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Purpose: To determine the effect of altering anesthetic oxygen protocols on measure-
ments of cerebral perfusion and metabolism in the rodent brain.
Methods: Seven rats were anesthetized and underwent serial MRI scans with hyper-
polarized [1–13C]pyruvate and perfusion weighted imaging. The anesthetic carrier gas
protocol used varied from 100:0% to 90:10% to 60:40% O2:N2O. Spectra were quantified
with AMARES and perfusion imaging was processed using model-free deconvolution.
A 1-way ANOVA was used to compare results across groups, with pairwise t tests per-
formed with correction for multiple comparisons. Spearman’s correlation analysis was
performed between O2% and MR measurements.
Results: There was a significant increase in bicarbonate:total 13C carbon and
bicarbonate:13C pyruvate when moving between 100:0 to 90:10 and 100:0 to 60:40
O2:N2O % (0.02± 0.01 vs. 0.019± 0.005 and 0.02± 0.01 vs. 0.05± 0.02, respectively) and
(0.04± 0.01 vs. 0.03± 0.01 and 0.04± 0.01 vs. 0.08± 0.02, respectively). There was a sig-
nificant difference in 13C pyruvate time to peak when moving between 100:0 to 90:10 and
100:0 to 60:40 O2:N2O % (13± 2 vs. 10± 1 and 13± 2 vs. 7.5± 0.5 s, respectively) as well
as significant differences in cerebral blood flow (CBF) between gas protocols. Significant
correlations between bicarbonate:13C pyruvate and gas protocol (ρ =−0.47), mean transit
time and gas protocol (ρ = 0.41) and 13C pyruvate time-to-peak and cerebral blood flow
(ρ = −0.54) were also observed.
Conclusions: These results demonstrate that the detection and quantification of cerebral
metabolism and perfusion is dependent on the oxygen protocol used in the anesthetized
rodent brain.
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1 INTRODUCTION

Hyperpolarized carbon-13 (13C) MRSI via dynamic
nuclear polarization is a translational metabolic
imaging method with the ability to non-invasively,
non-destructively, and rapidly measure metabolism in
cells, animals, and humans in both health and disease.1–4

Hyperpolarized MRI relies on the transient increase
of signal in an isotopically labeled substrate, such as
[1–13C]pyruvate, to allow the real-time detection of
substrate delivery and its subsequent metabolism into
down-stream metabolites.5 Using this approach, a number
of studies have demonstrated the ability of hyperpolarized
MRI to assess metabolism in the brain, both in animals
and humans.6–11

Key to improving our understanding of many neu-
rological conditions, such as multiple sclerosis and neu-
romyelitis optica spectrum disorder, are animal models
of the disease. This is because clinically acquiring tissue
biopsy from the brain, to understand both the natural
history of the disease as well as the ongoing pathology
before and after therapy, is not routinely possible or eth-
ical. Common to most animal studies is the use of an
anesthetic agent, such as isoflurane, aerosolized with oxy-
gen to ensure appropriate immobilization and sedation of
the animal. Previous hyperpolarized studies have assessed
the use of different anesthetic agents on the measured
metabolism of the rodent brain, with changes in lactate
and bicarbonate observed depending on the agent and
dose used,12–14 but the effect of the carrier gas composition
has not been investigated thoroughly in this context.

Consequently, multiple protocols are often used in
pre-clinical imaging, either with 100% O2

14–25 or 90:10%
O2:N2O26–29 frequently used. Moreover, not all authors
report the carrier gas type and concentration used in their
experiments. At first, the rationale for using 100% O2 is
clear: to compensate for presumed hypoventilation under
anesthesia, averting hypoxia. However, in the absence of
disease and at rest, oxygen uptake is perfusion- rather
than diffusion-limited,30 and in rats; it has been shown
that the cerebral metabolic rate of oxygen consumption
(CMRO2) is maintained until very low arterial oxygen
tensions (PaO2).31 Therefore, the relative hypoventilation
expected in anesthetized animals is unlikely to result in
any profound central hypoxia or reduction in cerebral
oxidative metabolism.

