing colors for
visual comparison of their localization.
Application of MIAQuant for clinical
research fields, such as oncology and car-
diovascular disease studies, has proven its
efficacy, robustness and flexibility with
respect to various problems; we highlight
that, the flexibility of MIAQuant makes it
an important tool to be exploited for basic

researches where needs are constantly
changing. MIAQuant software and its user
manual are freely available for clinical stud-
ies, pathological research, and diagnosis.

Introduction
Histological variables with prognostic

and predictive meaning are very important
for clinical and decision-making purposes;
pathologists have long understood the
importance of quantifying them accurately.
In the clinical routine manual methods are
often used even if they are time-consuming,
work-intensive, and prone to errors and
high inter-intra-observer variability even
when experienced histologists are involved.

Despite commercially available auto-
matic counting methods are faster, and
allow a more standardized quantification of
the histological signal, they are not flexible
with respect to different settings, not expan-
sible and customizable since their source
code is never provided.

This motivates our will to create a novel
automatic image analysis system, usable on
standard PCs, and flexible with respect to
images with different characteristics, e.g.,
images with different colorations or
acquired by different imaging systems (e.g.,
standard digital cameras connected to
microscopes, or scanners that are more
sophisticated). 

An extremely flexible image analysis
system is even more important for basic
researches where needs are constantly
changing.

Materials and Methods 

Image database
To develop and test MIAQuant we used

different histological samples, staining pro-
cedures, and imaging systems.

Formalin-fixed and paraffin-embedded
(FFPE) slides were deparaffined in xylene
and rehydrated in descending grades of
alcohol. Standard procedures of Oil-red-O
or Alcian blue pH 2.5 were used as histolog-
ical stain to visualize the presence of lipidic
drop or mucins.

Immunohistochemistry slides were
processed as described in a previous study.1

After incubation with primary antibodies
(Abs) we used as relevation system REAL
Detection System, Alkaline Phosphatase
/RED (red color) or UltraVision™ Quanto
Detection System HRP (brown color)
according to the manufacturer’s instruc-

tions. Images were acquired by Aperio
Scanscope Cs (Aperio Technologies, Vista,
CA, USA, color CCD camera, 14 µm x 14
µm pixel size), Olympus BX63 equipped
with DP80 camera (color CCD camera,
6.45 µm x  6.45 µm pixel size) and software
cellSens (Shinjuku Monolith, Tokyo, Japan)
or by Nikon Eclipse E600 microscope
equipped with DS-Fi1 camera (color CCD
camera, 3.4 µm x 3.4 µm) and software Nis-
Elements AR3.10 (Tochigi Nikon
Corporation, Tochigi, Japan). These imag-
ing systems have been used to acquire
images whose pixel size ranges from
5000x5000 pixels to 35000x35000, and
whose resolution is in the range.

Software development platform
To develop MIAQuant we employed

the commonly used MATLAB platform,
which is often used in computer science,
physics, and mathematics for it is optimized
for solving engineering and scientific prob-
lems. Moreover, the matrix-based MAT-
LAB language is the world’s most natural
way to express computational mathematics;
for this reason, MATLAB is often used in
the automatic image-processing research
field, where images are represented and
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treated as multidimensional matrixes. 
We developed and tested MIAQuant on

a standard laptop (CPU, Intel i7; RAM 16
GB; disk 256 SSD). The system require-
ments depend on the image size and resolu-
tions; based on our memory storage limits,
the software has been used to process
images whose format uses lossless com-
pression (e.g., TIF/TIFF, JPEG 2000, PNG,
or GIF) provided their memory size was
less than 1.5 GB. We easily circumvented
this limit by downsampling top weight
images (e.g., 50%), when this did not com-
promise the quality of the analysis, or by
using macros to automatically split images
and then recompose the computed results.

Results
As described in the following, our soft-

ware not only works on sections stained
with the chromogenic methods most com-
monly used in immunohistochemistry (e.g.,
alkaline phosphatase resulting in reddish
color, or peroxidase resulting in brownish
color), but also is adaptable to particular
chemical dyes (e.g., Alcian blue producing
light blue markings, or oil red resulting in
bright red markings). MIAQuant also ana-
lyzes images acquired with fluorescence
microscopes, where segmentation problems
are much simpler. 

