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Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic
cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to
tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as
energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to
change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body
level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other
treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer
cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new
diagnostic and therapeutic approaches.
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KEY FACTS

● Metabolic reprogramming is one of the key hallmarks in
pancreatic cancer.

● Targeting key enzymes in metabolic pathways can affect the
progression of pancreatic cancer.

● The complex tumor microenvironment of pancreatic cancer
creates metabolic heterogeneity.

● Clinical trials exploring metabolic-based treatments for
pancreatic cancer have been initiated.

● Advanced technologies (including preclinical models and
detection technologies) continue to promote progress in the
field.

KEY QUESTIONS

● Influencing redox homeostasis brings hope for cancer
treatment.

● Polyamine metabolism and microbial metabolic targets still
need further exploration.

● Interactions between metabolism and epigenetics and meta-
bolic cell death are blue oceans.

● Systemic metabolism can also serve as a potential pathogenic
mechanism and therapeutic target.

● Breakthroughs are urgently needed to overcome the low
specificity and side effects of metabolic therapy.

INTRODUCTION
Tumour cells have many unique characteristics, and many of these
characteristics, are directly controlled by cell metabolism or amenable
to regulation by specific metabolites [1]. Since the Warburg effect was
identified a century ago [2], a variety of metabolic reprogramming
events have been revealed in tumour cells [3]. The Warburg effect
refers to persistent glycolysis even when oxygen is abundant, which
provides ATP but is primarily a precursors for the synthesis of various
biological macromolecules [4]. With the rapid development of new
technologies, it has been gradually discovered that… tumour
metabolism involves an overall change at multiple levels of the
metabolic network and plays an important role in promoting the
occurrence and development of tumours [5, 6].
Metabolic reprogramming [7], which refers to the adaptive

changes in the balance of anabolism and catabolism that occur in
tumour cells during the malignant development process to meet
the large demand for materials and energy, has gradually become
recognized as one of the crucial hallmarks of cancer [8]. This
reprogramming allows tumour cells to gain advantages and
survive in the nutrient-starved tumour microenvironment (TME)
caused by rapid proliferation [9].
In contrast to the booming research field, only a few

metabolism-based cancer drugs have been successfully devel-
oped and are still in the nascent stage due to their low specificity
and undesirable side effects [10]. These strategies targeting the
intrinsic metabolism of cancer cells usually do not consider the
complex crosstalk of noncancerous stromal cells and immune
cells, still awaiting further research [11–13].
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Pancreatic cancer (PC), is an aggressive cancer with a poor
prognosis [14]. The overall five-year survival rate is less than 13%,
and it is expected that PC will rank second in malignant tumour-
related deaths in the United States by 2030 [15]. Exploring the
metabolic regulatory network and underlying mechanisms,
formulating comprehensive treatment strategies, and promoting
precise treatment based on individual patients are expected to
improve the overall prognosis.
This review summarizes the main themes that are currently

under investigation in the context of tumour metabolism and
provides an overview of the current status of basic research and
clinical trials targeting key enzymes and signaling pathways in PC
metabolism (Fig. 1).

METABOLIC REPROGRAMMING OF TUMOUR CELLS
Nucleotide metabolism
The enhanced synthesis and use of nucleotide triphosphates
(NTPs) is a universal metabolic dependence across different cancer
types [16]. Oncogenic drivers increase nucleotide biosynthetic
capacity, which is a prerequisite for cancer initiation and
progression [17]. The clinical utility of nucleotide synthesis
inhibitors, the first antineoplastic agents discovered, has been
demonstrated in many cancers [18]. As they have been extensively
studied and due to space limitations, we summarize the key
enzymes and inhibitors in nucleotide metabolism in Text Box S1.
In addition to the de novo and salvage pathways, pancreatic

ductal adenocarcinoma (PDAC) cells can also acquire nucleotides
through autophagy, specifically through the degradation of
cellular nucleic acids in autophagosomes, especially in hypoxic
and nutrient-poor regions of the TME [19]. Recent studies have
also shown that nucleotide metabolism is not only a therapeutic
target for chemotherapy but also has the potential to become a
sensitization target for immunotherapy, which we will describe
later [20].

