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Abstract: Graphene oxide (GO) has been a prized material for fabricating separation membranes
due to its immense potential and unique chemistry. Despite the academic focus on GO, the adoption
of GO membranes in industry remains elusive. One of the challenges at hand for commercializing
GO membranes lies with large-scale production techniques. Fortunately, emerging studies have
acknowledged this issue, where many have aimed to deliver insights into scalable approaches
showing potential to be employed in the commercial domain. The current review highlights eight
physical methods for GO membrane fabrication. Based on batch-unit or continuous fabrication,
we have further classified the techniques into five small-scale (vacuum filtration, pressure-assisted
filtration, spin coating, dip coating, drop-casting) and three large-scale (spray coating, bar/doctor
blade coating, slot die coating) approaches. The continuous nature of the large-scale approach implies
that the GO membranes prepared by this method are less restricted by the equipment’s dimensions
but rather the availability of the material, whereas membranes yielded by small-scale methods are
predominately limited by the size of the fabrication device. The current review aims to serve as an
initial reference to provide a technical overview of preparing GO membranes. We further aim to
shift the focus of the audience towards scalable processes and their prospect, which will facilitate the
commercialization of GO membranes.
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1. Introduction

Membrane separation has gained significant attention due to its distinctive advantages
over distillation and adsorption-based processes [1–3]. Facilitated by potential differences,
the technique allows continuous, energy-efficient operations compared to traditional sepa-
ration processes. Furthermore, the modular characteristics of the technology enable easy
scalability with minimal managing costs. For membrane separation, the most crucial
aspect lies in the designing of the selective medium. Due to such reasons, studies focused
on developing and optimizing novel materials with high selectivity and flux have been
commissioned. Out of various candidates, graphene oxide (GO) derivatives are a popular
choice among researchers. Unique properties such as high mechanical, chemical, and
thermal stability work in favor of the material’s wide acceptance. However, above all, the
most appealing feature comes from its morphology. GO consists of an atomic monolayer
carbon sheet with attached oxygen groups, making them a stereotypical 2D material. This
high aspect ratio structure allows facile stacking of layers where numerous approaches
have been pursued to yield different membranes with varying functionality [4–6].
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As of now, most studies have been focused on modifying GO’s intrinsic chemistry [7–9].
Transport phenomena in a typical GO-based membrane occur through the interlayer spac-
ing of the flakes, where separation properties arise due to the variances in the molecule’s
ability to pass through these channels [10–12]. As a result, many of the reported works fo-
cus on tuning the interlayer distances to separate specific molecules [8,13,14]. Generally, for
gas separation, low-defect membranes with interlayer spacing below 0.7 nm are frequently
preferred, whereas, for water nanofiltration, GO membranes with interlayer spacing up
to 1.0 nm are frequently reported at the solvent-swelling state and the interlayer spacing
can be further expanded depending on the type of solvents. Well-structured GO structures
have uniform distances that allow selective and facile mass transport. Thus, at the aca-
demic level, circumstances encourage small-scale, batch-unit approaches as these methods
provide better controllability of the experiment. Furthermore, limiting the membrane area
also benefits by reducing structural defects, minimizing efforts in quality control.

On the other hand, to satisfy commercial demands, large-scale, continuous manu-
facturing processes are highly desired. This apparent disparity of reported and required
preparation processes captures the barrier between GO membranes and their industrial
acceptance. Fortunately, there has been a growing consensus on the topic within the
field [15–17]. As such, recent efforts fueled several investigations utilizing bar-coating,
spray coating, and slot-die coating, which are known scalable processes.

The current review recognizes this rising movement and aims to provide much-needed
clarification regarding the advances in fabrication pathways for GO-based separation
membranes. Although lab-scale production methods will be discussed as a reference, note
that the reader’s focus should be gently guided to scalable techniques and their potentials.
The scope of the discussion is also limited only to the physical fabrication methodologies
because many works of literature already discussed the chemistry of GO and its mechanism
for membrane applications.