The first step of MIAQuant extracts the
tissue area where the following algorithms
are applied. To this aim, for computational
efficiency, the image is firstly downsampled
so that its larger size is less or equal to 5000
pixels. The downsampling size has been
experimentally chosen to reduce the algo-
rithms’ computational cost, without
decreasing its effectiveness. Secondly, the
gray-level (gL) version2 of the downsam-
pled image is automatically thresholded by
the Otsu algorithm.3 The computed mask is
then rescaled to its original size and auto-
matically refined by applying morphologi-
cal binary operators2 and removing false
positive areas (e.g., too small/not
compact/elongated areas). To discard white
noise as well as salt-and-pepper noise, the
pixels of the RGB image in the tissue area
are filtered by median and Gaussian filters,2

both with size 5x5.

Marker segmentation via Rule-Based
System and K-NN classifier

The automatic identification of marker
areas by a (computationally) simple, effi-
cient, and effective segmentation system
requires a pixel-based approach composed
of simple techniques, which classifies each

                                                                                                        Original Paper

Figure 1. Sample image and its segmentation computed by MIAQuant. A) CD163 stain-
ing of human melanoma (in red). B) Segmented signal. Note that a precise segmentation
result has been computed, even though the image contains several pigmented areas.

Figure 2. Segmentations computed by MIAQuant on images with differing characteris-
tics. Sample images in the left column (A,C,E,G,I) and segmentation results in the right
column (B,D,F,H,J). MIAQuant represents the segmented markers both with binary
images (B and D) and with their original RGB color (F, H, J); this choice allows to high-
light the specific hue characterizing each of the different marker areas. The shown sample
images were acquired with different instruments: Aperio Scanscope Cs (A), Olympus
BX63 equipped with DP89 camera and software cellSens (C,E), and Nikon Eclipse E600
microscope equipped with DS-Fi1 camera and software Nis-Elements AR3.10 (G-I). A,B)
Immunostaining of atherosclerosis plaque with podoplanin (D2-40 Abs) stained with
alkaline phosphatase in red. C-F) B-cell lymphoma xenograft model stained with Ki67
Abs stained with peroxidase in brown. E) The image is acquired with a much higher mag-
nification than that of C.  G,H) Histochemical staining with Alcian blue of normal colon
tissue. I,J) Histochemical staining with Oil Red of cultured cells.
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pixel of the image as an element of the
marker-pixel class or of the not-marker-
pixel class. Note that the pixel-based
approach, which classifies each pixel inde-
pendently of its neighbors, allows process-
ing images of too high dimensions; precise-
ly, too big images can be split into smaller
sub-images, separately segmented, and the
segmented results are then recomposed.
Furthermore, we highlight that our segmen-
tation system is composed of simple, fast,
and efficient techniques, to avoid a too high
computational cost. Precisely, we employ
two consecutive steps; firstly, a rule-based
system discards most not-marker pixels,
creating a first set of “candidate” marker-
pixels; secondly, a K-NN classifier,4 a non-
parametric classification method, selects
and recognizes pixels belonging to marker
areas. 

Both systems have been developed by
the analysis of manually selected sample
pixels. To collect them we have implement-
ed a user interface to let expert users select
a highly unbalanced Sample-pixel set,5 Sam,
composed of a number, N, of marker-pixels
which is obviously much lower than the
number of not-marker-pixels (in our case
the number of not-marker pixels is equal to
N*1000).

To create the rule-based system and
then train the K-NN classifier, Sam is ran-
domly halved into two, not intersecting sets
(Sam=SRules ∪ SKNN, SRules ∩ SKNN
=∅) SRules is used for creating the rule-
based system, SKNN is used to train the K-
NN classifier.