Glycolysis and OXPHOS
Otto Warburg first discovered in the late 1920s that increased
aerobic glycolysis in tumour cells [21], also known as the Warburg
effect, allows tumour cells to survive under the harsh conditions of
cancer progression [22]. Glycolysis is the primary way PC cells
generate energy to sustain malignant proliferation, including
under hypoxic conditions [23, 24]. Work in mouse models also
demonstrated that glycolysis is the major metabolic effector of
oncogenic KRAS [25].
First, the expression of glucose transporter 1 (GLUT1) is

upregulated, increasing glucose uptake to enhance subsequent
aerobic glycolysis [26]. LIMS1 enhances GLUT1 expression and
membrane translocation, which promotes cancer cell survival
under oxygen-glucose deprivation [27]. Key enzymes involved in
glycolysis play a role in PC. Hexokinase 1/2 (HK1/2) converts
glucose into glucose-6-phosphate (G-6-P), the rate-limiting first
step in glycolysis. The binding of HK2 to mitochondria increases
the glycolytic capacity and promotes PDAC immortalization [28].
Recent research has shown that the endogenous cellular
metabolic checkpoint STING can limit aerobic glycolysis by
targeting HK2 [29]. Phosphofructokinase (PFK) catalyses the
second critical step in glycolysis [30]. The production of the
PFKFB-4 and PFKFB-3 isoenzymes is induced by hypoxia in PC [31].
Pyruvate kinase (PK) catalyses the conversion of phosphoenolpyr-
uvate to pyruvate, which is the final rate-limiting step of glycolysis
and can transfer metabolites to branch pathways [32]. Some
studies have shown that methionine can oxidatively activate
PKM2 to promote PC metastasis [33], while other studies have
shown that PKM2 expression is not required for carcinogenesis or
progression in PDAC [34]. Under conditions of glucose deficiency,
fructose can be taken up and metabolized by PDAC cells to
promote adaptive survival [35].

The expression of several enzymes involved in glycolysis, such
as aldolase [36], glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) [37], phosphoglycerate kinase (PGK) [38], phosphogly-
cerate mutase (PGAM) [39], and alpha enolase (ENO-1) [40], is
upregulated in PC. Lactate dehydrogenase (LDH) is overexpressed
in PDAC [41], and LDH-mediated catalysis of pyruvate to lactate is
significantly increased [42]; thus, LDH may be an effective
therapeutic target [43].
In contrast to glycolysis, phosphorylated pyruvate dehydrogen-

ase kinase 1 (PDHK1) inhibits oxidative phosphorylation (OXPHOS)
in PDAC [26]. Nonetheless, some studies have shown that OXPHOS
is not always suppressed; rather, it can be reactivated under
certain conditions [44]. The oncogene KRAS and the loss of LKB1
may drive the upregulation of OXPHOS in cancer [44]. The
transcription factor ISL2 can regulate the expression of metabolic
genes and affect OXPHOS [45]. As tumours proliferate rapidly, cells
in the tumour core become hypoxic, and OXPHOS decreases.
Several studies have demonstrated that OXPHOS inhibitors can
serve as promising therapeutic agents for treating PDAC [46]. The
molecular mechanism underlying the relationship between
OXPHOS and PDAC progression still requires in-depth study with
bright prospects (Text Box S2).

Amino acid metabolism
Amino acid metabolism, which can affect cancer cell status and
systemic metabolism through energy metabolism and signal
transduction, is deregulated in PDAC [47].
Glutamine is the most abundant nonessential amino acid in the

human body [48]. Cancer cells can convert glutamine into lactic
acid, participate in a glucose-free metabolic pathway, take up
glutamine, and promote the synthesis of nonessential amino acids
and nucleotides through carbon or nitrogen metabolism [49].
Generally, glutamine can be converted in the mitochondria to
supplement the tricarboxylic acid (TCA) cycle, or it can be
completely oxidized to produce ATP. Many studies have
confirmed that glutamine plays a very important role in the
migration and invasion of PDAC cells [50–52] and relies on
noncanonical metabolic pathways. Glutamine-derived aspartate is
converted into oxaloacetate by aspartate transaminase GOT1;
subsequently, oxaloacetate is converted into malate and then
pyruvate, which can potentially maintain redox homeostasis [53].
Loss of SIRT5 promotes tumorigenesis by increasing noncanonical
glutamine utilization through GOT1 and is expected to serve as a
suppressor in PDAC [54]. GOT1 inhibition-mediated impairment of
redox balance synergizes with radiotherapy mouse models [55].
The adaptation of PDAC cells to nutrient deprivation is reversible,
and glutamine synthetase (GS) is expected to become a
therapeutic target for patients with PDAC [56]. Alanine, serine,
and cysteine transporter 2 (ASCT2) is responsible for glutamine
transport [57]. Recent studies have shown that CD9 promotes the
plasma membrane localization of the glutamine transporter
ASCT2, thereby enhancing glutamine uptake [58]. In preclinical
models, PI3K-C2γ deficiency can overactivate the mTORC1 path-
way and reprogram glutamine metabolism, increasing invasive-
ness [59]. Targeting glutamine metabolism may provide
therapeutic avenues for treating PDAC [60], and glutamine
mimicry inhibits tumour progression through asparagine meta-
bolism [61].
In addition, many studies have found that other amino acids,

