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ABSTRACT

Current approaches to design efficient antisense
RNAs (asRNAs) rely primarily on a thermodynamic
understanding of RNA-RNA interactions. However,
these approaches depend on structure predictions
and have limited accuracy, arguably due to overlook-
ing important cellular environment factors. In this
work, we develop a biophysical model to describe
asRNA-RNA hybridization that incorporates in vivo
factors using large-scale experimental hybridization
data for three model RNAs: a group |l intron, CsrB and
a tRNA. A unique element of our model is the estima-
tion of the availability of the target region to interact
with a given asRNA using a differential entropic con-
sideration of suboptimal structures. We showcase
the utility of this model by evaluating its prediction
capabilities in four additional RNAs: a group Il in-
tron, Spinach Il, 2-MS2 binding domain and gigC 5’
UTR. Additionally, we demonstrate the applicability
of this approach to other bacterial species by predict-
ing sRNA-mRNA binding regions in two newly dis-
covered, though uncharacterized, regulatory RNAs.

INTRODUCTION

In vivo RNA targeting via antisense base pairing provides
an efficient mechanism to characterize RNA interactions as
well as to post-transcriptionally regulate gene expression. In
the native cellular environment, sequence-specific antisense
RNAs (asRNAs) are ubiquitous in natural gene regulatory
mechanisms, ranging from bacterial small RNAs (sSRNAs)
(both cis- and trans-encoded) (1-3) to more complex eu-

karyotic systems such as the RNA interference pathway and
circular RNAs (4). Likewise, the common use of affinity-
based purification assays to characterize in vivo RNA in-
teractions (i.e. pulldown of a target RNA and its interact-
ing partners from cellular extracts) relies on targeting the
RNA of interest with an immobilized bait molecule, often
an antisense RNA (5,6). Furthermore, the simplicity and
universality of nucleic acid Watson—Crick complementarity
makes antisense nucleic acids highly attractive for control-
ling gene expression (1,7-10) in biotechnological applica-
tions such as bacterial cellular engineering (11-14). Given
the broad utility of RNA targeting via antisense binding,
recent efforts to design effective synthetic asRNAs in bac-
teria have become more systematic, mimicking mechanisms
of natural non-coding RNAs that downregulate their cog-
nate messenger RNAs (mRNAs) by base-pairing (1,3,15).
A more recent study in bacteria provided general guidelines
for the design of asRNAs using large sets of gene-repression
data (16). However, there remains a significant challenge in
the asRNA applications described above: the design of ef-
fective antisense oligonucleotides for sequence-specific tar-
geting of RNA in situ (3,5). This is particularly true in bac-
terial systems, since most design models for asRNAs have
been developed in the context of eukaryotes.

Rational efforts to design asRNA have traditionally been
aided by algorithms that predict RNA-RNA interactions
(17,18). These approaches are numerous and stem from sim-
ple and fast surveying methods such as GUUGLe (19) and
BLAST (20) that score potential target regions within an
RNA of interest using the sole criterion of complementar-
ity. These approaches have been followed by several meth-
ods that display varying degrees of accuracy and sophistica-
tion: from (i) those neglecting intramolecular structure (e.g.
RNAduplex (21), RNAhybrid (22), TargetRNA (23) and
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RNAplex (24)) to (ii) those considering only one interaction
site and intramolecular structure (e.g. Nupack (25), RNAup
(26), AccessFold (27) and IntaRNA (28)), or even to (iii)
those highly computationally complex tools that predict
several interactions sites (e.g. IRIS (29)) and the joint RNA—
RNA secondary structure using the energy partition func-
tion (e.g. PIRNA (30) and RIP (31)). For simplicity, some of
these approaches for prediction of RNA-RNA interactions
(e.g. RNAup (26) and IntaRNA (28)) rely on RNA ‘accessi-
bility, based on the assumption that both interacting part-
ners must be unfolded (i.e. accessible) prior to binding (17).
In this context, accessibility is defined as the property of
a given potential interaction site to be free of intramolec-
ular base pairs. Target accessibility has been generally in-
troduced in predictive algorithms as an energy penalty esti-
mated from the ensemble of possible target structures with
the corresponding target region unpaired. The specific role
of target accessibility in the asRNA hybridization has been
extensively studied with a particular focus on miRNAs and
siRNAs (24,26,32-36). However, there are limitations with
the aforementioned structure prediction approaches (e.g.
high false positive rate (17) and limited accuracy (70% for
molecules up to 500 nt and as low as 40% for longer RNAs
(37)) due to simplifications in the energy model that over-
look structural complexity and intracellular factors that af-
fect hybridization. Furthermore, to our knowledge, very few
works have shed light on how accessibility plays a role in an-
tisense hybridization within living bacteria (38). This under-
scores the need for more realistic approaches that account
for the in vivo environment, incorporating the influence of
binding factors, ionic strength and molecular crowding (39).
Hereby, we propose a novel approach to predict and eval-
uate hybridization efficacy in bacteria that features the in-
clusion of large sets of experimental data collected in vivo.
This model uniquely considers a regional availability fac-
tor. Regional characteristics of the target RNA have long
been implicated in asRNA efficacy. For instance, Zhao and
Lemke proposed a criterion that at least 4 highly accessi-
ble nucleotides are necessary for the initiation of asRNA-
target RNA binding based on investigating correlations be-
tween predicted structure and asRNA efficacy (40). In ad-
dition, established RNA hybridization mechanisms further
support this notion of ‘regionality’, e.g. the intermediate
step in which a few nucleotides interact to initiate the bind-
ing (seeding interaction) (41) or recognition sequences that
behave as first ‘points of contact,” such as the YUNR motif
(42). To derive a corresponding RNA molecular recognition
model, we start from a common thermodynamic framework
used in accessibility-based approaches (17) that considers
the overall change of free energy of Gibbs (AG,yerqn) In
the reaction system, a predictor of asRNA binding (19).
We introduce a novel, semi-empirical measure of variable
entropic contributions to asRNA binding of the targeted
region, which we assume acts as a cohesive stretch of nu-
cleotides within the larger structural context of folded RNA
molecules. Lastly, we also optimize the considered models
in vivo based on experimental data to account for crowd-
ing and other effects of the cellular environment. Hereafter,
we refer to this predictive approach as the in vivo-optimized
Thermodynamic Accessibility-adjusted model, inTherAcc.

The inTherAcc model was developed using large data
sets describing in vivo hybridization efficacy of asRNAs tar-
geting approximately 80 regions within three well-studied
RNA molecules: the autocatalytic group I (gl) intron from
Tetrahymena, and the Escherichia coli noncoding RNAs
CsrB and glutamate tRNA. Experimental characterization
of asRNA hybridization efficacy was performed using a pre-
viously published assay that measures asRNA-target RNA
hybridization via fluorescence, the in vivo RNA Structural
Sensing System-(IRS?) (43).

Following model optimization, hybridization efficacy of
numerous potential target regions within the 2-MS2 phage
coat protein transcript (2-MS2), glgC 5 UTR (glgC), group
II intron (glII) and the Spinach II (Spll) RNAs was pre-
dicted and experimentally assessed for accuracy. The perfor-
mance of our model was benchmarked against a similarly
optimized model lacking the proposed availability term and
IntaRNA (28), an accessibility-based approach that also
considers a regional adjustment by incorporating the exis-
tence of a user-definable seed.

