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Limited by the poor proliferation and restricted sources of adult hepatocytes, there is an
urgent need to find substitutes for proliferation and cultivation of mature hepatocytes
in vitro for use in disease treatment, drug approval, and toxicity testing. Hepatocyte-like
cells (HLCs), which originate from undifferentiated stem cells or modified adult cells, are
considered good candidates because of their advantages in terms of cell source and
in vitro expansion ability. However, the majority of induced HLCs are in an immature state,
and their degree of differentiation is heterogeneous, diminishing their usability in basic
research and limiting their clinical application. Therefore, various methods have been
developed to promote the maturation of HLCs, including chemical approaches, alteration
of cell culture systems, and genetic manipulation, to meet the needs of in vivo
transplantation and in vitro model establishment. This review proposes different cell
types for the induction of HLCs, and provide a comprehensive overview of various
techniques to promote the generation and maturation of HLCs in vitro.
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1 INTRODUCTION

Liver transplantation is the only therapeutic modality for curing end-stage liver disease. However, the
chronic shortage of donors has compelled researchers to develop alternative treatments. Clinical
studies have demonstrated that transplanted hepatocytes can relieve patient symptoms, prolong their
survival (Hansel et al., 2014), and provide a “bridge” therapy until patients are matched with an
appropriate liver for transplantation (Nguyen et al., 2020). However, there are problems associated
with human hepatocyte transplantation. First, human primary hepatocytes have higher cell quality
requirements, and isolated hepatocytes lose their functionality after prolonged periods of culture
in vitro. In addition, long-term oral immunosuppressive drugs are needed after allogeneic hepatocyte
transplantation which has arisen adverse effect and given negative impact of patient’s life quality.
(Zeilinger et al., 2016; Miki, 2019; Ruoss et al., 2020).

In theory, undifferentiated stem cells can be induced into hepatocytes along the development
track of hepatocytes under external intervention. The final induced cells were shown to adopt the
phenotypes of hepatocytes, express hepatocyte-specific genes, perform glycogen storage and
albumin synthesis functions. However, when compared with human hepatocytes (HHs), most
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of these cells express higher level of alpha-fetoprotein (AFP)
and, perform insufficient detoxification functions, so called
hepatocyte-like cells (HLCs). (Bell et al., 2017; Roy-
Chowdhury et al., 2017; Cotovio and Fernandes, 2020).
Nevertheless, even with this immature state, HLCs show an
ideal effect in treating animal models of liver diseases and, are
used for generating in vitro organoid models for predicting the
hepatotoxicity of new drug (Corbett and Duncan, 2019).
Unfortunately, immature phenotypes and the inconsistent
differentiation of HLCs in the same batch, especially those
derived from stem cells, pose a risk of tumorigenesis after
transplantation into humans (Xu et al., 2018). All of these
obstacles block the transformation of HLCs as an alternative
to HHs in clinical applications, and greatly discount the
authenticity of drug prediction results in some basic
experiments, because HLCs cannot fully express the function
of mature hepatocytes.

Thus, the question arises as to how HLCs can be generated
with similarities to HHs both for ex vivo use and towards eventual
clinical programs. Researchers have developed several methods to
promote hepatocyte maturation by attempting to simulate
hepatocytes in vivo for liver progenitors to induce mature and

stable HLCs in vitro (Berger et al., 2015; Touboul et al., 2016).
Actually, these methods can be divided into three types, chemical
approaches, changing the culture system, and genetic
manipulation. In this review, we discuss various cell sources
for HLCs formation and methods promoting the maturation
of HLCs in vitro (Figure 1).

2 CELL SOURCES FOR GENERATING
HEPATOCYTE-LIKE CELLS IN VITRO

HHs are considered the “gold standard” for functional cells used
for drug screening and for cell transplantation. It is noteworthy
that neonatal hepatocytes, compared with adult hepatocytes, have
higher viability with better treatment outcomes in clinical
settings, even after cellular cryopreservation (Tolosa et al.,
2014; Lee et al., 2018). However, owing to a chronic, global
shortage of donors, and ethical issues, alternative cell sources are
needed (Zeilinger et al., 2016; Ruoss et al., 2020). Studies shows
that HLCs can be derived from embryonic stem cells (ESCs),
induced pluripotent stem cells (iPSCs), mesenchymal stem cells
(MSCs), endodermal cells and hepatic stem/progenitor cells.

FIGURE 1 | Different methods promoting the maturation of HLCs in vitro as well as various cell sources for HLCs formation. ESCs, embryonic stem cells; iPCSs,
included pluripotent stem cells, MSCs, Mesenchymal stem cells; HpSCs, hepatic stem cells; HGF, hepatocyte growth factor; bFGF, basic-fibroblast growth factor.
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HLCs, performing some characteristics of hepatocytes, can be a
promising alternative of hepatocytes to be tested in some
preclinical researches which need to consume sufficient
number of cells (Zhou et al., 2017; Wang et al., 2018; Mun
et al., 2019) (Figure 2). Some key features of ideal HLCs cell
source scientific research and clinical application are sufficient,
accessible, and restricted differentiation into hepatic lines with
complete phenotype and function in scientific research and
clinical application.

2.1 Embryonic Stem Cells
Embryonic stem cells (ESCs) feature the pluripotency to
differentiate into endoderm, mesoderm and ectoderm. ESC
lineages may be restricted to cells with hepatocyte-like
features under induction conditions (Mun et al., 2019). ESCs
with a comprehensive spectrum are more likely to differentiate
into other lineages, which leads to heterogeneous differentiation
of HLCs. Before differentiation, if ESCs are transformed into
definitive endoderm for narrow-spectrum differentiation, the
differentiation efficiency can be improved. However, this may
increase the number of steps and duration of differentiation. In
addition, it is necessary to provide an appropriate environment
for stem cells to support their pluripotency when cultured
in vitro. Generally, according to the materials of substratum
on the dish, the culture methods are divided into feeder-
dependent culture (e.g., mouse embryonic fibroblasts and
skin fibroblasts) and feeder-free culture (e.g., Matrigel,
collagen, human recombinant laminin and its subtypes)
(Hoffman and Carpenter, 2005; Dakhore et al., 2018). It has
been found that some cytokines and extracellular matrix
components secreted by the feeder layer into the culture
medium can form a benefit environment for growth of stem
cells. For example, basic fibroblast growth factor (bFGF),
transforming growth factor-β (TGF-β), and Laminin-511
secreted by fibroblast feeder layer is associated with the cell

self-renewal and pluripotency maintenance of human ESCs
(Stacey et al., 2006; Hongisto et al., 2012; Lim et al., 2019).
Limited by the potential of unidentified pathogens from feeder
cells, feeder-free culture represents a greater prospect (Llames
et al., 2015). At present, some fully defined commercial media
for feeder-free culture, such as E8 and TeSR, optimizes the
passage and maintenance of stem cells (Lim et al., 2019).
Compared with TeSR medium, the development of E8
medium rejects the animal derived bovine serum albumin
and some non-essential additions, simplifying the medium
components, maintaining the undifferentiated proliferation of
ESCs, and further reducing the culture cost (Ludwig et al., 2006;
Chen et al., 2011).