such as serine, tryptophan, methionine, and branched-chain
amino acids (BCAAs) such as leucine, play a role in different
stages of tumors and are expected to develop new intervention
strategies. We summarize them in Text Box S3.
Recently, polyamine metabolism has been redefined as an

anticancer strategy and may be involved in antitumour immune
responses [62, 63]. The RAS-RAF-MEK-ERK signalling pathway has
been shown to control multiple aspects of polyamine metabolism
in preclinical models [64]. Arginine deprivation can inhibit the
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Fig. 1 Integrated altered metabolic pathways in pancreatic cancer cells. Changes in key enzymes and transporters lead to metabolic
reprogramming of glucose, amino acids, lipids, etc., and meet the large demand for materials and energy during the malignant proliferation of
tumor cells. Enzymes and transporters shown in red indicate significant overexpression; enzymes and transporters shown in green indicate
significant downexpression; enzymes shown in black indicate no significant changes or unknown; metabolites shown in orange indicate that
they were involved in redox balance; solid arrows imply shifts or bioconversions; dashed lines indicate that the reaction is not direct; italics
indicate metabolic pathways or processes. 3-PG 3-bisphosphoglycerate, ACC acetyl-CoA carboxylase, ACAT acetyl-CoA acetyltransferase, ACLY
ATP citrate lyase, ACSS acyl-CoA synthetase short-chain family, AHCY adenosylhomocysteinase, ASNS asparagine synthetase, ASL
argininosuccinate lythase, ASS argininosuccinate synthase, AK aspartic kinase, AMD aAdenosylmethionine decarboxylase, BCAA branched-
chain amino acids, BCKA branched alpha-ketoacids, BCKDH branched alphaketoate dehydrogenase, CE cholesterol ester, CS citrate synthetase,
DAG diacylglycerol, DHAP: dihydroxyacetone phosphate, ELOVL FA elongase, FA fatty acid, FABP fatty acid-binding protein, FADS FA
desaturase, FASN fatty acid synthase, FATP: fatty acid transport protein, Fructose-6P fructose 6-phosphate, F- 1:6BP fructose 1:6-bisphosphate,
F-2:6BP fructose 2:6-bisphosphate, GA3P glyceraldehyde 3-phosphate, GLUT1 glucose transporter 1, GSH glutathione synthesis, GLS
glutaminase, GFPT1 glutamine:fructose 6-phosphate amidotransferase 1, Glucose-6P glucose 6- phosphate, GOT1 cytoplasmic aspartate
Transaminase, GOT2 mitochondrial aspartate transaminase, HK1/2 hexokinase 1/2, HMGCR: 3-hydroxy-3-methylglutaryl coenzyme A
reductase, HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A, ME1 malic enzyme, LDLR low-density lipoprotein receptor, LDH lactate
dehydrogenase, MAG monoacylglycerol, MCT monocarboxylate transporter, MDH1 malate dehydrogenase 1, MTA 5:-methylthioadenosine,
MTAP 5-methylthioadenosine, MS methionine synthase, MUFA monounsaturated fatty acid, NAD nicotinamide adenine dinucleotide, NADPH
nicotinamide adenine dinucleotide phosphate, NOS nitric oxide synthase, OCT ornithine transcarbamylase, OPLH o-phospho-l-homoserine,
PDH pyruvate dehydrogenase, PFK1: phosphofructokinase 1, PRODH1 proline oxidase, PUFA polyunsaturated fatty acid, R-5-P ibose-5-
phosphate, RPE ribulose-5-phosphate epimerase, RPIA ribose-5-phoshate isomerase, SAH S-homocysteine; SAM S-adenosine methionine, SCD
stearoyl-CoA desaturase, SFA saturated fatty acid, SM squalene monooxygenase, TAG triacylglycerol, TCA tricarboxylic acid.
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migration, invasion and EMT of PDAC cells [65]. Arginine is the
precursor of polyamines, and Lee et al. reported that PDAC cells
can synthesize polyamines from glutamine, revealing a new
pathway [66]. PDAC can synthesize ornithine from glutamine and
support polyamine synthesis through ornithine aminotransferase
(OAT), thereby promoting tumour growth [67]. Cancer cells require
elevated levels of polyamines to sustain proliferation [67];
microbiota- and diet-related polyamine metabolism will be
described later.