On the contrary, there is evidence that over-
oxygenation may have detrimental effects on both cere-
bral perfusion and normal cerebral metabolism. It has
been demonstrated that, in rats, cerebral blood flow (CBF)
is reduced under hyperoxic conditions,32 and conversely
that CBF and cerebral blood volume (CBV) are increased
by hypoxia.31 This effect has been further observed in

across species, and with the advent of non-invasive MR
techniques for assessment of CBF and CBV, has been
demonstrated in man as well.33–35 The mechanism by
which hyperoxia induces cerebral vasoconstriction has not
yet been fully elucidated. It has been demonstrated that
raised carbon dioxide tension is a potent vasodilatory stim-
ulus.36 One theory proposed is that with increased oxygen
tension, oxygen displaces carbon dioxide from hemoglobin
binding sites, reducing total blood carbon dioxide content
and carbon dioxide-mediated vasodilation, however this
effect is thought to be too small on its own to be responsi-
ble for hyperoxic vasoconstriction.37 Instead, it has been
suggested that hyperoxia disturbs the balance of reactive
oxygen and nitrogen species (ROS and RNS). Superoxide
anions react with nitric oxide (NO) to produce RNS in
a reaction catalyzed by superoxide dismutase 3 (SOD3).
Under physiological conditions, NO is a key cerebral
vasodilator. With increased superoxide availability under
hyperoxic conditions, it is possible that SOD-catalyzed
conversion of NO to ONOO− RNS depletes the pool of NO,
and removes tonic NO vasodilation, resulting in cerebral
vasoconstriction.38 This effect is well-known clinically,
leading to patient-specific ventilation in the context of
perioperative medicine, made feasible by modern ven-
tilators permitting the simultaneous measurement of
several relevant parameters across the respiratory cycle.
In contrast, most small-animal pre-clinical studies do
not intubate, and for reasons of space and cost do not
measure gas composition. This study aimed to assess the
effect of altering oxygen concentration on the detected
cerebral metabolism of hyperpolarized [1–13C]pyruvate
and perfusion of gadolinium in a cohort of rats, to help
define the physiology of the healthy brain, illustrating a
normal response for comparison with subsequent studies
examining pathology.

2 METHODS

All animal experiments conformed to (United Kingdom
Home Office regulations), to institutional guidelines, and
were approved by the United Kigndom Home office Ani-
mal Ethics Review Committee.

Seven female Sprague-Dawley rats were purchased
from Charles River (Margate, United Kingdom) at
10 weeks old. Rats were housed together for the duration
of the experiments and allowed free access to food and
water and were housed on a 12 h/12 h day/night cycle.

Experiments were timed using a laboratory stop-
watch, starting when the animal was placed into an anes-
thetic induction box. Rats were anesthetized with the
gas mix used for each individual experiment combined
with 2.5% isoflurane. Animals were then weighed and
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a tail vein cannula was sited. Isoflurane was decreased
to 2% when in the 7 T (Agilent Magnet, Santa Clara,
USA, Varian Console) scanner. Each rat underwent a
total of 3 imaging sessions with the following gas proto-
cols: 100:0%, 90:10%, and 60:40% O2:N2O with gas ratios
equating to a total of 2 L per minute, with a random-
ized order of scans performed for each animal. Animals
were marked with permanent marker over the center
of the head for reproducible positioning between scans
and transferred to a home built imaging cradle with a
2-channel 13C surface receive coil (Rapid Biomedical,
Rimpar, Germany). The oxygen saturations of 3 rats were
monitored after removal from the imaging magnet using a
paw saturations probe, and averaged over a 2-min period.

Localizer images were acquired using a 1H/13C vol-
ume transmit/receive coil and a 2D multi-echo B0 mapping
sequence was performed with subsequent automated
shimming as previously described.26

2.1 Hyperpolarized 13C magnetic
resonance spectroscopy and perfusion
weighted magnetic resonance imaging

A total of 40 mg [1–13C]pyruvic acid (Merck) was mixed
with the trityl radical, OX063 (15 mM) (Oxford Instru-
ments, Abingdon, Oxford) and gadolinium (3 μ L,
1:50 dilution in water) (Dotarem) and hyperpolarized for
1 h in a prototype hyperpolarizer system as previously
described.26 The hyperpolarizer system underwent qual-
ity control testing every 4 weeks for the 4 months before
experiments. The [1–13C]pyruvate signal was monitored
with the same coil and pulse sequence at each time point.
After 1 h, the hyperpolarized substrate was dissolved using
a 4.5 mL mix of sodium hydroxide and 1 mL was injected
via the tail vein cannula over 4 s with a 200 mL flush of
saline as previously described.26

Hyperpolarized spectroscopy was performed using a
pulse-acquire sequence (Gauss excitation pulse, excitation
pulse width = 100 ms, receive bandwidth = 5 kHz, Rep-
etition Time (TR) = 1 s, Echo Time (TE) = 0.3 ms, slice
thickness = 20 mm, Flip Angle (FA) = 15◦, number of
time points = 240) with the spectroscopy slice encoding a
slab placed to cover the whole brain. Each acquisition was
targeted to occur between 20 and 25 min post anesthetic
induction.