2.2 Induced Pluripotent Stem Cells
Induced pluripotent stem cells (iPSCs), which represent a
promising source of HLCs, can be reprogrammed from
different adult cells (Wang et al., 2016; Roy-Chowdhury et al.,
2017). The classic reprogramming technique involves
introducing Oct4/Sox2/KLF4/c-MYC genes into candidate cells
to reverse cells from a differentiated state to the ground state with
the ability to re-differentiate (Takahashi and Yamanaka, 2006).
However, the reprogramming efficiency is affected by the
expression level of the four transcription factors, and the
method poses a potential risk of insertion mutation;
furthermore, the continuous expression of c-MYC may pose a
risk of tumorigenesis in vivo (Xu et al., 2018; Haridhasapavalan
et al., 2020). Based on efficiency and safety considerations,
reprogramming methods have been explored and optimized,
such as reducing or replacing the application of c-MYC
(Huang et al., 2018; Nakagawa et al., 2008), shifting from
genetic integration to integration-free methods, or using small-
molecule cocktails for direct reprogramming (Fusaki et al., 2009;
Okita et al., 2011; Ma et al., 2017). The culture and induction
methods of iPSCs in vitro are very similar to those of ESCs. iPSCs

FIGURE 2 | Cell sources of HLCs induction in vitro and their advantages (black font) and disadvantages (red font). The abscissa represents the complexity of the
stages required during hepatic differentitation. The ordinate represents the potential of cell differentiation into other cell types.
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are differentiated into HLCs through three stages: endoderm
formation, hepatic specification, and maturation (Li et al.,
2019). In addition, transcription factor-based reprogramming
retains the epigenetic memory of donor cells, which may favor
iPSC differentiation along the original tissue and limit the
efficiency of differentiation into other lineages, without
contributing to performance of the complete phenotype of
HLCs induced from liver-derived iPSCs (Kim et al., 2010;
Calabrese et al., 2019). The emergence of iPSCs provides a
sustainable concept for high-value precision medicine; the use
of patient-specific recombinant iPSCs can not only solve the
problem of cell source but also avoid various risks related to
inhibition and rejection in in vivo applications; however, the
reprogramming efficiency and culture mode of iPSCs need to be
further optimized.

2.3 Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) are a type of non-hematopoietic
stem cells that exist in a wide range of tissues such as bone
marrow, adipose tissue, menstrual blood and umbilical cord
(Raoufil et al., 2015; Farnaz Sani et al., 2016; Xing et al., 2016;
Cipriano et al., 2017; Xu et al., 2017). Among them, umbilical
cord mesenchymal stem cells are widely studied as the candidate
for the treatment of end-stage liver disease and HLCs
differentiation (Talaei-Khozani et al., 2015; Varaa et al., 2019).
Typically, liver-specific induction and maturation stages are
required to obtain HLCs, which are unstable and inefficient
due to the need to transition from mesoderm to endoderm
(Vojdani et al., 2015; Huang et al., 2017). There is a type of
stem cell localized in the liver with a phenotype similar to that of
MSCs, can be successfully differentiated into HLCs (Najimi et al.,
2007; Lee et al., 2020). Even that being of hepatic origin, these cells
are not more mature in hepatic differentiation compared with
extrahepatic MSCs (Chinnici et al., 2019). Of course, as an
accessible cell source of HLCs in vitro, MSCs have the
advantages of their low immunogenicity in vivo, strong
proliferation ability in vitro, and unaffected cell vitality and
differentiation ability after cryopreservation. However, it is
noteworthy that adult stem cell actually accounts for only a
small part of the tissue, and the number and proliferation
ability of MSCs will decrease along with donor age.

2.4 Endodermal Cells
Organs from endodermal origins, including the gallbladder,
pancreas and intestine, which are of the same germ layer origins
as the liver, also contain endodermal stem cells (Carpino et al., 2014;
Lanzoni et al., 2016). These cells can differentiate into HLCs with a
shorter differentiation path. Isolation of tissue-derived endodermal
stem cells cost far less than that the pluripotent stem cell-derived.
The issue with the tissue-derived endodermal stem cells is their ex
vivo expansion limitation due to the underdeveloped expansion
condition. Therefore, pluripotent stem cells are recombined into
stable and expandable endodermal progenitor cells as a new cell-type
source of HLCs in vitro (Cheng et al., 2013; Sambathkumar et al.,
2018). This approach represents a more simple and safe method
than other strategies that require endodermal differentiation because
endoderm formation has already occurred by the time of isolation.

Furthermore, selecting an endodermal source (e.g., intestine) with a
close lineage relationship is logical since one is not trying to
reprogram cells from ectoderm or mesoderm to endoderm
(Wang et al., 2016). The transformation of digestive tract
epithelial cells into endoderm cells using a small molecule
cocktail has already been achieved and such cells are genetically
stable (Wang et al., 2016). The strategy of using endodermal cells as
initiators for differentiation can be less fraught, with greater chance
of success and at far lower cost. This has been an increasingly
interesting and promising strategy, but additional investigations are
necessary to validate these early findings.

2.5 Hepatic Stem/Progenitor Cells
There are two types of multipotent cells in the liver: hepaoblasts
and hepatic stem cells (HpSCs). Hepatoblasts are diploid bipotent
cells with hepatocytes and cholangiocytes differentiation, locating
in the canals of Hering in the adult liver. As the precursors of
hepatoblasts, HpSCs are multipotent and can give rise to
pancreatic islets cells except for hepatocytes and
cholangiocytes. These cells can be found in the ductal plates of
fetal and neonatal livers, and the canals of Hering in pediatric and
adult livers. These two kinds of cells have very similar antigenic
profiles, only with and without AFP expression, respectively
(Chen et al., 2017; Schmelzer et al., 2007; Turner et al., 2011;
Zhang, et al., 2008). These cells can be lineage-restricted into
hepatocytes under different condition, which indicates that they
are safe for use in transplantation in vivo (Cardinale et al., 2011;
Turner et al., 2011). However, the extraction and separation of
HpSCs or hepatoblasts presents a challenge due to the scant
numbers of HpSCs (0.5–2.5% of liver parenchyma of all donor
ages) and hepatoblasts (<0.01% in adult livers) (Turner et al.,
2011; Liu et al., 2019). Although it is possible to obtain
proliferative hepatoblasts by transferring both stem
maintaining genes and liver specific genes, the final
differentiation efficiency seems to be dissatisfactory (only
56.7%) (Yu et al., 2013; Park et al., 2019). Some scientists tried
to change the composition of the culture medium and add some
growth factors to transform mature hepatocytes into proliferative
hepatoblasts, which have been realized in both mouse and human
cells (Katsuda et al., 2017; Wu et al., 2017; Fu et al., 2019; Katsuda
et al., 2019; Katsuda and Ochiya, 2019). Such chemically-induced
hepatoblasts can stably expand in vitro and differentiate into
mature hepatocytes under appropriate conditions and without
gene mutations (Katsuda et al., 2017). The degree of
differentiation of initial cells is close to the terminal state, and
the inertia of cells makes it less steps to differentiate into HLCs.