Lastly we evaluated the ability of inTherAcc coupled to
BLAST (20) to predict mRNA targets of recently discov-
ered Z. mobilis SRNAs, Zms4 and Zms6 (44). Experimental
confirmation using RIP-seq validated the ability of inTher-
Acc to aid prediction of potential mRNA targets for Zms4
and Zms6. Comparison of inTherAcc to IntaRNA predic-
tions suggests complementarity between the prediction ap-
proaches. Finally, the demonstration of inTherAcc utility
in another bacterial species underscores its broad applica-
bility.

MATERIALS AND METHODS

Plasmids and strains

As previously described in (43), the fluorescence-based
iRS? system provides a measurement of asRNA-RNA hy-
bridization by using various 8-27 nt sequences (asRNAs)
that are complementary to a target RNA. In this system,
a fluorescence shift is observed when an asRNA success-
fully binds the region of interest in the target RNA. A
total of eighty asRNAs targeting unique regions in three
target molecules (gl intron, CsrB and tRNA) were ana-
lyzed in this work for model optimization purposes. Forty-
nine asRNAs targeting unique regions in four different tar-
get molecules (glI intron, Spinachll, glgC 5SUTR and 2-
MS?2) were also used to assess model prediction capabil-
ities. To construct these experimental asRNA systems, a
modified Golden Gate cloning-based plasmid was intro-
duced for high-throughput cloning that included the fol-
lowing changes to the previously published “Wild Type In-
tron Probe I reporter’ (43): a p-chlorophenylalanine nega-
tive selection cassette in place of the asRNA sequence (be-
tween EcoRI and the CB element flanked by two Bsmbl re-
striction sites) (45,46). We termed this plasmid iRS? Golden
Gate (IRS?-GG) and it is illustrated in Supplementary Fig-
ure S1A. All target molecules, with the exception of the
natively-targeted tRNA, were separately introduced in the
iRS3-GG between the Xbal and Sall restriction sites (see
plasmid map in Supplementary Figure S1A). In the case
of glI, Spll, glgC and 2-MS2, Gibson assembly (47) (using
Gibson Assembly mix from NEB) was performed. CsrB was



introduced via traditional restriction cloning. All primers
used for cloning of target molecule into iRS3-GG are listed
in Supplementary Table S1.

All asRNA sequences within the plasmid (Supplemen-
tary Table S2), besides 11 asRNAs corresponding to re-
gions within the gl intron that were previously synthe-
sized and published (43), were either ordered from Gen-
Script Inc., synthesized by a site-directed mutagenesis ap-
proach (QuikChange II Site-Directed Mutagenesis Kit,
Agilent Technologies) by modifying a previously synthe-
sized asRNA, synthesized via Gibson Assembly (47) or
synthesized by using a high throughput Golden Gate ap-
proach as described in (48) on our iRS3-GG plasmid. For
the Golden Gate approach, complementary primers (or-
dered from IDT) containing each asRNA sequence with
the proper flanking overhangs were annealed and cloned
after digestion with Bsmbl (Thermo Scientific) to replace
the p-chlorophenylalanine negative selection cassette. All
specific cloning methods and primers used for cloning are
included in Supplementary Table S2. To increase cloning
throughput, two to five asRNAs were combined into a sin-
gle reaction and later transformed into DH5« chemically-
competent cells or NEB Turbo electro-competent cells and
plated in Luria—Bertani (LB)/Agar media supplemented
with p-cholorophenylalanine (p-CI-Phe) to select for the
clones harboring the appropriate asRNA. Once the asRNA
sequences were confirmed by DNA sequencing, the newly
synthesized plasmids were transformed into K-12 MG1655,
or, in the case of CsrB, into a CsrB/CsrC-knockout K-
12 MG1655 strain (CML 378) (49). An overview of the
specifics of the asRNA synthesis strategy is included in Sup-
plementary Figure S1B.

For the evaluation of sSRNA target prediction as aided
by inTherAcc and IntaRNA, we utilized pBBR1IMCS2-
pgap vector (50) for constitutive expression. Each sSRNA
was synthesized by GenScript® and then cloned into
pBBRIMCS2-pgap vector between Nhel and Sall,
resulting in pBBRIMCS2-pgap-sRNA. For 2MS2BD-
Zms4/Zms6/control  constructs, gBlock® (IDT) of
2MS2BD-Zms4/Zm6/control was used for cloning
into pBBRIMCS2-pgap vector, resulting in plasmids
abbreviated 2MS2-Zms4/2MS2-Zms6/2MS2-control.
These plasmids were transformed by electroporation into
Zymomonas mobilis 8b.

Selection of target RNAs

Rationale for target molecule selection was based on
molecule complexity, size and functional interactions. For
instance, the gl intron is a relatively large (393 nucleotides),
well-studied RNA model (51,52) whose many structurally
significant regions have been previously probed with the
iRS? system (43). These studies have shown that this au-
tocatalytic molecule may well-represent the complexity of
structural features present in most RNAs targeted for reg-
ulation (e.g. UTRs of mRNAs (53)). On the contrary, the
76-nucleotide long glutamate-tRNA has a wide assortment
of interactions with intracellular factors, including mR-
NAs, rRNAs, various modification enzymes and other pro-
teins despite exhibiting tight tertiary structure comparable
to that of the gl intron (54). The third molecule chosen
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for model optimization, CsrB, is a non-coding RNA whose
multiple protein binding motifs contribute to the transla-
tional regulation of a large number of mRNAs (55). Com-
pared to the previously described molecules, CsrB (369 nu-
cleotides) is less structurally sophisticated than the gl intron
and the tRNA.

For assessing the prediction capabilities of our model,
four alternative RNA molecules were used: the 2-MS2 coat
protein binding domain, the model LtrB group II intron,
the Spinach IT RNA and the glgC messenger RNA SUTR.
This set of RNAs covers a wide array of types, functions,
structures and sizes. MS2 and Spinach II are commonly
used to investigate RNA interactions, more specifically, to
isolate RNAs to determine specific RNA interacting com-
plexes (5) and track RNA movement (56), respectively. Sim-
ilarly, 5 UTRs often use their structure to regulate the
translation of their associated mRNA. The gII intron was
selected given the interest in targeting ribozymes for under-
standing the molecular mechanisms for catalytic activity,
largely regulated by their complex folding (57).

Fluorescence measurements and calculations of asRNA hy-
bridization using the in vivo RNA structural sensing system
(iRS%)

In general, flow cytometry experiments were carried out as
previously reported (43). All target molecules (except for
the glutamate tRNA) were evaluated under overexpression
conditions in which the hybridization efficacy is evaluated
as the ratio between the fluorescence in the presence of the
target RNA with baseline fluorescence (in the absence of
the target RNA) subtracted out (FLo,-FLg) to the base-
line fluorescence (FL,g). For all hybridization calculations,
FL,r was scaled by an adjustment factor of 0.65 to account
for the excess abundance of the reporter probe relative to the
target RNA, as approximated by recently obtained RNA-
sequencing data (unpublished). In the case of the tRNA,
the target was evaluated using native levels given its natu-
ral presence and abundance in E. coli cells using plasmid
in Supplementary Figure S1C. In this case, FL,, and FLqy
represent the fluorescence in the presence of the asRNA
(iRS*+specific oligonucleotide) and the fluorescence in the
absence of the asRNA, respectively. FL, fluorescence was
measured right before induction (at time ‘0’) and FL,, was
collected 45 min after induction (See Supplementary Fig-
ure S2A for a correlation between uninduced and time ‘0’).
Seeding cultures originated from independent overnights
and uninduced and induced samples proceeded from the
same initial seeding culture. Specifically, seeding was done
in LB (40 ml + 50 pg/ml of kanamycin) and split up into
two 20 ml cultures at the time of induction (1-2 h of growth
upon seeding) for the collection of model optimization data.
When testing model predictions, seeding was done in LB
(200 pl + 50 pg/ml of kanamycin) and split up into two
100 w1 cultures in 96-well plates at the time of induction.