2. Overview

In this review, a total of eight different methodologies are examined (Figure 1). These
strategies have been widely adopted by numerous studies to manufacture GO derivative
membranes for gas separation, nanofiltration, pervaporation, gas-barrier application, and
desalination. Although GO films are further employed for various uses, namely as elec-
trodes, we have narrowed the search to separation technologies exclusively. The discussion
at hand identifies each method’s pros and cons to provide insights into the facile synthesis
of GO membranes. Among the eight methodologies, five are considered small-scale tech-
niques, namely vacuum filtration, spin coating, pressure-assisted assembly, dip coating,
drop-casting. The inherent property of these small-scale methods is that they are operated
on a batch basis. Meanwhile, the remaining three, spray coating, bar/doctor blade coat-
ing, and slot-die coating, are addressed as large-scale techniques, as these pathways can
produce membrane continuously and the fabrication area is only limited by the feature
dimension of the equipment.Nanomaterials 2021, 11, x  3 of 15 
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3. Small-Scale Fabrication Techniques

Small-scale methods share a common property of batch unit production. Commonly,
the following five methods are applied in lab settings as they can fabricate thin graphene
layers with a well-defined morphology more easily. Even if scale-up using the small
methods is challenging, the small-area membrane can be good enough to understand the
effects of a graphene structure on membrane performance. Therefore, most of the published
works employ small-scale methods to fabricate GO membranes.

3.1. Vacuum Filtration

Out of all the methods, vacuum filtration is the most popular method for GO mem-
brane production. A diluted GO dispersion is filtered through a porous substrate where a
vacuum is forced at the other side of the filter. The pressure gradient directs the solvent
flow through the substrate which deposits the dispersed GO flakes, constructing a selective
layer. By varying the concentration, the thickness can be readily controlled from few
nanometers to micrometers, where thicker films can be delaminated from the substrate to
fabricate freestanding structures [18]. Despite its simplicity, the process consumes large
amounts of solvents and time to fabricate membranes. Moreover, the size of the products
is mostly limited in the few centimeter scales. Thickness is another factor to consider, as
thicker membranes may have a different alignment depending on their depth. Since the
pressure is stronger closer to the substrate, thicker membranes may have a more disordered
morphology at the top due to the weaker guiding force [19]. Moreover, the longer filtration
time required for preparing the thick GO assemblies hampers facile production. In addition,
the thicker GO film is beneficial for gas barrier coating rather than membrane applications.

Yang et al. fabricated 10 nm-thick GO membranes on porous alumina and nylon
porous support by using vacuum filtration and the membrane was employed for organic
solvent nanofiltration (OSN) [20]. While relatively large GO flakes with a diameter of
10~20 µm were deposited, fast organic solvent permeance (1~10 LMH/bar depending on
the viscosity of solvents) was achieved because of the ultrathin thickness of the membrane
and the presence of pinholes between the edges of the stacked GO layers. The membrane
was selective for nanoscale dye molecules in methanol, showing rejection above 95% in the
dead-end filtration. Huang et al. also reported OSN membranes fabricated by the vacuum
filtration method [21]. The study employed reduced GO (rGO) flakes accumulated on
porous alumina or nylon filters, which were solvated with organic solvents before being
completely dried to avoid irreversible packing of the layers. The thickness of the studied
membranes was 18 to 25 nm. As the interlayer spacing was expanded by the solvation,
organic solvent permeance was significantly enhanced than that of the membrane without
solvation (up to 80 LMH/bar for methanol). The solvation method may be applicable only
on the lab-scale, implying that controlling the interlayer spacing is critical to enhancing the
permeance of organic solvents through stacked graphene layers.

The vacuum filtration technique has also been widely utilized for fabricating hybrid
and structured graphene membranes for dye and ion separation. Cho et al. significantly
increased the water permeance of nanofiltration membranes to 312.8 LMH/bar by deposit-
ing a rGO and GO nanoribbon (GONR) mixture on a porous support (Figure 2a) [22]. The
high flux was a result from the nanochannels being enlarged by the intercalated GONR
strips inside the rGO layer. The dispersions were separately prepared and mixed before
vacuum filtering through a porous support. Membrane thickness was reported as 30 nm.
Nam et al. proposed a wrinkled substrate by ion beam etching to increase water permeance
(Figure 2b) [23]. The uneven surface hindered the stacking of GO flakes and widened
the interlayer distance from 0.89 to 0.92 nm. The wider peaks of the X-ray diffraction
spectra also indicate a larger disorder in the alignment of the GO sheets. Furthermore,
free volumes between the GO layer and the substrate also increased water transport. This
suggests that, although vacuum filtration can be exploited to readily stack various 2D
materials, careful considerations must be made in selecting substrates, as the alignment of
the sheets is affected by the morphology of the support. Kang et al. prepared nanoporous
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rGO sheets by a rapid thermal treatment (Figure 2c) [24]. The nanoporous rGO sheets
were dispersed in water by a secondary functionalization process before depositing on
substrates by vacuum filtration. The resulting membrane had a thickness of 100 nm. For
the nanofiltration test, the evolved pores of the rGO sheets allowed the fast permeance
of water (586 LMH/bar). Particularly for the graphene materials with small amounts of
oxygen-functional groups, selecting the proper solvent is critical, as some organic solvents
dissolve the polymer support. Commonly, dimethylformamide or N-methyl-2-pyrrolidone
is used as a solvent for preparing graphene dispersion, which can dissolve most of the
polymer support. Otherwise, graphene is required to be functionalized to be soluble in
water or eco-friendly solvents.
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Figure 2. (a) GO nanoribbon (GONR)/GO composite membrane prepared by vacuum filtration [22].
Copyright 2019 American Chemistry Society; (b) GO layer deposition on wrinkled substrates for
high water flux [23]. Copyright 2019 Elsevier; (c) nanoporous GO sheet membranes for nanofiltration
application [24]. Copyright 2021 Elsevier.