Lipid metabolism
Lipids not only provide energy but are also widely distributed in
organelles and serve as second messengers to transduce signals
within cells [68]. Therefore, lipid metabolism is increasingly
recognized as an important pathway for cancer cells [69, 70].
Lipid metabolism reprogramming can be observed even outside
histological tumour boundaries [71], and lipidomic analysis of
serum holds promise for detecting PDAC [72].
Exogenous fatty acid (FA) uptake confers metabolic flexibility to

cancer cells [73]. Cancer cells can absorb fatty acids through fatty
acid transporter proteins (FATPs) [74], fatty acid translocase (CD36)
[75], and fatty acid binding proteins (FABPs) [76]. CD36 is thought
to be involved in the initiation of metastasis [77] and the
promotion of fatty acid β-oxidation to support proliferation [78].
Excess exogenous FAs are stored in lipid droplets (LDs), which
sequester FAs in the form of triacylglycerides (TAGs) and sterol
esters and can be used for energy production or phospholipid
synthesis [79]. Increased LD abundance is related to tumour
aggressiveness, and reduced LD abundance can reduce the
invasive ability of KRAS-mutant PDAC [80]. β-oxidation of stored
lipids can produce acetyl-CoA, which is subsequently shuttled
through the TCA cycle, providing a valuable source of ATP and
NADPH under conditions of metabolic stress [81].
The de novo synthesis of lipids is a metabolic source for tumour

cell growth, even in the presence of exogenous lipids [70]. Acetyl-
CoA is the main substrate for lipid synthesis. Cancer cells can
upregulate acetyl-CoA synthetase 2 (ACSS2) expression to
generate acetyl-CoA from acetate [82] or upregulate ATP-citrate
lyase (ACLY) expression to convert citrate to acetyl-CoA [83].
Glucose undergoes pyruvate oxidation through the TCA cycle,
while glutamine promotes citric acid production through reduc-
tive carboxylation [84].
The regulation of de novo lipogenesis mainly occurs at the

transcription level, and sterol regulatory element binding proteins
(SREBPs) can regulate genes related to fatty acid and cholesterol
synthesis and uptake [85]. Liver X receptors (LXRs) [86], whose
inhibitory ligands can hinder cell proliferation in various forms of
cancer, regulate FA and cholesterol metabolism [87]. Acetyl-CoA
carboxylase (ACC) [88], fatty acid synthase (FASN) [89], and
stearoyl-CoA desaturase (SCD1) [90] are rate-limiting enzymes for
FA synthesis and are significantly highly expressed in PDAC. ACC1
is genetically regulated by SREBP at the transcription level [91]. In
recent years, FASN has received increasing attention as a potential
target for cancer therapy, and its high expression is associated
with poor survival and gemcitabine resistance [92]. Under hypoxic
conditions, the flux from glucose to acetyl-CoA is reduced, and
saturated fatty acids are regulated by SCD1, reducing the
conversion to monounsaturated fatty acids [93]. SCD1 expression
is associated with poor prognosis in PDAC patients and can
protect cancer cells from ferroptosis, indicating its antitumour
potential [94].
Cholesterol plays a key role in maintaining membrane integrity

and fluidity and regulating cell signalling events [95]. Abnormal
cholesterol metabolism can support PDAC growth [96]. The
uptake of cholesterol depends on the LDLR-mediated endocytosis
pathway. Low-density lipoprotein (LDL) particles bind to the LDL
receptor (LDLR) and are eventually internalized and then reach the
lysosome to release free cholesterol [97]. Decreased total