In vivo DMS footprinting and calculation of target availabil-
ity (6)

The DMS reactivity of the gl intron was obtained using a
previously published protocol (43). In this work, we pub-
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lished the in vivo DMS reactivity profile for the full gl in-
tron (Supplementary Figure S3). Previously, the reactivity
for only select regions had been published (43). The nu-
cleotide indexing for the gl intron follows the established
consensus for this well-known molecule. These data were
filtered and normalized using specialized software, the cap-
illary automated footprinting analysis (58). The reactivity
values for the untreated sample were subtracted from the
average reactivity value of two independent DMS treated
samples. The DMS reactivity for Gs and Us was estimated
by assuming the same reactivity as their pairing partners (if
paired), and, when unpaired, an average reactivity value for
‘exposed’ nucleotides was assigned. Special cases were those
Gs and Us exposed in loops (G58, US59, G92, G112, G119,
U120, G126,U179, U185, G200, G201, U202, U225, G227,
U247, G254, G279, U300, G303, U322, U323, G331, U340,
G341, G357, G358, G368 and U372) that were assigned val-
ues more similar to their neighbors and other As and Cs
present in loops. The regional target availability factor was
then calculated using the average of the individual reactivity
values of each nucleotide in the given target region over the
length of the target region.

Derivation of the accessibility-based thermodynamic model

The quantity A G,yerq 18 the overall free energy change re-
lated to the different mechanistic steps associated with as-
RNA binding to the target RNA region; the folding and
binding processes considered are depicted in Figure 1. This
quantity is represented as the combined contribution of the
free energies of: (i) the Watson—Crick base-pairing of the
asRNA to the target RNA region (A G ), (ii) the local un-
folding of the target RNA region required for asRNA bind-
ing (AGty) and (iii) the unfolding of the asRNA required
for binding (A G,r). The sum of these terms comprises the
total energy of hybridization, A G oyerall:

AGoverall = Zi AGi = AGasT - AGTf - AGasf (1)

In Equation ((1)), subscripts asT, Tf and asf denote the
asRNA-target RNA hybridization, the target RNA folding
and the asRNA folding, respectively.

Calculation of free energy of hybridization (A G,s1)

To calculate the Gibbs free energy of binding between
the perfectly complementary stretch of nucleotides (as-
RNA) within the iRS?-asRNA system and the target
region, the energy parameters for the nearest neighbor
model published in (59) were used. Only canonical base-
pairing (Watson—Crick base pairs), penalties for self-
complementarity within the asRNA and AU ending were
considered for the calculation of the stacking energies.

Calculation of free energy of the target region (A Gry)

To calculate the Gibbs free energy of target region folding,
the energy parameters for the nearest neighbor model pre-
viously published (59) were used. The target region plus one
extra nucleotide at each end was considered to account for
stacking contributions of neighboring base pairs. The fold-
ing of the target RNA was considered to be a local event
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Figure 1. Proposed accessibility-based mechanism of antisense hybridiza-
tion in living cells. (A) Example target region with color-coded local avail-
ability (estimated by base-pairing probabilities) is shown in canonical con-
formation, as would be expected in the native state. In antisense RNAs
(asRNA) targeting by the iRS?, the targeted region must unbind from P3
to become single stranded as shown in (B) with a free energy change of —
AGry. The iRS? consists of four main elements: a cis-blocking strand (CB,
orange), a ribosome binding site (RBS, blue), the sequence encoding green
fluorescence protein (GFP, green) and the probe (pink and black) of 8-27
nucleotides targeting a specific region shown in (B). The expected native
state of the iRS? is shown in (C), and it must also unfold to bind the target
region as shown in (D) with a free energy change of ~AG,g. Finally, the
two unfolded structures bind as in (E) with a free energy change of AGyst
to stabilize the unfolded iRS? and allow translation of GFP. Effective as-
RNA targeting results in a high fluorescence response.

due to the tight coupling of prokaryotic transcription and
translation. Such assumptions of local folding have previ-
ously been used in a structural study of bacterial genes (60).
To calculate the stacking energy contributions, the consen-
sus secondary structure of the gl intron was considered (61).
For all the other target molecules, a secondary structure pre-
diction from the RNAStructure webserver was used (62).
Since GU base pairs are somewhat extensively found in the
structure of our target RNAs, they were treated as nearest
neighbor stacks, similar to Watson—Crick helices. In addi-
tion, the penalty for ending in a GU was the same as an
AU ending. In our treatment of GU pairs we followed the
parameters reported by Mathews et al. (63). No energy pa-
rameters for other structural motifs such as loops, bulges,
etc. were taken into account.



Calculation of the availability factor

To support high-throughput estimations of regional avail-
ability (), without involving experimental structural stud-
ies, local availability (6y) was estimated by one minus base
pairing probabilities determined by Boltzmann-distributed
structural variations provided by the Nupack webserver
(64). This structural accessibility estimation was shown to
be captured by in vivo experimental DMS reactivity at the
regional level, supporting the use of base pairing probabil-
ities as an estimator of experimentally determined regional
availability (Supplementary Figure S4).

Calculation of free energy of folding for the asRNA (A G )

The ‘allSub’ subroutine of the RNAStructure webserver
(62) was used to predict the secondary structure of the
asRNA+iRS? transcript (5'-6 nt + asRNA + 56 nt-3’). The
Gibbs free energy of the minimum free energy structure was
used to represent the asRNA folding energy (A G,s). For
the purpose of this analysis, the transcript considered 62
nucleotides in addition to the 8-27 nucleotides of the as-
RNA (for a total of 70-89 nucleotides). Additionally, six
nucleotides upstream of the asRINA were included as part of
the transcript to account for imprecision of transcriptional
start sites. In this way, any potential interactions between
the asRNA and the segment downstream from the riboso-
mal binding site (RBS) site were accounted for. The specific
sequence is as follows: YGAA UUC -asRNA- UAC CAU
UCA CCU CUU GGA UUU GGG UAU UAA AGA
GGA GAA AGG UAC CAU GAG UAA AG 3.

Model optimization via regression analysis using experimen-
tal hybridization data

Regression analysis was used to statistically evaluate the
contributions of the proposed biophysical factors in the de-
rived models. Briefly, a linear model relating the experimen-
tal response variable v (defined as the logarithm of the ra-
tio of (FLoy-Flogr) to Floy measurements) to the previously
described factors (68, AGyst, AGtr, AGagr) Was composed
and the coefficients for the various factors were fit by ordi-
nary least squares regression. Coefficient fitting and statisti-
cal analysis of parameter contributions to the overall model
were performed using MatLab Math, Statistics and Opti-
mization package (specifically ‘fitlm’ function). A total of
383 independent fluorescence measurements (representing
asRNA hybridization efficiency) across all three optimiza-
tion molecules were used for regression analysis. A G,sr was
constrained to an interval between —19.3 kCal/mol and
—17.8 kCal/mol where its influence became statistically in-
significant (P-value > 0.05) allowing the other more rele-
vant factors (0, A G, A Grr) to be studied in isolation (see
Supplementary Figure S5). In addition, the predictors in
Equation ((8)) were normalized by the length of the asRINA
to decrease linear dependency on this design parameter. A
3-fold cross-validation was performed to test for prediction
ability for both optimized models (groups were randomly
selected and all replicates were kept together based on their
corresponding region). Each cross-validated R? was calcu-
lated as the adjusted coefficient of determination of the lin-
ear regression fit between the experimental data of each in-
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dependent group and corresponding predicted values from
a model derived from the remaining 2 independent groups.