3.2. Pressure-Assisted Assembly

Similar to the vacuum filtration method, pressure-assisted assembly incorporates a
filtration process to produce selective membranes. Instead of negative pressure at the
opposite of the GO layer, positive pressure is applied with the GO dispersion to deposit the
carbon layer on substrates. Tsou et al. performed a comparative investigation of membranes
yielded by both vacuum and pressure filtration (Figure 3a) [19]. The pressure-assisted



Nanomaterials 2021, 11, 757 5 of 14

method created a well-stacked, even morphology through the in-plane of the membrane,
whereas the vacuum filtration method had a relatively loose structure with less ordered
layers at the top. Moreover, the pressurized approach produced significant thickness
reduction from 384 to 231 nm due to the increased ordering. These membranes were utilized
in pervaporation experiments. Zhang et al. reported ion sieving membranes by coating a
polyelectrolyte layer on GO membranes by using the pressure-assisted technique [25]. The
membrane’s overall width was 15 cm in diameter, and the thickness was around 100 nm.
The surface charge of the polyelectrolyte layer successfully controlled the ion selectivity of
the membrane. Hung et al. also reported GO membranes prepared by pressure-assisted
filtration for isopropanol-water pervaporation [26]. The cross-sectional analysis confirmed
the highly ordered state of GO sheets with varying thicknesses from a few nanometers
to 1 micrometer, indicating that the pressure-assisted method is effective to prepare a
well-ordered thick GO layer.
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Yuan et al. fabricated nanofiltration membranes with COOH functionalized GO
flakes [27]. The morphology exhibited higher surface wrinkles, which were evolved during
the filtration process. These anomalies were formed during the draining process, where the
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functionalized GO sheets increased water affinity, shaping larger amounts of drain sites.
Nie et al. utilized small GO flakes, which were deposited on nylon substrate to prepare
OSN membranes (Figure 3b) [14]. These GO membranes were further crosslinked with
cations such as La3+ to increase stability. Due to the GO sheets’ small lateral dimension, less
tortuous pathways were formed, which increased the transport through the membranes.
Pressure-assisted filtration method can also be employed for applying GO layers on hollow
fiber. Recently, Zhang et al. successfully coated the inner surface of ceramic tubes with
GO laminates (Figure 3c) [13]. In this study, an interfacial long-chained molecular bridge
anchors the sheets to the ceramic substrate while intercalated molecules between the flakes
limit the membrane’s swelling. The bridges’ overall synergy increased the stability, which
was confirmed by the 600 h cross-flow operation time.