cholesterol and LDL levels may be associated with the develop-
ment of PDAC [98]. Some studies have also shown that LDLR
expression is positively correlated with poor prognosis and
recurrence [99]. Cholesterol is synthesized through the mevalo-
nate pathway and is regulated by several key enzymes, such as
acetyl-CoA acetyltransferase (ACAT) [100], 3-hydroxy-3-methyl-
glutaryl-CoA reductase (HMGCR) [101], squalene monooxygenase
(SM) [102], and sterol-O-acyltransferase (SOAT) [103], which may
provide new ideas for the treatment of PDAC [104]. In contrast, the
level of high-density lipoprotein (HDL)-cholesterol, which is
associated with cholesterol efflux, is significantly inversely related
to the risk of cancer [105]. In preclinical models, disruption of
cholesterol biosynthesis promotes a shift to a basal phenotype,
conferring a poor prognosis [106]. Targeting SOAT1 can affect p53
mutant PDAC organoids that are sensitive to cholesterol
metabolism and impair tumor progression [103].
Fatty acid oxidation (FAO), also known as β-oxidation, is

increased in many cancer cells because cancer cells can use fatty
acid (FA) catabolism to proliferate when ATP is depleted
[107, 108]. FAO can participate in tumorigenesis [109] and tumour
metastasis [110] and may be related to cachexia [111]. Among
different fatty acids, polyunsaturated fatty acids (PUFAs) are easily
oxidized, with lipid peroxidation leading to various types of cell
death, while saturated fatty acids (SFAs) and monounsaturated
fatty acids (MUFAs), on the contrary, are thought to promote
cancer growth [112, 113].
Finally, the sophisticated mechanisms and functions of phos-

pholipid metabolism [114] and sphingolipid metabolism [115]
have also been increasingly revealed. Increased glycosphingolipid
biosynthesis can localize KRAS to the plasma membrane [116].
MUFAs and their linked ether phospholipids play a key role in
maintaining reactive oxygen species (ROS) homeostasis [117].

Redox homeostasis
Cellular redox homeostasis is an important process for cell
survival, and ROS can cause damage to cellular components
[118]. In addition, cancer cells have an increased demand for
nicotinamide adenine dinucleotide (NAD+), which leads to a
restorative stress state [119]. Several transcription factors are
activated by ROS, regulate the redox status of cells and are
implicated in carcinogenesis [120]. New technologies for measur-
ing and manipulating reducing stress offer promise for cancer
treatment [121].
As mentioned previously, the glutamine metabolic pathway in

PDAC cells is often referred to as the noncanonical pathway.
Glutamine deprivation [122] and the inhibition of GOT1 [123] or
GOT2 [124, 125] increase intracellular ROS. CRISPR/Cas9 ablation of
Glutamate–Ammonia Ligase (GLUL) in PDAC mouse models
reduced tumor growth [51]. Cancer cells rely on cysteine-derived
metabolites such as glutathione (GSH) and CoA to alleviate ROS
[118, 126]. GSH is the most abundant antioxidant in cells mainly to
scavenge free radicals and maintain cellular redox homeostasis
[127]. Cysteine is taken up by SLC7A11 (also called xCT) [128]. The
expression of SLC7A11 and cystine uptake can be mediated by
mitochondrial calcium uniporter (MCU), potentially inhibiting
PDAC metastasis [129].
Ferroptosis is caused by the excessive accumulation of lipid ROS

[130]. The Fenton reaction produced by labile iron in cancer cells
promotes the peroxidation of membrane-bound lipids containing
polyunsaturated fatty acids [131]. In preclinical models, cysteine
depletion and promotion of ferroptosis inhibited PDAC growth
[132]. NRF2 can activate downstream suppressor genes through
transcription, the trans-sulfur pathway can convert methionine
into cysteine, and the mTOR pathway can increase GPX4 protein
synthesis, all of which can improve ferroptosis resistance [133].
Cysteine depletion can induce ferroptosis [132]. ROS-enhanced
phototherapy via the Nrf2-mediated stress-defence pathway and
ferroptosis can inhibit PDAC [134]. Increasing the labile iron in
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cancer cells can induce ferroptosis, while iron accumulation can
also promote tumour progression [135, 136]. Recent groundbreak-
ing studies expand our understanding of the mechanisms of
7-Dehydrocholesterol (7-DHC) in ferroptosis through cholesterol
metabolism [137, 138]. The unique ferroptosis response mediated
by PHLDA2 is likely independent of ACSL4 and does not require
common ferroptosis inducers [139].
Several other metabolic targets that modulate ROS toxicity are

also being studied preclinically [140, 141]. Inhibiting nicotinamide
phosphoribosyl transferase (NAMPT) to block NAD+ synthesis can
inhibit tumour growth [142] and has been carried out in clinical
trials [143, 144]. New concepts and attempts related to NAD+
metabolism are being made, but its double-edged sword effect
reflects the complexity of regulating redox homeostasis in cancer
[145, 146].