3 INDUCTION AND MATURATION OF
HEPATOCYTE-LIKE CELLS IN VITRO

Reviewing the development history of the whole liver, it is not
difficult to find that process is committed and complex. Immature
stem cells develop into polarity and functional maturation
hepatocytes, initiated by exogenous signals, cell localization clues
and accumulated transcription factors, which is inseparable from the
transduction and regulation of chemical and mechanical signals
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FIGURE 3 | The flow chat showing the stages of pluripotent stem cells differentiating into HLCs and the common cytokines added at each differentiation stage.
HGF, hepatocyte growth factor; EGF, epidermal growth factor; FGF, fibroblast growth factor; OSM, oncostatin M; DEX, dexamethasone.

TABLE 1 | Hepatocyte-like cells formation by cytokines and growth factors.

Cell source Endoderm formation Hepatic
specification

Maturation Days Ref.

Foreskin fibroblast-derived
iPSCs

100 ng/ml Activin A 1% DMSO 30 ng/ml OSM 19 Wang et al. (2016)
50 ng/ml Wnt3a 50 ng/ml HGF

10 μmol DEX
iPSCs 10 ng/ml BMP4 50 ng/ml BMP4 100 ng/ml HGF 25 Kaserman and Wilson (2017)

10 ng/ml VEGF 10 ng/ml FGF2 20 ng/ml OSM
10 ng/ml FGF2 10 ng/ml VEGF 6 μmol Vk

10 ng/ml EGF 100 nmol DEX
20 ng/ml TGF-α
100 ng/ml HGF
100 nmol/L DEX

iPSCs 100 ng/ml Activin A 20 ng/ml BMP4 20 ng/ml HGF 15 Kehtari et al. (2018)
10 ng/ml FGF-2 20 ng/ml OSM

DEX
ESCs 100 ng/ml Activin A 20 ng/ml BMP2 ITS 22 Kim et al. (2015)

30 ng/ml FGF4 10 ng/ml OSM
2 μmol/L RA DEX
10 nmol nicotinamide 20 ng/ml HGF
1 ng/ml b-FGF
100 μmol/L Vc

ESCs/iPSCs 100 ng/ml Activin A 20 ng/ml BMP4 20 ng/ml OSM 20 Si-Tayeb et al. (2010)
10 ng/ml FGF2
20 ng/ml HGF

Cell source Hepatic specification Maturation Days Ref.

WJ-MSCs 10 ng/ml FGF4 20 ng/ml HGF 21 Vojdani et al. (2015)
20 ng/ml HGF 20 ng/ml IGF
20 ng/ml IGF 100 nmol/L DEX
100 nmol/L DEX 10 ng/ml OSM

UV-MSCs 500 nmol DEX 10 ng/ml EGF 28 Raoufil et al. (2015)
1 × ITS 20 ng/ml b-FGF
50 ng/ml HGF 1 × ITS
10 ng/ml EGF 50 ng/ml OSM
20 ng/ml b-FGF

AD-MSCs 20 ng/ml HGF 20 ng/ml HGF 21 Shabani Azandaryani et al. (2019)
DEX DEX
20 ng/ml IGF-I 20 ng/ml IGF-I
10 ng/ml OSM

Abbreviation: FGF, 4, fibroblast growth factor 4; HGF, hepatocyte growth factor; IGF, insulin like growth factor; DEX, dexamethasone; OSM, oncostatinM; ITS, insulin/transferrin/selenium;
EGF, epidermal growth factor; b-FGF, basic-fibroblast growth factor; DMSO, dimethyl sulfoxide; BMP4, bone morphogenetic protein 4; VEGF, vascular endothelial growth factor; TGF-α,
transforming growth factor-α; Vk, vitamin K; RA, retinoic acid; Vc, ascorbic acid.
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(Trefts et al., 2017; Ober and Lemaigre, 2018). Therefore, in the
induction of HLCs in vitro, from the initial attempt to stimulate cell
differentiation by adding a certain proportion of xenobiotics, in
recent years, increasing researches also take into account the
interaction between cells and cells and the extracellular matrix.
The development from monolayer to multilayer differentiation
and even multicellular culture has promoted the maturation of
HLCs in vitro significantly (Kaserman and Wilson, 2017;
Tomizawa et al., 2017; Blau and Miki, 2019; Mun et al., 2019).

3.1 Chemical Approach, Adding Exogenous
Substances
Using different proportions of cytokines and growth factors based
on activation or inhibition of signals on a regular basis is the basic
induction method of generating HLCs in vitro (Figure 3).
Generally, totipotent cells need to go through three stages to
differentiate into HLCs in natural state (Table 1). Activin A acts

via BMP signaling pathway, which often is coupled with Wnt3a
during the highly efficient induction of definitive endoderm from
pluripotent stem cells (Hay et al., 2008; Mitani et al., 2017; Si-
Tayeb et al., 2010). And this process is considered to be the
premise of formation of available HLCs in vitro. Hepatic nuclear
factor (HGF), epidermal growth factor (EGF), FGF, and other
growth factors are commonly used, which mainly promote the
differentiation of endodermal cells into hepatocytes and inhibit
the differentiation of non-hepatocyte cells (Raoufil et al., 2015;
Vojdani et al., 2015; Kaserman and Wilson, 2017). In the process
of HLCs generation, the key is to promote and induce the mature
phenotype of cells, which determines the authenticity and safety
of the experiments based on it. Generally, dexamethasone (DEX),
oncostatin M (OSM) are often added at the mature stage to
increase the expression of maturation HLCs genes and enhance
their functions (Tomizawa et al., 2017). OSM is a key factor
involved in the development and maturation of fetal liver, and
OSM can also promote hepatic progenitor cells to hepatocyte

TABLE 2 | Small molecules and possible mechanisms in HLCs formation.

Effect Small molecules Mechanism Cell
application

Ref.