Animals were transferred while anesthetized to a
custom-built cradle for 1H perfusion imaging. A 4-channel
receive proton array (Rapid Biomedical, Rimpar) was
placed over the head, locked in place via the ear
pins, and the animal was re-placed in the magnet.
A 3D gradient echo-based sequence was performed
(TR = 5 ms, TE = 1 ms, FA = 12◦, Radio Frequency (RF)

spoiled, acquisition matrix = 256× 256× 64, reconstruc-
tion matrix = 512× 512× 64, FOV = 60× 60× 60 mm3) for
localization.

A single slice dynamic 2D gradient echo acquisi-
tion was planned through the mid brain for perfusion
imaging as previously described.39 Imaging parameters
were TR = 20 ms, TE = 10 ms, FA = 20◦, acqui-
sition matrix = 128× 64, FOV = 35 mm, slice thick-
ness = 0.625 mm, total number of time points = 60. 200 μL
of gadolinium (Dotarem, Guerbet, France) was pre-loaded
into the tail vein line, and a 200 mL saline flush injected
after 2 baseline time points were acquired. Each acquisi-
tion was targeted to occur between 40 and 45 min after
initial anesthetic induction. Animals were removed from
the magnet and allowed to recover for 1 week between
each scan.

2.2 Image and spectroscopy
post-processing

Perfusion weighted imaging data were post-processed
using model-free deconvolution40 using a region of interest
placed in the supplying vessels to provide an arterial input
function (AIF) to form CBV (normalized to the AIF), CBF,
time to peak (TTP) and mean transit time (MTT) maps. A
single region of interest (ROI) was placed within the brain
(including the superior sagittal sinus) and mean values for
the quantities were calculated.

13C spectra from each channel of the 2-channel receive
coil were separately summed in the frequency domain,
phased, and combined before being fit in jMRUI v5.2 using
pyruvate, lactate, alanine, pyruvate hydrate, and bicar-
bonate as basis functions. The Cramér–Rao lower bound
(CRLB) was calculated for each metabolite. 13C Bicarbon-
ate:total 13C carbon, bicarbonate:pyruvate, [1-13C]lactate:
total 13C carbon, [1-13C]lactate:[1-13C]pyruvate and 13C
bicarbonate: [1-13C]lactate ratios were quantified and the
mean for each experiment calculated. The TTP from initial
upslope of [1–13C]pyruvate was also calculated.

2.3 Statistical analysis

Perfusion and metabolic parameters were compared across
groups using a 1-way ANOVA and Bonferroni corrected t
tests if a significant group effect was observed. The coef-
ficient of variation (x∕σ) of the maximum observed solid
state signal from the quality control of the hyperpolarizer
system was calculated.

Spearman’s rank correlation coefficient was computed
between all variables, with a Bonferroni correction per-
formed for multiple comparisons. Comparisons were
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F I G U R E 1 Example summed spectra from the (A) 100:0, (B) 90:10, and (C) 60:40 O2:N2O% groups, displayed with 5 Hz line
broadening and normalized to maximum pyruvate signal. Example (D) CBV and (E) CBF maps from the 60:40 O2:N2O% group

made only once between variables, to reduce the number
of correlations performed. P< 0.05 was considered sta-
tistically significant, with appropriate adjustment of the
significance cut off to account for multiple comparisons.

3 RESULTS

Hyperpolarized 13C spectroscopy and perfusion weighted
imaging was successful in all experiments, example
summed spectra from 100:0, 90:10%, 60:40% O2:N2O are
shown in Figure 1A-C, respectively. Example CBV and
CBF images from a rat at 60:40% O2:N2O can also be seen
in Figure 1D,E, respectively. Animal weight did not signif-
icantly vary over the course of the experiments (P = 0.86),
and the coefficient of variation of the solid state build
up signal from [1–13C]pyruvate over 3 months was 7%.
Oxygen saturations for animals were consistently between
95-100% after imaging.