3.3. Spin Coating

Spin coating is another method widely explored in lab settings. During the tech-
nique, a substrate is placed on a rotating disc, on which the GO dispersion is applied
in a dropwise fashion. The method is beneficial to form a well-aligned GO layer due
to the centrifugal shear force and the ultrathin layer also can be fabricated. Kim et al.
demonstrated that the spin-coated few-layer graphene sheet membranes with a thick-
ness from 3 to 10 nm can be effective for H2/CO2 separation [28]. Chi et al. reported
20 nm-thick GO membranes prepared by spin coating large GO flakes on porous alumina
substrate and the large GO with a diameter of 20 µm was synthesized by a mild freeze–
thaw approach [29]. The fabricated membrane showed gas separation performance with
H2 permeance of 3.5 × 10−7 mol/(m2·s·Pa) and H2/CO2 separation factor of 240. Shen
et al. produced GO membranes by a vacuum-assisted spin method (Figure 4a) [30] and
proved that the additional vacuum force further compacts the interlayer spacing, resulting
in the nanochannel with 0.4 nm height. The report further compared other techniques
such as drop, dip-casting, filtration, and spin coating methods, and concluded that the
vacuum-spin approach produces membranes with slightly lower flux at around 1000 barrer
but higher H2/CO2 selectivity at 30.
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The spin coating has also been used for realizing liquid-based filtration membranes.
Kim et al. spin-coated a mixture of GO-monomer dispersion to fabricate chlorine tolerant
membranes for forward osmosis (Figure 4b) [31]. The composite membrane’s thickness was
measured as 26.3 nm and showed a salt rejection of 99.9% with a water flux of 25.8 LMH.
Likewise, Dong et al. reported increased ion rectification after spin coating a GO layer on
conical nanopore membranes [32]. The polymer support was first irradicated and etched to
create conical-shaped pores. The GO layer acted as a cation absorber and source to increase
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the ion selectivity. In general, spin-coating is an effective method for preparing high-quality
GO membranes with well-oriented and stacked morphology. Whereas the produced
membranes typically have the smallest lateral dimensions due to the size limitation of the
processing equipment, the diameter of the substrate is usually smaller than 8 inches. Most
of all, the method is applicable for substrates with a smooth surface. Otherwise, a defective
structure can be formed during the spinning process.

3.4. Dip Coating

The process of dip-coating is by far one of the most intuitive approaches. The tech-
nique requires a stock GO dispersion in which the substrate is lowered to soak. As the
support is pulled from the bulk dispersion, the GO layer is dried, which leaves behind a
coating. The thickness of the layer can be controlled by various factors such as temperature,
concentration, and the substrate’s removal speed. The technique’s facileness does come
at a cost regarding the membrane’s quality, where it is often harder to prepare uniform
GO sheet structures. Nonetheless, with rigorous optimization, several studies were able
to synthesize well-aligned membranes successfully. Zhang et al. dip-coated hollow fiber
Pebax membranes, which increased the N2/CO2 selectivity (Figure 5a) [33]. The substrate’s
pulling speed was controlled to yield aligned GO sheets on the surface where the optimized
rate was 0.4 cm/s.
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Goh et al. synthesized polyamide-imide hollow fiber membranes by a dry-jet wet
spinning process [36]. After this, the surface of the membranes was positively charged
by attaching polyethyleneimine branches. Due to the positive charge, when the fiber was
soaked in a GO dispersion, negatively charged GO sheets adhere instantly to the exterior,
creating a selective layer. Similarly, Eum et al. fabricated polyvinylidene fluoride hollow
fiber membranes with ethylenediamine functionalization (Figure 5b) [34]. GO layer was
coated to the fibers by a simple immersion experiment where the ethylenediamine groups
and the sheets were covalently bonded. The resulting membrane had a molecular cutoff of
0.8 nm with a rejection of 95%. Shen et al. also dip-coated polydopamine-functionalized
tubular ceramic membrane for increasing the nanofiltration performance [37]. Solvent
green was mixed into the GO dispersion for the experiment, which ultimately enlarges the
interlayer spacing between the layers from 0.77 to 0.89 nm. The aromatic rings of solvent
green attach to individual GO flakes by the π–π interaction, which then intercalates between
the layers to widen the spacing. As a result, a significant increase in water permeance was
observed from 56.8 to 330 LMH/MPa.

Another advantage of dip-coating methods is that the process is relatively insensitive
to the substrate’s shape. Yin et al. were able to fabricate a stainless-steel mesh decorated
with a GO layer (Figure 5c) [35]. To increase the deposition of the GO layer, the mesh was
first functionalized with a polydopamine coating. Both steps were performed by the dip-
coating method. Later, the mesh was employed in a water-oil separation experiment where
the increased hydrophilicity from the GO layer benefited the rejection of the oil phase.
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3.5. Drop Casting