For all regression analyses conducted in this work, fac-
tors and their potential interactions were considered statis-
tically meaningful if their P-value (t-test) was lower than
0.005. Additionally, the quality of the regression was qual-
itatively evaluated by visual inspection, ensuring that the
residuals showed a strong normal distribution (see Supple-
mentary Figure S6).

Selection of target regions for evaluation of model prediction
ability

About 1300 potential target regions within each molecule
(gll intron, Spinachll, glgC 5UTR, 2-MS2) were randomly
generated. Starting from the first nucleotide of the molecule,
regions of random length between 9 and 17 nucleotides
were designed sequentially with one nucleotide overlap be-
tween each region. This process was iterated 7 additional
times with respect to integer-increasing nucleotide overlap
between regions, ultimately producing 8 sets of target re-
gions with 1-8 nucleotide overlaps. To ensure that every nu-
cleotide of each molecule was included within each set of
target regions, the last region within each set was not of ran-
dom length. Instead, if the first nucleotide of a prospective
region was within 9—-17 nt of the last nucleotide, the final
probe of the respective iteration was established as the re-
gion from the first nucleotide of the prospective region to
the last nucleotide of the molecule. The full set of asRNAs
targeting these regions was then filtered by their calculated
folding free energies to select a subset of 366 asRNAs with
A Gy ranging from —19.3 to —17.8 kcal/mol.

Lastly, this filtered set of asRINA designs was used to pre-
dict hybridization efficacies via the optimized model. The
total number and sequence of asRNAs for experimental
validation for each RNA were chosen based on molecule
length, biophysical model hybridization prediction and tar-
geting region. Six asRNAs were chosen for the smallest
target molecule (2-MS2), 13 for the ‘mid-sized’ molecules
(glgC 5UTR and Spinach II) and 17 for the largest (gII
intron). Approximately 40% of asRNAs for each molecule
were selected for their low predicted hybridization values,
defined as a predicted hybridization efficacy equal to or less
than the median of the asRNA pool within a molecule. The
remaining asRNAs selected were within the predicted high
hybridization efficacy pool, specifically, with predicted hy-
bridization greater than the median. Precautions were taken
to avoid selection of asRNAs targeting highly similar re-
gions (>5 shared nucleotides); however, exceptions were
made when two asRNAs targeting similar regions showed
interesting differences in terms of predicted hybridization
efficacy (differences greater than the standard error of the
pool).

Statistical evaluation of model prediction ability

For each target region designed for experimental validation
(above), hybridization efficacies as predicted by benchmark
software IntaRNA were also estimated (28). First, the hy-
bridization energy of each region was calculated using the
pre-set seed, folding and output parameters with inputs of
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target RNA sequence and asRNA sequence. The hybridiza-
tion energy was then normalized by the length of the as-
RNA oligonucleotide. The lowest (most negative) normal-
ized energy values indicated a higher predicted hybridiza-
tion potential. Predicted (by both in vivo-optimized mod-
els and IntaRNA) and experimental hybridization effica-
cies for each of the 4 molecules were then linearly scaled to
fall between 0 and 1. To statistically evaluate the prediction
potential of our models, experimental and predicted ‘high’
hybridization efficacy was defined as any hybridization ef-
ficacy greater than one standard deviation above the hy-
bridization efficacy mean of points below the median within
experimental and predicted subsets, respectively. Any points
below these thresholds were considered to have ‘low’ hy-
bridization efficacies within their categories. To evaluate the
performance of our models, we also calculated the positive
predictive value (PPV) of regions with high hybridization
potential and the false negative rate (FNR) of regions with
low hybridization efficacy defined in this specific context as
follows:

PPV — #of highv's correctly predicted
" total # of predicted high v's

FNR— #of low Vs incorrectly predicted
N total # of predicted low v's

Evaluation of prediction of SRNA-mRNA Binding Regions

Approximately 150 potential binding regions within Zms4
and Zms6 (sRNAs recently discovered in Z. mobilis (44) but
not fully characterized) were randomly generated following
the process described in ‘Selection of target regions for eval-
uation of model prediction ability’. Hybridization efficacy
of each region was predicted using the inTherAcc model.
Ten total regions were selected for further target predic-
tion analysis for each sSRNA: 5 regions that exhibited the
highest and 5 regions that exhibited the lowest predicted
hybridization efficacy. During the selection process, regions
with any overlap to a prior selected region were not consid-
ered in an attempt to select for unique regions. The reverse
complement of the selected regions was inputted to nu-
cleotide BLAST (20) to identify potential target mRNAs of
these two sSRNAs in Zymomonas mobilis subsp. mobilis ZM4
(taxid:264203). For selected regions encompassing less than
or equal to 10 or 12 nucleotides, 2 or 1 nucleotides of the
neighboring SRNA sequence were added onto both ends,
respectively, to increase sequence specificity of the hits ob-
tained by BLAST. Five potential targeting arrangements
were chosen for each region from BLAST results with the
constraints: (i) Minimization of E-value, (ii) Correct orien-
tation of gene sequence, and (iii) Location of sequence at
most 400 nucleotides upstream of a TSS or 200 nucleotides
downstream of a TTS. For each target region designed for
experimental target validation (above), hybridization effi-
cacies as predicted by benchmark software IntaRNA were
also estimated (28). First, the hybridization energy of re-
gions within each sSRNA with target mRNAs was calcu-
lated using the pre-set seed, folding and output parame-
ters with inputs of SRNA sequence and Z. mobilis genome,
target NCBI reference sequence NC_006526, within both

—300 to +300 nucleotides around the start codon and stop
codon, the maximum consideration window offered by the
IntaRNA software. Results from both start and stop codon
were consolidated within each sSRNA and ranked accord-
ing to energy values. An equal number of target genes to
those of inTherAcc, harboring the lowest energy of inter-
action with the SRNA were ultimately chosen as IntaRNA
predictions for Zms4 and Zms6.

RIP-seq of SRNAs Zms4 and Zms6 to identify physically as-
sociated mRNA targets

Z. mobilis 8b strain (65) was cultured in RMG media (Glu-
cose, 20.0 g/1; Yeast Extract, 10.0 g/1; KH,PO4, 2.0 g/1; pH
6.0) at 33°C. Strains containing 2MS2-Zms4/Zms6/control
plasmids were cultured in 5 ml RMG overnight with 350
pg/ml of kanamycin then transferred into 50 ml RMG to
initial ODgponm of 0.1. Cells were grown anaerobically at
33°C for 12 h then pelleted by centrifugation.

Total RNA of 2MS2-Zms4/2MS2-Zms6/2MS2-control
strains was prepared according to previously published
methods (66). The RNA was incubated with isopropanol
and GlycoBlue™ (ThermoScientific) at —20°C overnight.
After centrifugation, pelleted RNA was washed with 95%
cold ethanol and centrifuged. RNA was resuspended in 50
il RNase-free water (Ambion) and stored at —80°C for se-
quencing.

For use as an affinity tag, MS2 coat protein fused with
maltose binding protein (MS2-MBP) (67) was expressed in
and harvested from E. coli.