Rule-Based System
To discover discriminative rules allow-

ing to discard most of the not-marker pixels
while keeping all the marker pixels, we rep-
resented each pixel in SRules by its color
coordinates in different color spaces (RGB,
CIEL*a*b*, Y’CbCr, HSV, etc.)6 and we
statistically analyzed, and compared, the
probability distribution estimates of marker
and not-marker pixels. As an example, in
Figure 1 we show an image of melanoma
section where CD 163 Abs are stained with
alkaline phosphatase. The specific marker
areas have a reddish appearance, but the
image also shows cells with a brownish
appearance; we remind that brown and red
colorings have similar color coordinates in
different color spaces, so that most software
products often wrongly include unspecific
pixels into the segmented “marker pixels”.
To avoid such error while correctly seg-
menting the marker pixels, the statistical
analysis we performed on our manually
selected sample pixels suggested us to com-
bine the (normalized) features a*, b*, and

Cr values to represent the color of each
pixel by a compact, and much more dis-
criminating, feature: fComb=a*-b*+Cr. The
analysis of the estimated three-dimensional
marker/not-marker probability map in the
RGB space and of the mono-dimensional
probability map in the fComb space
allowed the definition of optimal threshold-
ing hyper-planes in the RGB and fComb
spaces, which minimizes the probability of
segmentation errors and create a first candi-
date marker-pixel set. Basically, to segment
the markers with reddish appearance in our
database, each pixel in the tissue area is
taken as candidate marker if: 

[ fComb (p)>170 AND R(p)>1.1*B(p) ]
AND { NOT[ R(p)>190 & ( G(p)>115 OR
B(p)>115 ) ] }.

We highlight the fact that we used the
same manual selection plus statistical
analysis procedure, to develop a rule-based
system for the segmentation of images, in
our database, containing brownish markers;
in this case candidate marker-pixels are

such that: 

R(p)>=1.15*G(p) AND R(p)>=B(P).

After all the candidate marker-pixels
have been automatically extracted, we
delete small areas (that is areas composed
by less than 9 pixels) which are most prob-
ably due to noise or image artifacts.

K-NN classifier
In the pattern recognition field, the “K-

nearest neighbors” algorithm (shortly
referred as K-NN) is a non-parametric
method used for both classification and
regression.4 We are interested in K-NN clas-
sification, where the output is the class
membership identifying the marker class
versus the not-marker class. Given a pixel
whose class is unknown, the K-NN algo-
rithm classifies it by a majority vote of the
pixel’s K nearest neighbors in the training
set, meaning that K-NN assigns the pixel to
the class most common among the pixel’s K
nearest training neighbors. The parameter K

                             Original Paper

Figure 3. MIAQuant tests on images containing problematic features. Sample images in
the left panels (A,C,E) and segmentation results in the right panels (B,D,F). A)
Immunostaining with CD15 Abs - Red alkaline phosphatase of melanoma slice; the
image contains tissue folds and brownish red blood cells that do not affect the segmen-
tation result (B). C,E) Serial melanoma slices immunostained with CD163 Abs; in (C)
the Ab is stained with peroxidase in brown, and in (E) with alkaline phosphatase in red.
The segmented results (D,F) show that the density estimates are comparable, and corre-
sponding segmented cells are mostly overlapping. 
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is a positive integer, typically small and
experimentally chosen. In our case, we
applied the cross-validation procedure7 to
choose the value of K=8. 

Before employing SKNN to create the
K-NN classifier, we prune it by applying the
derived rule-based system. This has the
effect of discarding much of the not-marker
pixels, while keeping the number of marker-
pixels almost unchanged. The pruned SKNN
set is still unbalanced but its cardinality is
strongly reduced; this has a positive effect
on the time-complexity of the following K-
NN classifier, since the search of the nearest
8 neighbors is faster when it is performed
into a smaller set. To train the K-NN classi-
fier, the pixels in SKNN are represented by
their color coordinates in the RGB space,
and the distance between a pixel to be clas-
sified and the training pixels is computed as
the Euclidean distance among their RGB
coordinates.

Applications of marker segmenta-
tion and computed results 

Given the segmented marker pixels,
their density estimate is computed as the
percentage of the marker-pixels with
respect to the tissue area; note that the den-
sity estimates might be as well computed
with respect to user selected areas of inter-
est. Furthermore, our software expresses the
markers’ location by computing the mark-
ers’ minimum-distance from user selected
points or borders of interest (e.g., borders of
cancer nodules). So far, we have tested the
described segmentation and analysis proce-
dure on about 1000 different images charac-
terized by different sizes and resolutions,
and the computed results have been judged
as precise and promising.8