Endoderm induction IDE1 similar to activin A, induces Smad2 phosphorylation and drives AD-
MSCs to endoderm formation

AD-MSCs Xu et al. (2015)

CHIR99021 a specific chemical inhibitor of GSK-3, can induce a rapid increase in the
expression of the endoderm makers

AD-MSCs Xu et al. (2015)
ESCs Siller et al.

(2015)
iPSCs Du et al. (2018)

6-bromo-indirubin-3′-
oxime (BIO)

a GSK-3 inhibitor, mimics activation of Wnt signaling ESCs Tasnim et al.
(2015)

LY294002 inhibits maintenance of pluripotency and promotes differentiation to
endoderm

ESCs Tasnim et al.
(2015)

Promotion of liver-specific
induction and maturation

SJA710-6 a novel small molecule, can improve the process of hepatic
differentiation by regulating the high expression of FOXH1 (FAST1/2)

MSCs Ouyang et al.
(2012)

dimethyl sulfoxide (DMSO) drives endoderm toward a hepatic fate and promotes maturation ESCs Tasnim et al.
(2015)iPSCs

NMSCs Cipriano et al.
(2017)
Du et al. (2018)
Siller et al.
(2015)

Ile-(6) aminohexanoic
amide (Dihexa)

an HGF receptor agonist, can promote hepatic maturation ESCs Siller et al.
(2015)iPSCs

sodium butyrate (SB) a histone deacetylase inhibitor, results in high levels of hepatic marker
expression and reduces cell death

ESCs Tasnim et al.
(2015)

WJ-MSCs Du et al. (2018)
Panta et al.
(2019)

SB431542 a TGF-β inhibitor, is used for the differentiation of progenitors to HLCs ESCs Tasnim et al.
(2015)

5-Azacytidine (5-aza) a DNA methyltransferase inhibitor, epigenetic changes support the
hepatic differentiation

NMSCs Cipriano et al.
(2017)

Trichostatin A a histone deacetylase inhibitor, improves hepatocyte phenotype NMSCs Cipriano et al.
(2017)AD-MSC

A83-01 a TGF-β inhibitor, is continuously used to promote hepatocyte
differentiation

ESCs Du et al. (2018)
iPSCs

FH1 and FPH1 are used to replace HGF and OSM to promote hepatocyte generation ESCs Du et al. (2018)
iPSCs

Abbreviations: AD-MSC, adipose-derived mesenchymal stem cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; MSCs, mesenchymal stem cells; NMSCs,
neonatal mesenchymal stromal cell; WJ-MSCs, Wharton’s Jelly-derived mesenchymal stem cells; GSK-3, glycogen synthase kinase 3; TGF-β, transforming growth factor-β; OSM,
oncostatin M.
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maturation when adult liver injured (Kamiya et al., 1999; Okaya
et al., 2005). In vitro culture, the addition of OSM combined with
DEX which is prominent in inducing the expression of
cytochrome enzyme in hepatocytes, can significantly increase
hepatic protein synthesis was demonstrated (Lindley et al., 2002;
Chivu et al., 2009; Zhang et al., 2012). The use of cytokines to
induce hepatocyte formation is a classic method with high success
rates, but this technique is often accompanied by the high costs
and poor efficiency, and cannot meet clinical needs. Obviously,
the induction of HLCs only with growth factors is no longer a
routinely induction pathway because of its high cost and long
time (about 15–28 days). However, this method is still as the basic
idea to combined with other improved methods for
yielding HLCs.

Small molecules, economic and effective substitutes for
cytokines, can modulate gene expression and epigenetic
modifications, accelerate the differentiation process, and
promote maturation in hepatocytes (Du et al., 2018; (Qin
et al., 2018; Tasnim et al., 2015) (Table 2). The chemical
inhibitors GSK-3β, CHIR99021 and 6-bromo-indirubin-3′-
oxime can activate Wnt signaling, regulate SOX17 expression,
and promote dedifferentiation (Tasnim et al., 2015; Xu et al.,
2015; Huang et al., 2017). The use of CHIR99021 reduce
concentrations of activin A without affecting the
differentiation rate of endoderm (Farzaneh et al., 2018).
Sodium butyrate and valproic acid are histone
deacetylation inhibitors that can promote the
differentiation of definitive entoderm into liver-specific
cells (Kondo et al., 2014; Panta et al., 2019). Trichostatin
A, 5-aza, and nanomycin A, all of which are epigenetic
modifiers, can be employed to induce differentiation of
HLCs (Seeliger et al., 2013; Cipriano et al., 2017; Nakamae
et al., 2018). FH1 and FPH1 have been used to replace HGF
and OSM, respectively, to promote hepatocyte maturation.
When used in conjunction with A83-01, dexamethasone, and
hydrocortisone, the rate of cell differentiation was increased
to 67.7% (37.1% in the cytokines cocktail group) (Shan et al.,
2013; Du et al., 2018).

Much controversy exists regarding the use of dimethyl
sulfoxide (DMSO); in particular, its dose may affect the
differentiation results. Indeed, studies have shown that 0.1%
DMSO can accelerate the morphological differentiation of
stem cells, whereas 1% or 0.5% DMSO can enhance the
differentiation of liver specificity (Siller et al., 2015; Alizadeh
et al., 2016). Contrary to this conclusion, Wang et al. pointed out
that the differentiation efficiency of cells was not affected with the
use of DMSO (Wang et al., 2019). Nevertheless, as a sulfur-
containing organic compound, DMSO can interact with protein
hydrophobic groups, resulting in protein denaturation, affecting
cell metabolism and free radical scavenging, which also
contribute to its controversial use.

In brief, exogenous substances are added to simulate
cytochemical signals and the paracrine mechanism of cell
development in vivo. The application of classical cytokines to
small molecules is not only an innovative, simplified induction
method but also the embodiment of deep insight into cell
development and differentiation. Although the induction

method involving small molecules is simple and cost-effective
and can even be used to replace growth factors, screening an
effective small molecule is a time- and money-intensive process
(Siller et al., 2015). Generally, a mixture of growth factors and
small molecules has been shown to effectively induce directional
hepatic differentiation from stem cells. However, this approach
still suffers from challenges in finding the most appropriate
mixture proportion once the culture system becomes complex,
such as the need to regulate the fate of different cell types at the
same time.

3.2 Culture System
It is also important to provide appropriate mechanical
stimulation and growth space for cells to further promote
differentiation and maturation. Therefore, a number of studies
have sought to change the physical environment of cell growth,
including the matrix, oxygen concentration, and flow effect, using
different culture systems.