3.1 Bicarbonate based metabolic
measures significantly vary with gas
protocol

The 13C lactate: 13C total carbon or 13C lactate:13C
pyruvate did not significantly change between gas con-
ditions (P = 0.09 and P = 0.07, respectively) with
results shown in Figures 2A and 3A. However, 13C
bicarbonate:[1-13C]pyruvate and 13C bicarbonate:total 13C
carbon ratio results shown in Figures 2B and 3B, were
significantly elevated and higher in the 60:40% O2:N2O in
comparison to the 100:0% O2 (0.08± 0.03 vs. 0.04± 0.01,

P= 0.0009 and 0.05± 0.02 vs. 0.03± 0.01, P= 0.005, respec-
tively) and between 60:40% and the 90:10% O2:N2O groups
(0.08± 0.03 vs. 0.03± 0.01, P = 0.001 and 0.05± 0.02 vs.
0.019± 0.005, P = 0.0005), but did not significantly differ
between 100:0% and 90:10% O2:N2O groups (P = 0.77).

The 13C bicarbonate:[1-13C]lactate ratio was sig-
nificantly different between the 100:0% and 60:40%
O2:N2O (0.18± 0.06 vs. 0.4± 0.1, respectively, P = 0.001)
and between 90:10% and 60:40% O2:N2O (0.11± 0.04
vs. 0.4± 0.1, respectively, P = 0.11), but not between
the 100:0% and 90:10% O2:N2O groups (P = 0.34).
[1-13C]pyruvate TTP significantly varied between 60:40%
and 100:0% O2:N2O (7.5± 0.5 s vs. 13± 2 s, respectively,
P = 0.0001), and between 60:40% and 90:10% O2:N2O
(7.5± 0.5 s vs. 10± 2 s, respectively, P = 0.01), but not
between 90:10% and 100:0% O2:N2O (P = 0.07), see
Figure 3C.

[1-13C]pyruvate, [1-13C]lactate, and 13C bicarbonate
Cramer–Rao lower bound estimates were not significantly
different over the gas groups (pyruvate, 3± 2%, 11± 6%,
0.8± 0.5%, P = 0.09, lactate, 14± 7%, 11± 6%, 3± 2%,
P = 0.08, bicarbonate, 181± 181%, 104± 55%, 14± 11%,
P = 0.17, 100:0, 90:10, 60:40 O2:N2O%, respectively).

3.2 Perfusion measures are less
sensitive to oxygenation protocol

There was significantly elevated CBF as N2O was increased
and O2 decreased, with differences between 60:40
and 100:0 O2:N2O% (111± 7 vs. 62± 23 mL/100 g/min,
respectively, P = 0.003), and between 100:0 and 90:10
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F I G U R E 2 Lactate:13C pyruvate
(A), bicarbonate:13C pyruvate (B), and
bicarbonate:lactate (C) results from all
groups. *P< 0.05 after correction for
multiple comparisons

O2:N2O% (62± 23 vs. 96± 18 mL/100 g/min, respectively,
P = 0.003), but not between 60:40 and 90:10 O2:N2O%
(P = 0.31). Results for CBV, TTP, and MTT were not sig-
nificant (shown in Figure 4B-D, respectively, all P> 0.05).
There were significant correlations between CBF and gas
protocol (ρ = −0.75, P< 0.001), bicarbonate:13C pyruvate
and gas protocol (r = −0.47, P = 0.03), between CBF and
13C pyruvate TTP (ρ=−0.54, P= 0.001), and between MTT
and gas protocol (ρ = 0.41, P = 0.06), see Figure 5A-D,
respectively. There was a significant correlation between
CBF and bicarbonate:total 13C carbon (ρ = 0.42, P = 0.05)
but not bicarbonate:13C pyruvate (ρ = 0.37, P = 0.09),
and significant correlations between increasing CBF and
pyruvate (ρ = 0.48, P = 0.02), lactate (ρ = 0.57, P = 0.007),
and bicarbonate (ρ = 0.56, P = 0.008) CRLB.

4 DISCUSSION

This study demonstrated the effect of changing both
oxygen and NO on the measurements of both cerebral
metabolism and perfusion in the anesthetized rodent
brain. Here, it was clearly demonstrated, using the same
animals, that it is possible to modulate apparent pyru-
vate dehydrogenase (PDH) activity—as heralded by the
change in bicarbonate signal as the animals were moved