Two micrograms of purified MS2-MBP protein was in-
cubated with 100 pl of total RNA (500 ng/pl) extracted
from the cells containing 2MS2BD-Zms4/Zms6/control
for 1 h at 4°C. Washed amylose beads were incubated with
2MS2BD-Zms4/Zms6/control+ MS2-MBP complex for 2
h at 4°C. Supernatants were removed from the beads by
applying a magnet. Beads were washed three times with
wash buffer and incubated with 50 pl of elution buffer
for 15 min. The elution step was repeated so that total
100 w1 were collected for each sample. For RNA precipita-
tion, equal volume of isopropanol and 10 pl of GlycoBlue™
was added to elution sample and incubated overnight at
—20°C. RNA was pelleted at 15 000 rpm for 15 min at
4°C and washed with 1 ml ethanol. The air-dried RNA
pellet was resuspended in 50 wl RNase-free water, quan-
tified and checked for quality using a Bioanalyzer before
sequencing. NEBNext® Multiplex RNA Library Prep Set
for Ilumina® (New England Biolabs Inc.) was used for
generating RNA libraries. Sequencing was performed us-
ing Ilumina® NextSeq technology with paired-end 2 x 150
nt run (Genomic Sequencing and Analysis Facility at the
University of Texas at Austin). All sequenced libraries were
mapped to the Z. mobilis 8b complete genome (pending
publication) using BWA (0.7.12-r1039) (68). DESeq2 (69)
was used to identify transcripts enriched in 2MS2-Zms4 and
2MS2-Zms6 samples compared to the 2MS2 only control.



RESULTS

Description of asRNA hybridization efficacy by a thermody-
namic model that includes a regional measure of interaction
availability

In the context of this work, hybridization efficacy is de-
fined as the ability of a given oligonucleotide to establish
base-pairing interactions as a cohesive unit with its corre-
sponding target region within an RNA molecule. To quan-
titatively estimate asRNA hybridization efficacy, we assume
that it is directly proportional to the ratio of the concen-
tration of asRNA-target RNA in the bound state (B) over
the concentration of the asRNA in the unbound state (U).
Starting with the standard equation for the equilibrium con-
stant for asRNA-target RNA binding:
~loe B _ _
v= 10g T lOg(Keq) - _ﬂAGoverall (2)
[U]

Here, v, termed hybridization efficacy, provides a measure
of the asRNA-target RNA hybridization. This parameter
is estimated experimentally using the logarithm of the ra-
tio of the fluorescence measurements representative of the
asRNA-target interaction to the fluorescence background
levels [(FLo, — FLog)/FLogt] obtained from the iRS? re-
porter (see Materials and Methods for more details). Briefly,
this reporter system is composed of an asRNA that targets
a specific region within the target RNA and a cis-blocking
element (CB) that sequesters a RBS and controls the ex-
pression of a downstream green fluorescent protein. There-
fore, fluorescence is observed upon asRNA-target RNA hy-
bridization (FL,,) as the CB-RBS interaction is disrupted
and green fluorescent protein is expressed due to interac-
tion of the asRNA with the target RNA region (Figure 1).
FL 1s the fluorescence measured in the absence of the tar-
get RNA.

v =log <M) = log ( Flon _ 1) (3)

F Log

The model for accessibility-based A Ggyeran depicted in Fig-
ure 1 is comprised of the changes in free energy due to
asRNA-target binding (A Gyr), target region unfolding
(A Grr) and folding of the asRNA (A G5r). This model cap-
tures the thermodynamic driving force of intermolecular
base-pairing and the penalties for breaking the structures
of the asRNA and target regions and is obtained by com-
bining Equations ((1)), ((2)) and ((3)):

FLeyy
log (FLOff

1) ~UV = _IBAGoverall = _ﬂ Zi AG; = (4)
_IB(AGaST - AGTf - AGasf)

Hereafter, Equation ((4)) represents the baseline thermody-
namic model from which we depart for further optimiza-
tion. It is worth noting that similar thermodynamic deriva-
tions have been previously used to describe accessibility-
based antisense hybridization (26,28). Other approaches
(i.e. AccessFold, RNAplex) have also considered an addi-
tional term for an energy penalty due to availability, which
influences the transition state energy barrier (initiation en-
ergy) that the system is required to overcome to produce the
bound complex (24,27). The novelty of this work lies in our
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two-sided treatment of target accessibility, which is incor-
porated in a modified free energy of target folding (A Gy ).
We consider target accessibility a combination of the en-
ergy penalty for the local disruption of the target region us-
ing only the minimum free energy structure (A Grr) as well
as the regional availability factor (8 ), interpreted as a vari-
able entropic contribution (unaccounted for in the nearest
neighbor model) that depends on the specific structural con-
text of the targeted region:

AGry = AGre+ « 6 (5)

In the nearest neighbor model, parameter values were ob-
tained from short (4-10 basepairs), unstructured RNA
oligomers, where the entire RNA was involved in the duplex
formation. In this case, configurational entropy contribu-
tions are absent as there is no change in any structural flex-
ibility or configurational degrees of freedom outside of the
region forming the duplex. However, in the case of unfold-
ing larger and more structured RNAs such as the gl intron,
changes in target RNA folding outside of the targeted re-
gion can have a significant positive effect on the overall flex-
ibility and configurational entropy of the target RNA. This
configurational entropy can reduce the free energy penalty
of target unfolding to make the overall process more fa-
vorable. Note, the sign of 0 is positive in Equation ((5)) to
match that of the entropy penalty of folding a large struc-
tured RNA, such that a high regional availability makes un-
folding more favorable than estimated by the baseline ther-
modynamic model (i.e. — AGy < —AGTyr). Note also that
we have assumed temperature-independence of the accessi-
bility factor since all parameters were fitted from data at the
same temperature.

One example of the regional availability factor concept is
shown in Figure 2. In this example, the unbinding of the
colored target region from the P3 helix allows the entire
domain of P7-P3-P8 helices significantly greater flexibility
(Figure 2B) beyond what may be accounted for in the target
region and its complement alone (Figure 2A). Here, we pro-
pose that the complex changes in RNA folding associated
with asRNA-target RNA binding can be approximated by
the regional availability factor. In part, the use of a regional
availability factor is intended to account for structural fluc-
tuations in dynamic regions that have a differential influ-
ence on hybridization efficacy, which we hypothesize can
inform targeting by antisense RNAs. Furthermore, we pro-
pose that these regions involved in metastable alternative
structures are hallmarked by the ensemble of suboptimal
structures obtained from RNA folding algorithms such as
Nupack (64). Thus, as a starting point before in vivo opti-
mization, we estimate regional availability for a target re-
gion as a cohesive unit by summation of each nucleotide’s
local availability over the length of the target region:

i=Y 6 (©)
In Equation ((6)), i and j represent the start and end of
each region correspondingly and 6y is the local availabil-
ity of nucleotide k. The local availabilities (/) can be esti-
mated by base-paired probabilities based on the ensemble
of suboptimal structures of the target RNA (unlike energy
of target unfolding that is based on the minimum free en-
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Figure 2. Proposed regional availability factor in novel biophysical model.
The influence of structural availability (as captured by the ensemble of
suboptimal structures) on intermolecular interactions can be attributed to
variable entropic contributions to asRNA-target binding free energies that
depend on structural context of targeted regions. The f —u subscript de-
notes the change from folded to unfolded states and the apostrophe repre-
sents the adjusted free energy accounting for regional availability. The init,
AU and NNk subscripts indicate the standard free energy terms associated
with initiation, terminal AU pairs and stacking free energies (respectively)
in the standard nearest neighbor model. (A) The thermodynamic model
from Figure 1 captures the nearest neighbor free energy of unfolding the
target region based on the minimum free energy (MFE) structure. (B) The
proposed regional availability factor (estimated as the sum of one minus
the base pairing probabilities in the target region calculated from the en-
semble of suboptimal structures in Nupack (64)) captures entropic effects
of target RNA distal structural variations that occur upon target unfold-
ing. As an example, there is a potential for a significant portion of the gl
intron (regions P7, P3, P8) to have increased vibrational and translational
degrees of freedom upon breaking of the long-range tertiary base pairs in
the highlighted target region of the P3 helix, an effect which is captured
by this example suboptimal structure. Furthermore, with the use of in vivo
optimization, the effects of entropy contributions from interactions with
unknown cellular factors in these dynamic regions may also be captured
by the ensemble of suboptimal structures from Nupack.