Figure 2 A,C,E,G,I shows some sample
images. The segmented markers (B, D, F, H, J)
are represented by the software with white
color (B and D) and with their original RGB
color; this choice allows to highlight the
marker hue characterizing each marker
area. The images have different magnifica-
tions, have been acquired by different
instruments (A, C, Aperio ScanScope; E, G,
I, optical microscope), and have been
stained by different techniques. As shown in
Figure 2, the software is robust with respect
to all the aforementioned variations and
easily adaptable to any marker color and
shape, thanks to the user-selected examples,
which allow to firstly analyze the marker
appearance and create the rules for candi-
date segmentation, and secondly to train the
classifier for the selection of the marked
pixels. We further underline that our system
effectively copes with much of the prob-
lems commonly affecting many software

                                                                                                        Original Paper

Figure 4. MIAQuant tests on serial slices of metastatic melanoma tissue. The serial slices
were immunostained for, from the top to the bottom: CD8, CD3, CD15, CD14, CD163,
CD66b. In the left column is shown the whole image, acquired with Aperio Scanscope
CS. In the top row, black square shows both the location and the dimension of the detail
shown in the central column.  Right column: segmented results. Note that the software
segments with precision each marker, despite the very variable background. The compar-
ison of the detail dimension and the whole slice dimension highlights the usefulness of
using an automatic system, which allows avoiding a manual counting procedure that
would necessarily be too time consuming.
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solutions on the market. Examples of them
are shown both in Figure 1A and in Figure
3 A,C,E; they are due to background sig-
nals, unspecific colorations, or technical
artifacts (e.g., folds and pigments). Figure 3 C-F
also shows two serial sections stained with
the same primary antibody but different rev-
elation methods. Note that the segmented
markers are nearby and mostly overlapping,
and the computed density estimates are
comparable. This example practically
shows that MIAQuant can be exploited for
the effective quantitative analysis and com-
parison of serial sections.

In additional support of MIAQuant
effectiveness and usefulness in the compar-
ison of serial slices, highlighting its utility
and potential impact in the cancer research
field, Figure 4 shows 6 serial slices of a
melanoma containing an immunological
infiltrate and the segmentation of 6 markers
identifying different cell populations consti-
tuting the infiltrate. The comparison of their
density, as well as their relative localization,
are crucial and key issues in oncology for
they could provide highly informative
knowledge explaining the role of the
immuno-infiltrate. Note that the obtained
results are effective and the comparison is
successful even though the processed serial
sections differ for staining, thickness, and
are affected by problems, typically happen-
ing in the common routine. 

MIAQuant expresses the distribution of
each marker, with respect to user-selected
points or areas of interest, by plotting mini-
mum distance histograms. Considering our
experiments, expert users noted that each
histogram plot effectively reflects the mark-
er position, while their comparison provides
highly informative insights.

Registration and marker comparison
Another important feature aimed at

marker comparison is the representation of
different markers (segmented from serial
slices) in an image where they are superim-
posed with different colors (see Figure 5).

Note that the relative rotation among
shapes of contiguous slice images might
even be equal to 45°, and the relative scale
might be equal to 1.5x; anyway, shapes of
serial slices might be quite different even
though their orientation and scale are appar-
ently similar. For this reason, the first step
of our superimposition task applies a multi-
scale-hierarchical image registration proce-
dure; it analyses the shape of serial sections
and finds the best transformations to align
and overlap them as much as possible. The
proper transformations are determined by
the analysis of gL images representing the
tissue shape as follows; the image back-

ground is black (gL=0), the tissue area is
gray (gL=128), and its border is white
(gL=255). This choice allows to weigh
twice the border when finding the best
alignment. 

Given a set of serial shapes, the best
alignment is found by iteratively choosing
one shape as the template shape, and trans-
forming the other shapes, so that they “opti-
mally” overlap the template. The iteration
stops when all the shapes have been used as
templates; this procedure ensures that each
slice is aligned to all the other serial slices.