3.2.1 Spheroid Culture
Spheroid cultures involve the self-aggregation of cells in static
culture systems, such as low-adhesion culture plates or
suspension cultures, resulting in the formation of cell spheres.
The spatial distribution formed by the cells in the sphere is
conducive to the extension of the three-dimensional (3D)
structure of the cells that can show the function of the cells
better. Meanwhile, the cells separated from the single mode of
monolayer growth in the dish can be more beneficial for
absorption and exchange of nutrients and promote the
maturation of HLCs in vitro (Lauschke et al., 2016; Choi et al.,
2018). Studies have shown that HLCs in spheroid culture show
increased expression levels of liver-specific genes, cytochrome
enzymes, and esterase, with the appearance of bile canaliculi (Kim
et al., 2015; Choi et al., 2018). However, the size of the aggregates
formed by HLCs affects nutrient exchange and signal reception
by cells in the sphere, thus affecting their subsequent
differentiation (Meier et al., 2017). Extremely small spheroids
result in the loss of cells if there is fluid shear stress in the culture.
Large-sized spheroids may exhibit issues regarding the diffusion
of oxygen and metabolism of substances in cells within the
spheroids, resulting in inconsistent differentiation of the whole
spheroid (Farzaneh et al., 2018). Recently, Zeinab et al. placed
particles containing growth factors in the center of such spheres
to ensure an evenly distributed release of growth factors, thereby
reducing the otherwise uneven absorption of nutrients at the
center of the sphere (Heidariyan et al., 2018).

3.2.2 Organoid Culture
Organoid cultures, comprising parenchymal cells along with one
(or more) mesenchymal cell types, reproduce primary tissues
more accurately and incorporate more of the original
developmental processes of cells (Koike et al., 2019).
Compared with spheroid cultures, liver organoids are superior
in terms of cell diversity and long-term culture in vitro (Mun
et al., 2019). The effective microvascular structure formed by
organoids can provide oxygen and nutrients to the cells in the
center, thus improving the maturity of organoids and prolonging

Frontiers in Cell and Developmental Biology | www.frontiersin.org November 2021 | Volume 9 | Article 7659807

Xie et al. Hepatocyte-Like Cells Induction

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


the culture time in vitro. Organoids with microstructures and
microvasculature show irreplaceable advantages in recapitulating
organogenesis and as the alternative treatment for organ failure
(Takebe et al., 2017; Koike et al., 2019). At present, the use of
organoids is the most widespread method to implant cells in
Matrigel domes along with different cytokines to promote
differentiation. However, the need for an extracellular matrix
(e.g., Matrigel) to maintain long-term culture introduces
undefined components, making it difficult to reproduce
appropriate culture conditions. In addition, the size of
organoids formed by this method is limited, and it is still a
simplified organ compared to the native tissue with complex
architecture and cellular diversity (Brassard et al., 2021).
Although the continuous constructional improvements of
organoid platforms are gaining momentum and result in
improved physiological interactions between different systems
(e.g., immune system and vascular system), cultivating multiple
cell types on a single platform is still a challenge. Furthermore,
effective replication of the cellular diversity of the liver is a time-
and money-consuming process (Harrison SP et al., 2021; Shiota
et al., 2021).

3.2.3 Culture Based on Hydrogel
Hydrogels are a type of polymer that can swell in water,
providing an extracellular matrix by coating culture dishes,
there by simulating the physiological growth of cells and
promoting the diffusion of nutrients and cellular growth
factors. As a biomaterial, hydrogels also play a non-
negligible role in regulating cell proliferation, activity, and
differentiation when they become part of the
microenvironment of culture systems (Lutolf and Hubbell,
2005; Biggs et al., 2010). Hydrogels possess beneficial
inherent chemical properties, as well as ideal wettability,
roughness, and stiffness, which may affect cell growth,
adhesion, migration, and apoptosis (Gentile et al., 2010;
Slepicka et al., 2015). Hydrogels are classified into natural
and synthetic polymer hydrogels, depending on their source.
Natural hydrogels include alginate, collagen, and gelatin, while
synthetic polymers include polyacrylamide (Toivonen et al.,
2016; Luo et al., 2018; Ma and Huang, 2020).

A natural hydrogel derived from the decellularized
extracellular matrix (ECM) of animal liver tissue not only
provides a complex scaffold structure but also preserves the
active substances present in it, including collagen, fibronectin,
and glycosaminoglycans, as well as HGF, bFGF and other growth
factors, in the cell growth microenvironment (Wang et al., 2016;
Lorvellec et al., 2017; Wang et al., 2018). Spheroids formed by
stem cells in liver ECM hydrogels have a smooth surface and are
homogeneous in size (Toivonen et al., 2016). This method
promotes the expression of maturation genes, such as ALB
and CYP3A4, in HLCs, while effectively reducing the
expression of AFP (Wang et al., 2016). However, polypeptides
in natural hydrogels (e.g., collagen type I) contain animal-sourced
antigens; this characteristic reduces their biological safety and
thus limits their clinical applications. Recyclable mixed hydrogels
with stable chemical properties and the plant-derived
biomaterials known as cellulose nanofibrils, which are

nontoxic, biocompatible, and biodegradable, have gained
attention recently (Chitrangi et al., 2017; Poorna et al., 2021).

Polymeric synthetic hydrogels have similar structures and
properties to natural ECM, providing suitable mechanical
simulation and adhesion sites for the formation and
maturation of HLCs (Yamazoe et al., 2013; Mahmoodinia
Maymand et al., 2017). Common scaffold materials include
poly L-lactic acid, polyether sulfone, and polycaprolactone.
Because of the difference in the synthesis process and material
source, cell adhesion, growth, and differentiation are affected
(Biggs et al., 2010). Thus, aligned polyethersulfone synthesized
by electrospinning technology is more conducive to the
differentiation of HLCs and increases the expression of
CYPs than random polyethersulfone (Mahmoodinia
Maymand et al., 2018); this difference may be attributed to
the fact that orderly arrangement of materials is beneficial for
the formation of highly ordered tissue assemblies.
Furthermore, compared with single polymers, hybrid
scaffolds have better biocompatibility and material
properties and can effectively improve the phenotype of
HLCs and maintain phenotype stability in vitro
(Mahmoodinia Maymand et al., 2017; Mobarra et al., 2019).
For example, mixed scaffolds comprising poly L-lactic acid and
collagen-I have a clear fiber structure, which can improve the
maturation of hepatocytes and simplify the differentiation
process (Wang et al., 2016).

Hydrogels can be used for single-layer cultures or covered with
the same or different matrices to form a so-called sandwich
culture (Bi et al., 2006). Sandwich culture promotes cell
growth by maintaining material exchange on top of the
substrate and a stable cell culture in vitro, providing an
effective hepatotoxicity prediction model (Bi et al., 2006; Sakai
et al., 2019). Unfortunately, this method is limited by the inability
to remove apoptotic cells. Furthermore, an obvious shortcoming
is that the extract of proteins from cells always mixes with
exogenous proteins present in polypeptide-based hydrogels,
leading to experimental difficulties.