from 100:0% O2 to 60:40% O2:N2O. Although the exact
cellular origin of the bicarbonate signal is still con-
tested, and we cannot directly probe astrocytes, neu-
rons, pericytes, microglia, and oligodendrocytes sepa-
rately in the same animal, it may be because of the
increase in neuronal metabolism because of elevated blood
flow and availability of lactate from the neuron-astrocyte
lactate shuttle.41 These results demonstrate that any
changes in 13C bicarbonate production, as assessed by
using the 13C bicarbonate:[1-13C]lactate (a measure of
TCA:glycolytic metabolism occurring within the brain)
13C bicarbonate:[1-13C]pyruvate, and 13C bicarboante:total
13C carbon ratios (measures of the total metabolism of
pyruvate by PDH), measured at higher O2 concentra-
tions in experiments may be confounded by reduced cere-
bral perfusion, and therefore, have a much higher sta-
tistical uncertainty, as demonstrated by the correlation
between metabolite CRLB and increasing CBF in this
study. Although these results do show the benefit of adding
in N2O and decreasing O2 to recover cerebral oxidative
metabolism, they are by no means exhaustive and fur-
ther optimisation work should be performed. Interest-
ingly, the bicarbonate:lactate ratio observed in the 60:40%
protocol was the closest to that observed in the awake
healthy human brain (0.4± 0.1 vs. 0.32± 0.15, respec-
tively)2 and this may point to the protocol providing more
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F I G U R E 3
[1-13C]Lactate:total 13C carbon
(A), 13C bicarbonate:total 13C
carbon (B), [1-13C]pyruvate time
to peak results from all groups,
*P< 0.05 after correction for
multiple comparisons

physiological results than at 100% O2. Indeed, N2O has
been show to recover perfusion and CMRO2 in a previ-
ous study, where isoflurane commonly depresses cerebral
metabolism—this study has expanded on this initial result
by demonstrating this using both perfusion and metabolic
measurements in a non-invasive manner over a range of
gas carrier protocols.42 A recent study has investigated
metabolism in the awake rodent brain, showing changes
in 13C derived results across different aesthetic regimes.14

However, an awake rodent study has other confounders
(e.g., the added stress response because of gradient noise
and heating and the injection of pyruvate while awake).
In essence, this study furthers the challenge faced in
interpreting and translating pre-clinical studies, with data
potentially confounded by many factors including anes-
thetics, the use of pulse sequences that are not realistic for
translation to clinical systems either because of gradient
slew rates that would induce peripheral nerve stimulation
in a patient, high specific absorption rate radio frequency
pulses that would not be allowed because of patient safety
restrictions, and the ability of a disease model to fully
replicate the human condition.

Of note, it was not possible to determine the oxygen
protocol used in some previously published studies. This
may be a point for future consideration in the reporting of
studies to enable good reproducibility and open science.

4.1 Limitations

First, this work did not include a medical air
protocol—used by a small number of groups primarily in
the United Kingdom and Europe—this was because this
would have required alterations to the anesthetic induc-
tion, requiring a much higher initial dose of isoflurane,
used for the other gas protocol. Assessing the metabolism
of [1–13C]pyruvate with a medical air protocol may pro-
vide further insights into the changes associated with
oxygen at lower concentrations than used here. Further-
more, these results do not represent the normal human
condition because they use isoflurane for anesthesia. The
volumes of pyruvate injected in other studies varied from
this study (commonly over 1 mL), which we are not able
to reproduce because of license restrictions in our insti-
tution, and this may also provide a source of discrepancy
between these results and others previously published.
Investigation into changes in arterial blood gases and
pressure may elucidate further mechanisms behind this
study; however, this was not possible on our animal
license. Further study analysis could include the use of
kinetic modeling to understand the change in apparent
metabolic rate constants, however, approaches sensitive to
low signal-to-noise ratios of each individual spectroscopic
time point, and so were not used here.43 However, it is
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F I G U R E 4 Cerebral blood flow
(CBF) (A), cerebral blood volume (CBV)
(B), time to peak (TTP) (C) results and
mean transit time (MTT) (D) results from
all groups. *P< 0.05 after correction for
multiple comparisons

F I G U R E 5 Significant
correlation results between CBF
and gas protocol (A),
13Cbicarbonate: [1-13C]pyruvate
(B) [1-13C]pyruvate time to peak
with CBF (C) and mean transit
time (MTT) with gas protocol (D)

known that rate constants correlate with the area under
the curve approached used in this study.44

Furthermore, the absolute liquid state polarization of
the [1–13C]pyruvate was not measured in this study; how-
ever, the 7% coefficient of variation in the solid state signal,
which correlates with the liquid state signal, suggests that
this was not a significant factor in detected metabolism in
the study. Finally, the impacts of other anesthetic agents
such as propofol or sevoflurane were not investigated in

this study, and the work could be expanded to include this
in future.

5 CONCLUSION

In conclusion, this study has assessed the impact of dif-
ferent oxygen protocols on the measured metabolism
of [1–13C]pyruvate in the anesthetized rodent brain,
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revealing differences in apparent bicarbonate production
with increasing levels of N2O. This will be of use in future
studies of metabolism in the rodent brain with hyperpolar-
ized MRI.
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