Given a template shape, the best over-
lap is found by a hierarchical image trans-
formation based on consecutive optimal
transformations (from the simplest to the
most complicate). They are: translation (it
involves only an image displacement), rigid
(translation and rotation), similarity (trans-
lation, rotation, and scale), and affine
(translation, rotation, scale, and shear). To
find the most proper transformations, the
algorithm applies the “step gradient descent
optimization algorithm” to minimize the
“mean squares image similarity metric”, a
measure of shape difference computed by

squaring the difference of corresponding
pixels in each shape-image and taking the
mean of those squared differences. The step
gradient descent optimization algorithm
iteratively adjusts the transformation
parameters so that the optimization follows
the gradient of the “mean squares image
similarity” metric in the direction of its
(minimum) extrema. The optimization algo-
rithm uses constant length steps along the
gradient between consecutive iterations
until the gradient changes direction. At this
point, the step length is halved.

Any optimization algorithm could drop
in local minima; this motivates the usage of
the hierarchical transformation, which min-
imizes the risk of dropping into local mini-
ma by searching for most complex transfor-
mations only after a coarse alignment has
been already obtained with the easiest ones
(this reduces the number of local minima in
the neighborhood of the searching area).

To avoid local minima, we apply the
aforementioned algorithm in a multiscale
fashion. Specifically, we firstly consider
images at a coarser resolution (by down-
sampling to 1/10 of the original image size)

                             Original Paper

Figure 5. Testing of images alignment with MIAQuant. In the top row, three serial tissue
sections sampled from metastatic melanoma immunostained with Abs against CD3,
CD163, and CD68. MIAQuant allows to overlay the corresponding segmentation results,
as shown in the bottom row. Note that the comparison of markers’ respective localization
is more reliable and consistent after the application of the multiscale-hierarchical align-
ment procedure, even when the original images (top row) are similar for dimension and
orientation. The alignment procedure produces informative images allowing a proper
visual comparison of the markers’ respective localization.
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to exploit only the broader shape details for
alignment, then we consider images at mid
resolution, and finally the original images,
to refine the alignment by considering finer
and finer shape details. Furthermore, each
transformation is applied only if it allows
increasing either the correlation between
the 2 shape-images (that are the template-
shape and the shape being aligned to it) or
the Cohen’s kappa coefficient.9

Figure 5 shows 3 serial slices, and the
segmented markers, before and after the
alignment; the reader may note that the
alignment allows a trustworthy comparison
of the markers’ respective localization.
After having observed the result of applying
our method to several sets of stained serial
slices, we believe that our multiscale-hierar-
chical alignment procedure is a necessary
preliminary step allowing any reliable com-
parative evaluation of densities and respec-
tive markers’ localization of serial slice sets.   

MIAQuant software and its user manual
are freely available as supplementary mate-
rial of this article, for clinical studies,
pathological research, and diagnosis.

Discussion
MIAQuant is a simple mean for the esti-

mation of clinically interesting parameters.
Being not affected by subjective variability,
it might be a powerful tool to increase sen-
sitivity, objectivity and efficiency in param-
eter estimation.

It can be adapted to staining methods
used in pathology routine practice such as
histochemistry and immunohistochemistry,

and it is able to mitigate biological inconsis-
tencies and/or technical errors in sample
processing, including differential or incom-
plete slides or different intensity of staining. 

MIAQuant is reliable, easy to handle
and usable even in small laboratories, since
image acquisition can be performed by
cameras mounted on standard microscopes,
which are commonly used in histopatholog-
ical routine also in small hospitals, for their
cheap cost. Moreover, MIAQuant is flexible
since it effectively analyses images charac-
terized by different image formats, pixel
size and resolution, thus encouraging image
exchange between clinical centers. In con-
clusion, MIAQuant has the potential to pro-
vide valuable assistance to pathologists in
their daily practice, substantially enhancing
the efficiency and accuracy of diagnostic
processes, with benefit for the patient.

We are presently testing MIAQuant in
various clinical oncological studies, includ-
ing the definition of myeloid and immune
cell tissue scores in metastatic melanoma
and hepatocellular carcinoma. Another
important application of MIAQuant in the
research field concerns the study of the
immunological infiltrate in human arterial
plaques and its role in lympho-angiogene-
sis. Results of these studies, confirming the
applicability of MIAQuant in patients set-
ting, will be published elsewhere in the near
future. All the aforementioned applications
show that MIAQuant is a promising novel
image analysis tool that might be success-
fully adapted to several medical research
and clinical studies.

MIAQuant Software, its user manual,
and further developments, are available
online at www.consorziomia.org.
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