Other metabolic alterations
There are also several metabolism-related targets or pathways that
have not been covered in previous chapters. KRAS mutations are
among the earliest events in pancreatic carcinogenesis and can
drive common metabolic programs and promote tumour progres-
sion [147]. In the normal pancreas, acinar cells use amino acids to
synthesize digestive enzymes, and ductal cells are mainly
responsible for the transport of peptides and hormones. In the
case of KRAS mutations, acinar cells can transform into ductal cells
and are considered the origin of PDAC [148]. These changes also
occur in ductal cells [149]. In the transformed state, KRAS PDAC
cells possess metabolic programs intrinsic to acinar and ductal
cells [150].
To adapt to harsh environments, PDAC cells rely on lysosomes

for nutrient degradation and regeneration, such as through
macropinocytosis [151] and autophagy [152], to obtain sufficient
fuel for survival [153, 154]. Macropinosomes can nonselectively
internalize and absorb a large amount of extracellular fluid and
ultimately metabolize amino acids into central carbon to support
the growth of cancer cells [155]. Oncogenic RAS induces
macropinocytosis [156] and is regulated by EGFR-Pak signalling
[157] and syndecan 1 (SDC1) [158]. Autophagy can degrade
cellular macromolecules and organelles, maintain cell homeostasis
and survival [159], and maintain PDAC growth [160]. A lack of
extracellular supplies enhances autophagy [161], and increased
autophagy on ferritin maintains iron availability and thereby
promotes tumour progression [162]. Research has shown that
autophagy promotes immune evasion in PDAC by degrading
MHC-I [163] and that the combination of MEK and autophagy
inhibition may inhibit PDAC [164]. Preclinical model results further
support the critical role of autophagy in tumor maintenance [160].
Because metabolic reprogramming causes differences in

metabolites in cells, epigenetic modifications such as lactylation
[165], succinylation [166], glycosylation [167] and SUMOylation
[168] may also cause different trends in tumour development. For
example, SIRT4 can inhibit tumorigenesis by inducing autophagy
[169], while Smarcd3 can establish aggressive lipid metabolism
remodelling [170]. The interaction between metabolic reprogram-
ming and epigenetics has gradually become the focus of recent
research [171–173]. Moreover, some inhibitors have been tested in
preclinical models [174].
Recent studies have discovered new forms of regulated cell

death resulting from imbalances in cellular metabolism [175].
Copper-dependent signalling pathways were also identified and
characterized [176]. Lysosomal function is upregulated in cancer
cells and TRPML1 is a cation channel with dual permeability to
Ca2+ and Zn2+, but excessive Zn2+ will hinder mitochondrial
function and eventually lead to cell death [177]. Disulfide death
relies on SLC7A11-mediated cystine transport, which may be
resistant to ferroptosis therapy, but is glucose and NADPH
dependent [178]. Disruption of intracellular pH balance, such as
the selective inhibitor JTC801, triggers alkaline death by blocking

OPRL1 and inhibits PDAC growth [179]. Although the role of
metabolic cell death is controversial, these may provide insights
for novel therapeutic interventions.

METABOLISM OF THE TUMOUR MICROENVIRONMENT
The PDAC microenvironment is highly intricate and heteroge-
neous. In addition to cancer cells, there is also an extracellular
matrix (ECM), stromal cells, immune cells, etc., and their metabolic
interactions play a key role in the occurrence and development of
PDAC [180].
PDAC cells are surrounded by dense proliferating connective

tissue, which is composed of collagen mesh, leading to hypoxia
and nutrient deficiency in tumours [181]. In this environment,
cancer cells can activate the PI3K/AKT signalling pathway to
enhance glycolysis [182] and even use collagen to provide energy
[183]. Connexin-43 channels can transport excess lactate pro-
duced by glycolysis and maintain a suitable chemical environment
[184]. The lactate receptor GPR81 has also been reported to
regulate the lactate transport mechanism [185]. Correspondingly,
lactic acid also promotes tumour invasiveness through angiogen-
esis, immune evasion, and cell migration [186].
Pancreatic stellate cells (PSCs), especially activated PSCs (aPSCs)