3.2.4 Hydrogels in 3D Bioprinting
The controllable viscosity and water storage ability of
hydrogels, as well as excellent cytocompatibility, make then
the ideal choice for 3D bioprinting technology (Irvine and
Venkatraman, 2016). Bio-inks composed of hydrogels and
cells allow the replication of functional organs with tissue
structure during printing; moreover, the location of cells can
be preset in order to simulate natural tissues more accurately
and show better therapeutic effects in disease treatment (Wust
et al., 2011; Brassard et al., 2021). It is expected that HLCs are
more mature both in liver phenotype and function after
incubation on 3D-printing scaffolds (Kang et al., 2018). As
a vital part of 3D printing, hydrogels can not only provide
temporary residence for the isolated cells but also stabilize cells
in the printing process to avoid thermal and mechanical
damage and ensure the survival rate of cells (Belk et al.,
2020). Indeed, potential pollution in the process of in vitro
printing and the product damage owing to toxic particles
produced by the materials, cannot be ignored. Notably, the
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effects of material factors on cell differentiation should also be
controlled.

3.2.5 Bioreactor
Bioreactors can comprehensively simulate microenvironments
suitable for hepatocyte growth in vivo and enable scaling-up of
the cell culture system (Ardalani et al., 2019; Yamashita, et al.,
2018). The bioreactor is equipped with parameter setting systems,
which can realize the real-time monitoring and adjustment of
temperature, oxygen concentration and shear force in the
incubator. By enabling fluid flow in the culture medium,
simulating the flow in peripheral blood vessels experienced by
hepatocytes in vivo, the cells are always exposed to consistent
concentrations of nutrients and oxygen (Yen et al., 2016; Kehtari
et al., 2018). Such dynamic culture systems can remove unhealthy
cells with weak adhesion and dispose of cellular metabolites. For
example, microfluidic-based biochips provide cells with a stable
fluid-flow environment (Jang et al., 2019). The presence of a flow
effect is expected to not only to improve the maturation of HLCs,
but also to increase the levels of CYP1A2 activity. Furthermore, the
effect of two-sided flow on cells is greater than that of one-sided
flow set-ups. HLCs express increased levels of phase I and II
enzymes, as well as undergo bile duct formation (Jang et al., 2019).
Compared with static cell culture, ESCs cultured in stirred
bioreactors can function as more mature HLCs, exhibiting
upregulated liver gene mRNA transcripts and enhanced liver
functionality (Park et al., 2014). In addition, bioreactors can
maintain a relatively constant oxygen concentration in long-
term culture. Research has demonstrated that the concentration
of oxygen around cells can have a large impact on the state of cells
(van Wenum et al., 2018; Kimura et al., 2019). IPSCs cultured
under high oxygen levels differentiate into definitive endoderm
more efficiently, and the expression of albumin and cytochrome
enzymes in HLCs is significantly improved (Kimura et al., 2019).
High oxygen (40%) conditions also promote the maturation of
HLCs (van Wenum et al., 2018). However, Zhi found that the
effects of hypoxia on liver differentiation depend on the duration of
treatment, because short-term (24 h) hypoxic (10% O2)
pretreatment can also increase hepatic gene expression and
glycogen storage (Zhi et al., 2018).

Bioreactors enable simultaneous co-culture of various cell
types. It is well known that nonparenchymal liver cells, such
as endothelial sinus, Kupffer, hepatic stellate, and bile duct cells,
play important roles in the process of liver development by
secreting cytokines or contacting hepatocytes directly (Kitade
et al., 2016). Co-culture with non-liver cells can prolong the
culture time of hepatocytes in vitro and maintain the function of
HLCs when cultured together with MSCs (Rebelo et al., 2017).
MSCs not only provide signal transduction for HLCs, but also
protect the spheroid from shear stress.

Microbioreactor represented by microfluidic biochips
require low cost but high precision; therefore, they are
usually used for high-throughput drug screening but not for
large-scale cell preparation. Large bioreactors can increase cell
production, especially when producing clinical quantities of
cells (Tandon et al., 2013; Samal et al., 2019). However,
because cells adhere to capillaries filled with nutrients and

oxygen, the rate of perfusion and the properties of substances
affect the efficiency of cellular metabolite exchange (Meier et al.,
2017). Therefore, adjusting parameter variation to achieve the
ideal differentiation effect in vitro has become one of the
challenges in the popularization and application of
bioreactors. Nevertheless, the use of bioreactors is still
anticipated to become widespread owing to the quantitative
advantage of cell culture.

3.3 Blastocyst Complementation
Although, to some extent, in vitro differentiation has been
mimicking all the induction cues required for liver
development in vivo, the immature and complex production
processes are incompatible, resulting in a lag in clinical
transplantation applications. Differentiation is optimally
induced in vivo, where the host can provide all factors and
conditions for cell development. Therefore, blastocyst
complementation technology is used to confer a vacant
developmental niche in the host via gene knockout, so as to
provide a suitable growth environment for stem cells. Finally, the
stem cells can compensate for the developmental vacancies and
produce derived organs from donor cells (Wu et al., 2017; De Los
Angeles et al., 2018; Crane et al., 2019). Using this strategy,
human organs such as the pancreas, kidney, skeletal muscle, and
liver, have been successfully derived from rodents and large non-
rodents (Goncalves et al., 2008; Kobayashi et al., 2010; Usui et al.,
2012; Matsunari et al., 2013). Recently, it was found that in the
animal model of liver development disorder caused by deletion of
the HHEX gene, normal liver could develop after blastomere
supplementation in the embryonic stage; this result suggests that
patient-derived iPSCs can be used to derive the mature liver tissue
in some large animals suitable for in vivo transplantation
(Matsunari et al., 2020).

3.4 Genetic Manipulation
Changing the expression of specific genes and introducing
exogenous ones represent direct and effective strategies to
regulate the function of differentiated HLCs in vitro (Table 3).
The specific expression of target genes in host cells can be realized
through a virus delivery system. For example, overexpression of
liver-enriched transcription factors (HNF4α and HNF1α) and
forkhead box (FOXa2 and FOXa3) was found to shorten stem cell
differentiation time, improve differentiation efficiency, and
promote HLC maturation (Takayama et al., 2012; Hu et al.,
2016; Hanawa et al., 2017). In addition, the use of adenovirus
as a vector to transduce ATF5, c/EBPα, and Prox1, the three
important mature hepatocyte transcription factors, into HLCs
induced by traditional growth factors for 25 days, led to
upregulated expression levels of liver markers, such as drug-
metabolizing enzymes and liver cell metabolite transporters
(Nakamori et al., 2016). Indeed, this genomic non-integration
method has advantages for adjusting the poor metabolic function
of HLCs, because it exhibits high transfection efficiency without
the risk of insertion mutation.