ergy structure alone), allowing inclusion of regional equilib-
rium structural fluctuations that often facilitate intermolec-
ular interactions (70,71). Therefore, our proposed biophys-
ical model, considers the following four predictors:

VX AGyr + AGrr + AGysp + 6 (7

Model optimization using in vivo experimental profiling of as-
RNA hybridization efficacy

While there is novelty in considering ensemble base-pairing
probabilities as a regional availability factor, the most no-
table aspect of this study lies in the in vivo optimization of
the above models using experimental hybridization data for
a diversity of RNA targets. Conceivably, one of the great-
est challenges in prediction of hybridization efficacy is the
ability to account for asRNA-target interactions in vivo,

where interactions with other molecules are prevalent due to
molecular crowding and complex patterns of ionic strength
that vary across different organisms (39). Additionally, the
entropy changes of binding may vary also with the cellu-
lar environment since unanticipated intermolecular interac-
tions (often involving these metastable structural regions)
can have significant effects on system entropy. We there-
fore hypothesize that the proposed models can be experi-
mentally optimized in vivo to capture regional fluctuations
and cellular effects to improve estimation of asRNA hy-
bridization efficiency. To this end, our baseline thermody-
namic (Equation (4)) and proposed biophysical (Equation
7) models were optimized by taking into account in vivo hy-
bridization patterns collected directly within cells.

For this work, we have collected large sets of antisense
hybridization data using a recently published fluorescence-
based assay (iRS%) for in vivo RNA profiling (43). Specif-
ically, we interrogated 80 regions within three diverse tar-
get RNAs: the gl intron (393 nt, in which 35 regions were
probed), the csrB regulator (369 nt, in which 27 regions
were probed), and the glutamate tRNA (76 nt, in which
18 regions were probed). Figure 3 illustrates all the col-
lected hybridization profiles for these three target molecules,
where the heat maps depict differential levels of asRNA-
target binding. A list of all 80 asRNAs designed for these
molecules is included in Supplementary Table S2. These
molecules make appropriate targets for this study given
their complex structural features that challenge the abil-
ity to predict hybridization. For instance, in the gl intron,
secondary structure domains that are essential for catalysis
such as P4-P6 and P3-P9 (Figure 3A) (72,73) contain ter-
tiary contacts (gray boxes in 3A) that are connected to each
other via pseudoknots (covered by regions §-10) (74). Pre-
dicting hybridization efficacy in pseudoknot domains is ex-
tremely challenging and most current secondary structure
prediction approaches fail to predict these complex struc-
tures. In addition, these interactions are capable of disrupt-
ing the folding pathway, e.g. from misfolded to the native
state, generating low abundance intermediates in which cer-
tain regions are rendered single-stranded (52,75-76). As dis-
cussed in a previous work (43), our experimental probing
system bears the potential to sense transient states present
in vivo, which is consistent with the relatively high hybridiza-
tion efficacy of regions 8-10. In the case of CsrB, six of the
regions with the lowest hybridization efficacies (regions 5, 7,
10, 11, 20 and 22 in Figure 3B) contain the binding recog-
nition motif (GGA) for its major target, the CsrA protein
(77,78,79); specifically the GGA motif in the stem loop of
region 22, has been recently suggested as a strong binding
site (80). Our ability to see these patterns reflected in the
level of hybridization potential of these regions indicates
that our data set captures the effect of in vivo interactions
with other cellular factors. Lastly, our in vivo experimen-
tal data also captures expected high hybridization efficacy
within the tRNA at the highly flexible anticodon arm (cor-
responding to region 8 in Figure 3C), consistent with molec-
ular dynamic simulations and crystallographic B-factors for
various tRNA models (81). Collectively, these observations
validate the experimental data collected and used for model
optimization.
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Figure 3. asRNA hybridization map as measured by in vivo oligonucleotide hybridization. Heat maps of the asRNA hybridization efficacies for (A) The
Tetrahymema group I intron (35 target regions). Numbers with a dash right next to a nucleotide indicate the standard indexing of the gl intron. Stems
(domains) have been named by the convention in our previous work (42) using the letter ‘P’ followed by a number for the gl intron. Tertiary contacts are
indicated with a gray double-headed arrow. (B) The small RNA CsrB (27 target regions). (C) The glutamate tRNA (18 target regions), in which tertiary
contacts are indicated with dashed lines. For all three heat maps, color-coded lines represent length and location of a region targeted by the iRS? asRNA
and color represents hybridization efficacies that can be decoded using the bar scale at the bottom. The target regions/asR NAs were numbered in ascending
order from 5 to 3’ and labels were colored in accordance with relative hybridization efficacies.

Optimization of the baseline thermodynamic (Equation
(4)) and biophysical (Equation (7)) models was performed
from collected experimental data by: (i) setting an interval
constraint on AG, s (—19.3 kCal/mol < AG,¢ < —17.8
kCal/mol) wherein this factor is negligible, (ii) scaling all
parameters to adjust for their relative importance (e.g. de-
termination of parameter coefficients) and (iii) incorporat-
ing the interplay between prediction parameters suggested
by strong statistical interactions (see Materials and Meth-
ods section). All parameters resulting from this optimiza-
tion are included in Supplementary Table S3. As shown in
Figure 4, we observe that the regional availability factor
(6) by itself and in relation with the energy of target un-
folding (A Gry) is prominent in its influence as a predictor
of hybridization efficacy. This observation underscores the
importance of the differential relationship between the two
target accessibility measures. Interestingly, this statistically-
derived mathematical form marginally resembles the scal-
ing of the stacking energies by base-pairing probabilities
used by Sfold in siRNA design (36). Importantly, the opti-
mization of the baseline thermodynamic (Equation (4)) and
biophysical (Equation 7) models led to the development of
the inTher (in vivo optimized Thermodynamic), Equation
((8)) and in vivo optimized Thermodynamic Accessibility-
adjusted (inTherAcc), Equation ((9)) models, respectively.

v X AGTf(A GasT) + AGB.ST + AGTf (8)

v o O(AGTr) + AGTH(AGast) + AGast + AGTe + 6 (9)

Importantly, as presented in Figure 5, regression analyses
of the ability of these models to capture in vivo hybridization
data shows that the proposed optimized versions of both,
thermodynamic and biophysical models (in Equations (8)
and 9, Figure 5A and B, respectively) exhibits improved per-
formance relative to the non-optimized models (Equations
(4) and (7), Figure 5C and D). Furthermore, the use of the
regional availability factor in the inTherAcc model (Equa-
tion (9), Figure 5B) shows an additional enhancement rela-
tive to its counterpart inTher in its ability to capture in vivo
asRNA hybridization data, making it the best model devel-
oped in this work. These findings set the grounds for a final
test case in which inTherAcc predictions of highly ‘hybridiz-
able’ regions in four structurally diverse RNAs were exper-
imentally validated. Collectively, these results suggest that
consideration of physical intracellular interactions (as cap-
tured by the collected data) is vital to improve the accuracy
of hybridization behavior predictions.