Drop casting is another rudimentary approach often utilized which has similar prop-
erties to dip coating. The process involves dropping GO dispersions on substrates, which
are then left to dry. The technique is arguably the most rudimentary form of fabricating GO
layers. Given the lack of surface ordering force, it is difficult to align the GO sheets, decreas-
ing the quality of the membrane. Nonetheless, there are several cases where drop-casting
was used to produce separation membranes. Zhao et al. demonstrated rGO coatings on
surface-modified polymer supports (Figure 6) [38]. The research employed polydopamine
treated surfaces to adhere the rGO flakes and further discussed the detailed deposition
mechanism during the drying process. These films were not explored for separation ap-
plications. Sun et al. prepared GO membranes by the drop-casting method, which were
used for ion sieving application [39]. These freestanding membranes had a thickness under
10 µm with a rather coarse surface. The membrane was able to separate heavy metal
ions, and organic contaminates while leaving sodium ions to permeate. Church et al. also
fabricated self-standing GO membranes by drop-casting [40]. The GO dispersions were
also mixed with various ions (NH4OH, NaOH, NH4Cl, NaCl, or CaCl2) which would later
hinder ethanol movement during the pervaporation experiments.
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Contrary to its simplistic manner, expanding membrane dimensions with drop-casting
is a difficult task. Fabrication is dependent on solvent evaporation which hampers rapid pro-
cessing. Furthermore, this aspect also makes quality control difficult with larger dimensions.

4. Large-Scale Fabrication Techniques

One of the issues within the literature is that there is no definite standard to classify
what is and what is not scalable. It seems that the labeling is up to the author’s claim,
where if the method has even the slightest potential to be expanded, the fabrication is
termed as a scalable process. In a stricter sense, this can be misleading. We emphasize
that to be truly considered scalable, the limiting factor for membrane dimensions should
not be dependent on the size of the equipment as in batch unit production. Rather, the
size of the yielded product should be proportional to the available substrate. Furthermore,
often the most critical challenge of sizing up a process is not related to the actual sizing
up of the equipment. Instead, the major issue is with the consistency of the product.
Maintaining pristine quality level is inherently more difficult with batch unit production
methods, which were addressed in the previous section. Thus, the current review suggests
a harsher criterion that states that fabrication methods considered scalable are limited to
those that continuously produce GO membranes. By the virtue of their properties, as long
as a constant feeding of material is maintained, a membrane will be extruded as a final
product. The three processes selected in this section can be coupled with a roll-to-roll setup
to increase the production efficiency which may facilitate industrial adoption.
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4.1. Spray Coating

Spray coating utilizes a spray gun that forms the GO dispersion into minuscule
droplets, which are then scattered on desired surfaces. GO layers are formed as the solvent
dries from the substrate. Similar to the dip-coating technique, spray coating is relatively
insensitive to the shape of the substrate. Although spray coating is undoubtedly a scalable
process, there is a significant tradeoff relating to the membrane’s quality as the products
may lack uniformity. Ibrahim et al. prepared gas separation membranes through spray-
coating (Figure 7a) [41]. The study also reported that, compared to filtration methods, spray
coating membranes have less wrinkle formation, which reduces the GO sheet’s interlayer
spacing, thus increasing the experiment’s selectivity. Heo et al. fabricated oxygen barrier
GO films by a layer-by-layer approach (Figure 7b) [42]. Two types of GO were prepared:
negatively charged pristine GO and positively charged amine group functionalized GO.
The two dispersions were alternatively spray-coated onto a substrate. The opposing charge
of the GO layer increased the adhesion, resulting in a reduction in O2 permeance.
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As previously mentioned, spray coating can be applied to substrates with various
shapes. Mahalingam et al. successfully applied a GO layer on polyetherimide hollow
fibers for nanofiltration [43]. The resulted membranes had a high water and acetone flux of
40 and 24 LMH/bar, respectively, and a Rose Bengal rejection of 90% in acetone.

4.2. Bar/Doctor Blade Coating

Bar coating and doctor blade coating is the most widely utilized technique for GO
membrane fabrication among the scalable methods. Concentrated GO dispersions can
acquire viscoelastic behavior due to the hydrogen bonding existing between the water
molecules and GO sheets’ oxygen functional groups. During the coating procedure, a
shear force can be induced to the viscous gels, enabling the alignment of the GO laminates.
This method allows us to yield high-quality GO membranes with a thickness as low as
100 nm but becomes difficult to prepare in the 10 nm scale. Another disadvantage is that
the method is sensitive to the shape of the substrate, where the target surface must have a
leveled exterior.