Another approach is represented in the hepatic direct
reprogramming, that is, human somatic cells bypass the
induced pluripotent stage and directly reprogram into
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functional HLCs (Du et al., 2014; Huang et al., 2014; Wu et al.,
2020) (Table 3). At present, induced functional HLCs have been
successfully generated, by introducing a combination of some
liver fate determined factors (e.g., FOXa3, HNF1a, HNF4a, and
GATA4), from fibroblasts and urine epithelial cells (Huang et al.,
2014; Wu et al., 2020). In addition, for further promoting the
maturation of HLCs and their application in drug development,
the overexpression of maturation factors (ATF5, PROX1, and c/
EBPα) can greatly improve the level of drug metabolism enzymes,
even comparable to human hepatocytes (Du et al., 2014).
Although this approach is beneficial for the short-term
induction of a large number of HLCs, it is known that liver
development is a continuous change process, indicating that its
network of expression regulation is continuous and complex
(Ober and Lemaigre, 2018). Therefore, it is difficult to prove
whether the constant expression of some genes can truly
represent the differentiation of hepatocytes.

MicroRNAs (miRNAs), which regulate gene expression at
the post-transcriptional level during cell development and
growth, play significant roles during HLC induction. Zhou
et al. found that a combination of five miRNAs (miR-122,
miR148a, miR-424, miR-542-5p, and miR-1246) in cord
mesenchymal stem cells could induce functional hepatocytes
within 7 days without the addition of cytokines, providing a new
strategy for in vitro induction of HLCs (Zhou et al., 2017).
Among them, mir-122, as a liver-specific miRNA, exhibits the
highest expression in the adult liver, accounting for
approximately 70% of all cloned miRNAs. It plays an
important role in the regulation of liver function and
pathological development (Girard et al., 2008; Hu et al.,
2012). Studies have shown that miR-122 can stimulate the
expression of hepatocyte-specific genes and most hepatocyte-
enriched transcription factors to form a positive feedback loop
and induce hepatocyte differentiation in vitro (Laudadio et al.,

TABLE 3 | Application of gene editing technology in human HLCs formation.

Method of
modification

Aim HLCs
generation

(%)

Advantages Limits Example of
cell types

Ref.

Lentivirus overexpression of HNF4α ∼28% induces HLCs directly and saves time
and materials

genomic
integration

immortalized
BM-MSCs

Hu et al.
(2016)

poor transfection
efficiency

overexpression of HNF4α-1D N.D. promotes definitive endoderm
differentiation

genomic
integration

iPSCs Hanawa et al.
(2017)

poor transfection
efficiency

overexpression of FOXa3,
HNF1a, and HNF4a

∼20% shows the function of mature
hepatocytes

genomic
integration

HFF1 Huang et al.
(2014)

proliferation arrest
overexpression of FOXa3,
HNF1a, HNF4a, ATF5, PROX1,
and c/EBPα

∼90% generates functional HLCs efficiently
and reproducibly

genomic
integration

HEFs Du et al.
(2014)

poor transfection
efficiency

overexpression of FOXa3,
HNF1a, and GATA4

N.D. a non-invasive way as seed cells for
reprogramming

genomic
integration

UCs Wu et al.
(2020)

poor transfection
efficiency

Adenovirus overexpression of FOXa2 and
HNF1α

N.D. promotes definitive endoderm
differentiation and improves functionality
of HLCs

instability of
transgene
expression

iPSCs and
ESCs

Takayama
et al. (2012)

overexpression of ATF5, c/
EBPα, and PROX1

N.D. enhances the hepatic functions of HLCs instability of
transgene
expression

iPSCs Nakamori
et al. (2016)

Transfect
microRNA mimics

overexpression of miR-122,
miR148a, miR-424, miR-542-
5p and miR-1246

N.D. induces HLCs directly and saves time
and materials

long-term effect
undefined

UC-MSCs Zhou et al.
(2017)

Electroporation overexpression of miR-106a,
miR-574-3p and miR-45

N.D. induces HLCs directly and save times
and materials

cell damage UC-MSCs Khosravi et al.
(2018)

CRISPR/Cas9
system

PXR-mCherry N.D. can be used for identifying factors that
increase PXR-mediated drug
metabolism and hepatocyte proliferation

hard technique iPSCs Kim et al.
(2018)

target to CYP3A4 locus N.D. realizes enrichment of high-functioning
human iPSC-derived HLCs

hard technique iPSCs Takayama
et al. (2018)

Abbreviations: BM-MSCs, bone marrow-derived mesenchymal stem cells; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells; UC-MSCs, umbilical cord-derived
mesenchymal stem cells; HEFs, human embryonic fibroblasts; HFF1, human fetal limb fibroblasts, UCs, urinary epithelial cells; N.D., no data.
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2012). Overexpression of miR-106a, miR-574-3p, and miR-451
in cells resulted in formation of HLCs in 28 days; these HLCs
expressed higher levels of ALB, cytokeratin (CK18), and HNF4α
compared with cells induced by traditional cytokines (Khosravi
et al., 2018). Moreover, the overexpression of miR-382 in rat
hepatocyte progenitor cells promoted the maturation of HLCs
(Zheng et al., 2018). In addition, miRNA induction methods
usually require a combination of a variety of miRNAs; however,
the network of miRNAs regulating gene expression is very
complex. This characteristic increases the cost of the
experiment because of the need for constant testing of new
combinations to find an ideal one.

Overexpression of certain maturation genes in immature
HLCs can optimize their liver-specific functions. Studies have
shown that iPSC genome editing can be used to improve the
expression of cytochrome enzymes and obtain high-purity
CYP3A4-like hepatocytes that are needed to evaluate the risks
of candidate drugs (Takayama et al., 2018). The CRISPR/Cas9
system has been used to establish a hepatocyte line with high PXR
expression, which could promote the expression of iPSC-derived
hepatocyte cytochrome enzymes and enhance cell proliferation
capacity (Kim et al., 2018).

As mentioned earlier, compared with the traditional
method of inducing cells from an undifferentiated state
into appointed cells step by step, direct transdifferentiation
based on genetic operation and epigenetic regulation has a
higher efficiency and shorter cycle. However, the expression

instability and tumorigenicity caused by the inherent defects
of virus transfection may lead to inconsistent differentiation,
which manifests itself in the mixed expression of immature
hepatocyte progenitor cells and mature hepatocytes (Orge
et al., 2020). While it is easy to induce epithelial stromal
transformation in long-term in vitro culture, phenotypic
instability can lead to poor transplantation outcomes in
vivo (Xue et al., 2016). Although this drawback may lead
to the limited application of this method in vivo, its
application in drug screening and disease modeling cannot
be ignored.