The inTherAcc model proves effective in predicting extreme
asRNA hybridization regions in other RNA targets

Initial evaluation of the predictive capabilities of the inTher-
Acc model was performed by a 3-fold cross validation anal-
ysis using the same in vivo data set used for optimization.
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Figure 4. Relative significance of each term in the (A) inTherAcc and (B)
inTher models. Optimization of baseline thermodynamic (Equation (4))
and biophysical models (Equation (7)) with in vivo data produces signif-
icant models (P-values < 1E-4 and 1E-10, respectively). The addition of
the availability term (/) and its statistically significant interaction with the
unfolding energy of the target region (AGyr) to the inTherAcc model in-
creases the significance of common parameters seen in (B).

Our evaluation shows that the cross-validated R? is 0.37
and 0.09 for inTherAcc and inTher models, respectively,
confirming the increased predictive potential of the inTher-
Acc model. Given these results, we further tested the pre-
diction capabilities of the inTherAcc model using four ad-
ditional unique RNA targets: the 2-MS2 RNA tag (2-MS2),
the model RNA LtrB group II intron (gII), the Spinach 11
RNA (Spnll) in a tRNA scaffold (82) and the glgC mRNA
5'UTR (glgC).

To interrogate highly ‘hybridizable’ regions within these
RNA molecules, 1300 target regions across the entirety of
these four molecules were randomly compiled. The regions
were randomly varied in length between 9—17 nucleotides
(see Materials and Methods section). The hybridization ef-
ficacies of these regions were calculated using the inTherAcc
model. Following predictions with the inTherAcc model, 49
regions were selected for experimental validation; 6 regions
for the 2-MS2, 13 regions for Spinach, 13 regions for glgC
and 17 regions for the larger gl were experimentally tested.
In general, regions representing a wide range of predicted
hybridization efficacy were selected, with a particular inter-
est in those with highest ranked predicted efficacy (Figure
6A). The heat maps illustrated in Figure 6A depict relative
levels of asRNA hybridization efficacy that were detected
for each target molecule using the iRS? high throughput
plasmid (iRS?*-GG) (see Supplementary Figure S1A) as de-
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Figure 5. Improvement in performance for in vivo optimized models under-
scores the influence of intracellular factors. Comparing linear correlations
of (A) the in vivo optimized Thermodynamic model (Equation (8)), (B) the
in vivo optimized Thermodynamic Accessibility-adjusted model (Equation
9), (C) the un-optimized thermodynamics-only method (Equation (4)) and
(D) the un-optimized biophysical model (Equation (7)) shows the ability
of the inTher model family to capture the in vivo collected data. This im-
proved performance can be attributed to the incorporation of statistical
interactions between prediction parameters that likely well-represent the
cellular environment.

scribed in the Materials and Methods section. It is worth
noting that two of the top predicted regions (regions 2 and
17) for asRNA hybridization efficacy in the glI intron cor-
respond to well-studied regions that contain one and two
tertiary structure contacts, respectively (83). These contacts
are known to be involved in long-range interactions (gen-
erally weaker than secondary structure interactions). In the
case of the regions with the highest hybridization efficacy
for 2-MS2, regions 5 and 6 both overlap with a 2-MS2 coat
protein binding site (84) located in a loop. Likewise, it is
noteworthy that region 2 within the GlgC 5S'UTR, targeting
its preferred CsrA interacting site (85), appears to be one
of the regions with the lowest hybridization efficacies. On
the other hand, regions 6 and 7 in the glgC SUTR over-
lap with the relatively more single-stranded (86,87) SD and
start codon regions, respectively, and show one of the high-
est hybridization efficacies. Lastly, in the Spinach molecule,
region 4 covers the binding site for DFHBI (88,89), the tar-
get molecule of this aptamer. Overall, these observations
indicated that our predictions of extreme hybridization po-
tential captured important structural-functional features of
these molecules.

Importantly, when calculating the PPV of regions with
high hybridization efficacy and the FNR of regions with
low hybridization efficacy for all the data collected, inTher-
Acc (but not inTher) performed overall comparably to In-
taRNA predictions in terms of PPV and FNR. We chose
to benchmark against IntaRNA since it is an accessibility-
based approach, uses a seed interaction that resembles our
regional interaction notion and has been tested for bacte-
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Figure 6. Experimental evaluation of hybridization efficacy in four RNAs shows inTherAcc model prediction accuracy comparable to that of benchmark
IntaRNA. (A) Relative hybridization efficacy of each tested region is indicated on the predicted secondary structure (64) of respective molecules via color-
coded lines, in which green and red represent highest and lowest hybridization efficacy, respectively, per scale bar (bottom). Each nucleotide is colored
based on equilibrium probability (bar on the right) according to Nupack (64) output. Regions which were correctly predicted by inTherAcc to be high or
low are denoted by an asterisk. (B) Comparison of positive Predictive Value-PPV (top) for high hybridization efficacies and False Negative Ratio-FNR
(bottom) for low hybridization efficacies, for inTher (red), inTherAcc (blue) and IntaRNA (green).

rial systems (28). However, inTherAcc displays improved
prediction performance, relative to IntaRNA, particularly
for the glI intron (R? = 0.13 versus 0.08) and 2-MS2 (R?
= 0.949 versus 0.014) as shown in Figure 7. No differ-
ence in performance was observed when considering the lin-
ear correlations for glgC and SpinachIl RNAs (R? < 5%
for all three models). In summary, these findings support
the potential prospects of considering both, IntaRNA and
inTherAcc, complementary approaches in the prediction of
hybridization efficacy (see Supplementary Figure S7 for a
summary of all the prediction versus experimental results).

inTherAcc aids in prediction of target mRINNAs

As a final model validation, we evaluated the ability of
inTherAcc to aid in prediction of target mRNAs of newly-
identified sSRNAs in a different bacterium. We selected two
sRNAs responsive in expression level to ethanol stress,
Zms4 (280 nt) and Zms6 (304 nt) of Z. mobilis (44). A RIP-
seq experiment was performed by tagging each SRNA with
2-MS2 RNA. Following purification of the SRNAs with the
MS2-binding protein and sequencing the physically associ-
ated RNAs, the most likely targets were identified as those
that showed the greatest transcript enrichment compared
to a control (2-MS2 with no sRNA attached). Because of
the response of Zms4 and Zms6 to ethanol stress, we expect

their mRNA targets to include stress-related genes. Indeed,
as expected, many potential targets discovered by RIP-seq
for both Zms4 and Zms6 (Supplementary Table S4) were
related to stress responses, including global stress response
regulators, heat shock proteins, protein folding chaperones
and DNA repair proteins. Because the inTherAcc model is
well-suited to help narrow the large pool of potential tar-
gets by predicting those with most favorable hybridization
efficacies, potential regions of interest in both SRNAs were
randomly compiled and ranked by hybridization efficacies
using our inTherAcc model (Figure 8A), as described in
the Materials and Methods section. As observed in Figure
8A, interesting ‘hot spots,” defined as regions exhibiting pre-
dicted extreme (high or low) hybridization efficacies were
identified and considered for further analysis. The rationale
behind using regions with predicted high and low hybridiza-
tion efficacies is based on the hypothesis that these regions
are likely to be functional sites either highly available or
unavailable based on active binding to in vivo factors. The
reverse complement sequences of the five highest and five
lowest predicted hybridization efficacies were selected for
BLAST analysis to identify potential ‘top’ likely interact-
ing mRNA targets (for a total of 52-54 unique genes con-
sidered). Comparisons of these results with data obtained
from RIP-seq experiments supported the target prediction
capability of the inTherAcc model. As shown in Figure 8B,
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Figure 7. Regression analysis on experimental versus inTherAcc-(top),
inTher-(center) and IntaRNA-(bottom) predicted hybridization efficacy
for (A) 2-MS2 and (B) gll intron. inTherAcc exhibits superior performance
in predicting hybridization potential in (A) 2-MS2 and (B) group II intron
compared to both inTher and IntaRNA models when considering linear
regression fits. (B) Higher performance accuracy of hybridization efficacy
in glI intron is achieved by inTherAcc due to its capability to predict ex-
treme lows and highs. Error bars indicate standard error of the mean. Both
predicted and experimental hybridization efficacies were linearly scaled
from 0 to 1.