Akbari et al. demonstrated the scalable fabrication of GO membranes by employ-
ing a gravure printing machine (Figure 8a) [16]. In this research, the GO dispersion was
first concentrated by adding dry hydrogel, which would soak the additional water. A
doctor blade was used to coat the nylon substrates with nematic phase GO dispersion
while simultaneously inducing shear force. The concentration of the dispersion used was
above 40 mg/mL, which enabled highly ordered GO layers. The produced membranes
were further tested for nanofiltration, where aqueous dye and ion rejection experiments
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were performed. The group in a separate study tested the membrane for OSN applica-
tion and produced a new scale factor linking permeance to the solvent’s viscosity [44].
Choi et al. were also able to prepare GONR gels for membrane fabrication through bar
coating (Figure 8b) [17]. The GONR gels exceeding 50 mg/mL concentration started to
form scaffolds by self-assembly. The synthesized membranes had high water permeance of
8 LMH/bar and showed impressive stability for 48 h under 6 bar, cross-flow experiment
conditions. Mahalingam et al. utilized protic ionic liquid (ethylammonium nitrate) to
increase the viscosity of low concentration GO dispersion [45]. The study reports that the
balance of electrostatic forces between GO sheets and the ionic liquid allows for better
alignment. The ionic liquid phase was removed before testing nanofiltration performances
by immersing in an acetone bath. Chang et al. prepared nanoporous rGO membranes
by rod coating for ion and dye rejection experiments [46]. Pristine GO sheets were made
porous by oxidizing with nitric acid. The GO layer membranes were later reduced under
hydrogen in the presence of Pd catalyst. The research reported that elongation of the
reduction time has an apparent tradeoff between flux and selectivity.
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Bar coating can also be readily used to fabricate freestanding GO membranes. Ghaffer et al.
produced GO membranes without substrate, which were later intercalated with various cations
(K+, Ba2+, Na+, Ca2+) and further reduced to limit the interlayer distances (Figure 8c) [47].
These membranes were used for ion rejection tests and showed high retention of multivalent
ions, namely Pb, Ni, Cu, and Mg.
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4.3. Slot-Die Coating

Recently, Kim et al. demonstrated GO membrane fabrication by employing a slot die
coater (Figure 9) [15]. The study reported that 100 nm-thick membranes with partially
deoxygenated GO sheets were prepared through the slot-die coating method and showed
satisfactory stability under aqueous conditions. The membranes’ performance was tested
under cross-flow filtration, which marked a rejection rate of 99% for sub-nanometer dye
molecules with a high water flux of 30 LMH/bar. Slot-die coaters are unique because
well-aligned GO membranes can be realized by the shear force which occurs between the
liquid meniscus and the moving substrate while avoiding some inherent issues with bar
coating. Firstly, the technique allows one to utilize GO dispersions with relatively lower
viscosity (watery GO solution with concentration below 10 mg/mL). This aspect permits
fabricating thinner membranes without rigorous pretreatment of the GO stock solution.
Secondly, the thin nature of the wet layer enables spontaneous drying, which reduces
the required time for fabrication. Thirdly, as GO is directly coated on a target substrate,
minimal waste of stock solution is produced. Lastly, the technique can be further explored
to utilize different materials for membrane production.
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5. Conclusions

The current survey highlights eight different methods for GO membrane fabrication
and classifies them by their scalability. Although the focus here has been on GO membranes,
these approaches can be generalized to realizing membranes with various 2D materials.
The criterion for scalable production imposed in this review is that the membrane must
be manufactured continuously. Small-scale approaches such as vacuum filtration method,
drop-casting, dip coating act as a facile pathway for investigating GO membrane chemistry
and transport mechanism. Spin coating and pressure-assisted assembly realizes well-
ordering of the GO sheets. Conversely, large-scale methods allow for practical studies of
GO membranes. Techniques such as slot-die and bar coating uniquely align the flakes with
the inducement of shear force on planar supports, whereas spray coating is more suitable
for irregular substrates.

GO has been widely utilized in separation processes because of its ability to form thin
membranes with controllable selectivity and high permanence. There is much research
regarding GO membranes and their potential in various application areas, such as water
purification, gas separation, organic solvent filtration, and battery separator. Nonetheless,
the challenge at hand should not just be focused on depicting its possibilities, and the center
of discussion needs to gradually shift towards large-scale continuous membrane fabrication
techniques and its module fabrication. Most of all, membrane evaluation is required in
practical operating conditions such as cross-flow filtration with high concentration solvent
at high pressure and fast feed flow. This review is an effort to provide insights into
pathways that enable the transition.
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