4 APPLICATIONS AND CHALLENGES

4.1 Pharmaceutical Industry
Monolayer HLCs and organoid-derived HLCs provide high-
throughput predictive models for drug screening and toxicity
prediction and can become important drug research tools
(Cayo et al., 2017; Shinozawa et al., 2021). In particular, HLCs
in 3D culture show higher cytochrome enzyme activity and
sensitivity to hepatotoxicants than those in 2D culture, as well
as provide suitable platforms for drug screening (Lee et al.,
2021). Meanwhile, special gene expression cell lines for
scientific research can be established in combination with
genetic manipulation technology. For example, CYP2C19-
knockout human iPSC-derived HLCs can be used as a new

FIGURE 4 | Applicaton and Challenges of HLCs, BAL, bioartificial liver.
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CYP2C19-deficient metabolism model for drug research
(Deguchi et al., 2019). The use of HLCs as a drug-
screening model in vitro has been reported to be efficient,
safe, and ethical (Williams, 2018). At present, the immature
function of HLCs poses a significant challenge in toxicology
studies. Although genetic editing can enhance the expression
of some cytochrome enzymes, it is impossible to fully cover
the CYP450 system containing all phase I and phase II
enzymes. Therefore, HLCs cannot fully reproduce the
oxidation–reduction reaction during drug metabolism
(Figure 4).

4.2 Disease Models
Disease modeling from HLCs is not limited by the ethical
issues of cell origin, because the current reprogramming
technology of iPSCs can be applied to most adult cells in
the human body, including the easily available urine epithelial
cells and hair follicle epithelial cells (Zhou et al., 2011; Xu et al.,
2018). In addition, HLCs can be used to establish disease
models based on genetic backgrounds (e.g., autosomal
recessive hypercholesterolemia) or specific disease models,
such as in vitro HBV, HCV infection, and CYP2C19-
deficient metabolism models (Schwartz et al., 2012; Sakurai
et al., 2017; Deguchi et al., 2019; Nikasa et al., 2021).
Additionally, expandable liver organoids provide a more
favorable research tool for further exploring the etiology and
pathophysiology of disease as a whole, not only from damaged
cells but also from changes in the microenvironment (Gomez-
Mariano et al., 2020; Ramli et al., 2020; Shinozawa et al., 2021).
Considering that the occurrence and development of disease involve
crosstalk and interaction between various cells andmultiple systems,
recent research has established a steatohepatitis model using
multicellular cultured organoids, which presented a continuous
pathological process of steatohepatitis from inflammation to
fibrosis in vitro (Kisseleva and Brenner, 2019; Ouchi et al., 2019).
As an in vitro research tool, organoids are not only highly
physiologically related but also maintain genetic stability during
long-term culture (Fiorotto et al., 2019). However, the costs and
complex technology involved in establishing and maintaining
organoid cultures are causes of the limited research. In addition,
the batch effect caused by varying environments and culture
durations affect the experimental results (Luce et al., 2021)
(Figure 4).

4.3 Cell Therapy
HLCs are considered the most promising cells for liver
regeneration and tissue engineering. Animal experiments
have demonstrated that HLC transplantation in mice with
liver injury significantly improves liver function and
promotes liver regeneration (Park et al., 2019) and human
iPSC combined with gene correction can induce normal
hepatocytes to realize autologous cell therapy for patients
with metabolic diseases (Yusa et al., 2011). Exploratory
applications of HLCs in clinical treatments have shown
satisfactory results (Mohamadnejad et al., 2010; Amer
et al., 2011). Recently, liver organoid transplantation and
cell sheet technology provide advanced methods to solve

the loss in cell transplantation and improves therapeutic
effects (Nagamoto et al., 2016; Tsuchida et al., 2020;
Imashiro and Shimizu, 2021). However, cell therapy
requires sufficient number of HLCs (2 × 108/per injection)
(Amer et al., 2011), which takes a certain time to extend such
number of HLCs in vitro. But for patients with acute liver
failure, 1 min less waiting will give them more chance to live.
Therefore, it is very important to establish HLCs cell bank to
store HLCs. Before that, we still need to solve the problems of
low activity after long-term culture and cryopreservation of
HLCs (Figure 4).

4.4 Medical Device
In bioartificial liver (BAL) research, there are mainly two cell lines
employed; hepatoma cell lines and porcine hepatocytes, which
have achieved ideal results. However, expandable PHHsmay bemore
in accordwith the characteristics of human livermetabolism andwith
ethical requirements. Compared with hepatoma cell lines, HLCs
exhibit similarities to PHHs and show very substantial curative
effects in treatment of a porcine acute liver failure (ALF) model
(Shi et al., 2016). Recently, Li et al. developed a new BAL embedded
with expandable liver progenitor-like cells from human primary
hepatocytes for the treatment of an ALF porcine model, and the
results showed that BAL attenuates liver damage, ameliorates
inflammation, and enhances liver regeneration (Wei-Jian Li et al.,
2020). Although stem cell-derived HLCs are considered the ideal cell
source second to primary hepatocytes, their translation from
laboratory to clinical application is limited by the difficult
induction technology of functional HLCs large-scale culture and
the high cost involved. In addition, whether BAL can be reused is still
unclear because there is a lack of evaluation of the functional changes
of HLCs before and after exposure to patient serum.

5 CONCLUSION

In conclusion, great progress has been made to improve the
induction and culture of HLCs in vitro and enhance their
potential applications. The increasing experiments suggest that cell
fate is not only related to chemical signal, but also the mechanical
signals and structural support provided by the extracellular
environment are the key points to promote functional cells.
Organ is a 3D architecture composed of cells, which means that
co-culture of multiple cells and reasonable spatial distribution of cells
are conducive to maturation of organ. Admittedly, that the maturity
of HLCs has been improved to a certain extent, but the operation
steps and culture system inevitably become complex, and there is no
standard induction scheme to produce uniformly differentiated
HLCs, which confuses the choice of induction protocol and rare
replication of the same results. Although this review discussed
fundamental and advanced methods in culturing HLCs, it
inevitably puts too much focus on ex vivo research. Exploring the
process of culturing functional hepatocytes in vitro will contribute to
uncover the regulatory mechanism of cell fate and the interaction
between microenvironment and cells, which is basic clues for disease
modeling and personalized medicine. However, before the
widespread application of HLCs in clinical treatment, there is still
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much research and investigation required, especially in terms of the
safety of in vivo treatment.
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