inTherAcc predicted about 28 and 22 potential targets, re-
spectively for Zms4 and Zms6, found in the set of RIP-seq-
determined enriched transcripts. Importantly, about 8 and
7 potential targets respectively for Zms4 and Zms6 were
found within the top approximately 20% pulled-down tar-
gets (ranked by fold change enrichment relative to the 2-
MS2-only control). In all cases for each region predicted to
be an mRNA binding site, multiple potential targets were
found suggesting the ability of these SRNAs to exert mul-
tiplex regulation (Supplementary Table S4). As expected, a
considerable portion of enriched transcript associations of
Zms4 and Zms6 correctly predicted by inTherAcc code for
proteins involved in ethanol tolerance mechanisms, specif-
ically those that facilitate (i) protein folding and transport,
(i1) redox metabolism and (iii) stress response (90,91), fur-
ther validating our results. In addition, inTherAcc showed
a comparable performance to benchmark IntaRNA (Sup-
plementary Table S4 and Figure 8B). The limited number
of matches in target prediction (Figure 8B) between both
approaches underscores the potential complementarity be-
tween them. Collectively, these results show the potential of
the model to aid in gene target prediction and, more specif-

ically, to identify potential functional regions that act via
base-pairing.

DISCUSSION AND CONCLUSIONS

The inTherAcc model incorporates a series of thermody-
namic terms to account for energetics of intramolecular
folding, intermolecular binding and the target region avail-
ability using the Boltzmann distribution of possible struc-
tural configurations. The novelty of this approach lies in the
integration of large scale in vivo data as well as the inter-
play between the components of target accessibility as un-
derstood by (i) an availability factor based on suboptimal
structures and (ii) thermodynamic consideration of RNA
unfolding, identified during model optimization. Our re-
sults suggest that the family of inTher models that we have
developed could assist current asRNA predictions to cap-
ture ‘hybridizability’ in vivo. Our work also highlights the
potential of using in vivo experimental data sets to increase
prediction accuracy for effective selection of sites for as-
RNA targeting and provides a methodology to do so. The
observed relationship between target RNA folding energy
and regional target availability as estimated by a summation
of local base-pairing probabilities was shown via statistical
model optimization (Figure 4 and Supplementary Table S3)
and suggests that scaling this free energy by its availabil-
ity factor plays a significant role in determining efficacy of
RNA hybridization in vivo. Other research groups have used
similar scaling approaches with significant improvements in
the performance of siRNA design and predictions (60,92
93). The main difference of our scaling scheme relative to
these previous efforts is its regional nature. While previous
works scaled the stacking energies of interacting nucleotides
one by one according to nucleotide-specific base-pairing
probabilities, this approach assumes that any given asRNA
behaves as an indivisible unit. In addition, this in vivo opti-
mization has brought about coefficients for our model that
are meaningful in capturing intracellular behavior. For in-
stance, as expected, we observed a strong influence of the in-
tramolecular structure of the target region on the hybridiza-
tion efficacy (Figure 4). Moreover, the estimated coefficients
could be indicators of the presence of binding factors, the
effect of molecular crowding or even the presence of ionic
species in the cellular milieu. For example, divalent ion in-
fluence on ribozyme active site structural arrangement (94)
was likely to an extent accounted for by optimizing inTher
models with gl intron data. It is therefore not surprising that
the optimized inTherAcc model was an improved predic-
tor of gII intron hybridization efficacy. To the best of our
knowledge, no approach in the past has attempted to con-
sider the in vivo environment by optimizing a current bio-
physical model using large sets of in vivo data collected in
bacteria and applying it to predict other RNA molecules,
while simultaneously studying the influence of target acces-
sibility.

Through in vivo optimization of model parameters, we
achieved a highly reliable qualitative prediction of highly
‘hybridizable’ regions in a wide array of RNA molecules.
Overall, the inTherAcc model performs at levels above 63%
and below 60% in PPV and FNR, correspondingly. Further-
more, inTherAcc predictions are sensitive to known pro-
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Figure 8. inTherAcc aids in prediction of mRNA targets for Z. mobilis (A) Zms4 and (B) Zms6. Ten regions evenly distributed at the top (green) and
bottom (red) of the hybridization efficacy scale were selected as potential mRNA-sRNA binding sites for further prediction of target mRNA candidates
and comparison with RIP-seq data. The regions that matched with the 18% of top enriched candidates (log2 of fold change sSRNA/only MS2) are marked
with blue arrows. (C) Overview of the prediction performance for IntaRNA (green) and inTherAcc (blue). Venn diagram showing the total enriched
candidates (log>(sRNA /only MS2) > 0). A total of 52 and 54 candidates respectively for Zms4 and Zms6 were predicted using both approaches. Darker
green and darker blue circles represent the top 18% enriched candidates that each approach predicted correctly.

tein and small molecule binding sites in 2-MS2 coat pro-
tein binding domain and Spinachll, showcasing its poten-
tial to recognize regulatory features within RNAs. It also
is at least comparable to benchmark IntaRNA, bearing an
advantage in specific cases likely due to the incorporation
of in vivo factors during model optimization. Interestingly,
some of the observed discrepancies between experimental
and predicted hybridization efficacy in the glgC SUTR can
be attributed to competitive binding between the asRNA
and factors that naturally interact with this RNA that are
not fully accounted for by the collected data set. In many
of these cases, we suspect that even our experimentally col-
lected data sets fail to capture the full set of molecular in-
teractions (e.g. with other intracellular factors) given that
only limited environmental conditions were tested where the
full range of these interactions does not occur. This is likely
the case for regulatory RNA regions like the glgC UTR, in
which different interactions are observed in vivo under nu-
tritional stresses (not tested in this work). As a result, we hy-
pothesize that further prediction accuracy can be achieved
for these models by expanding the collected data sets to
include a variety of environmental conditions (e.g. cellular
stresses) to capture a broader range of interactions.
Remarkably, the inTherAcc approach provides the fol-
lowing general strategies in asRINA design: (i) the sugges-
tion of a free energy interval within which the thermody-

namic stability of the asRNA does not seem to influence
hybridization efficacy, (ii) the realization that both low and
high inTherAcc-predicted hybridization efficacies could in-
dicate functional sites that may be interesting targets for as-
RNAs and (iii) evidence of the potential influence of subop-
timal structures in hybridization efficacy that aids in identi-
fication of target dynamic regions. Overall, we envision that
the inTherAcc approach will assist in the characterization
of newly-identified regulatory RNAs and the design of syn-
thetic elements that require RNA binding through comple-
mentarity by improving reliability of RNA targeting perfor-
mance in vivo, particularly in bacteria.
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Supplementary Data are available at NAR Online.
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