and cancer-associated fibroblasts (CAFs), are the main compo-
nents of the PDAC stroma [187, 188]. Inflammatory CAFs can
promote PDAC progression [189]. Pancreatic CAFs can support the
cellular metabolism of PDAC cells in vitro and in vivo by secreting
metabolites [190], which is known as the reverse Warburg effect
[191]. Metabolic crosstalk between PDAC cells and CAFs can be
achieved by alanine uptake by specific transporters, such as the
neutral amino acid transporter SLC38A2 [192]. Lau et al. con-
structed an organoid-fibroblast co-culture system and found that
PDAC cells showed increased pyruvate carboxylation [193]. Cancer
cells release tryptophan-derived formate, which can be used by
PSCs to support purine nucleotide synthesis [194]. CAFs can
secrete lipids such as lysophosphatidylcholine (LPA) and promote
PDAC cell progression and AKT activation through the autotaxin-
LPA axis [195]. Meanwhile, CAFs can secrete pyrimidines and
deoxycytidine, inhibiting the effects of gemcitabine [196], and
secrete cytokines and chemokines that support PDAC progression
[197]. Recent studies have shown that CAFs can provide
bioavailable iron to resist autophagy [198] and secrete cysteine
to support glutathione synthesis [199], which induces ferroptosis
resistance. Metabolic interactions between cancer cells and PSCs
also overcome the redox limitations of cell proliferation [200].
Single-cell sequencing revealed a novel subpopulation of CAFs
(named mediated CAFs (meCAFs)) with abnormal glucose
metabolism that are associated with a poor prognosis but may
better respond to immunotherapy [201]. Because fibroblasts have
multiple functions that support or suppress PDAC, it is of great
significance to understand the mechanisms and develop targeted
therapies.
Nerve invasion is a characteristic of PDAC and is related to

prognosis [202]. Neurotrophic factors or neurotransmitters
secreted by neurons have been shown to have tumour-
promoting effects [203], and the secretion of serine is a newly
discovered metabolic crosstalk mechanism [204].
Adipocytes can meet high nutritional demands by secreting

adipokines and disrupting lipid metabolism and, in addition, have
the potential to transdifferentiate into fibroblast-like cells [205].
Adipocytes may also contribute to the malignant progression of
PDAC through metabolic interactions [206], such as through
glutamine secretion [207] or through interactions with tumour-
associated neutrophils [208].
Immune cells are important components of the TME, and

continuously activated inflammatory pathways can promote the
occurrence of cancer [13]. The known metabolic patterns of
immune cells are mainly different: activated immune cell
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metabolism resembles the Warburg effect, without obvious
OXPHOS; glycolysis in effector T cells increases; and resting
immune cells mainly use the tricarboxylic acid cycle and OXPHOS
[13].
Macrophages are the most abundant cell type in the TME and

play a crucial role in immunity and metabolism [209]. The
infiltration and activation of tumour-associated macrophages
(TAMs) can promote immune evasion and matrix remodelling in
PDAC [210]. The metabolic reprogramming of TAMs through
collagen turnover can result in a profibrotic profile [211]. The
simultaneous exposure to hyperglycaemia and macrophages can
increase the migratory potential of PDAC cells through the
epithelial-to-mesenchymal transition (EMT) [212]. TAMs can
differentiate into M1 or M2 phenotypes to adapt to the
microenvironment [213]; for example, lactate promotes the
proto-oncogenic M2-like polarization of TAMs, while through
metabolic normalization, TAMs can transform into an anticancer
M1 phenotype in preclinical models [214, 215]. Conversely, TAMs
can also enhance glycolysis in PDAC cells by secreting cytokines,
such as IL-8 [216]. Arginase 1 in immunosuppressive macrophages
consumes arginine and inhibits T-cell infiltration [217]. Reducing
the levels of the immune metabolite itaconic acid through ACOD1
depletion enhances CAR-macrophage function [218].
T cells are the pioneers of adaptive immune responses, and the

infiltration of different types of T cell subsets has different effects
on tumours [219]. Single-cell sequencing enables the analysis of
the metabolic status and metabolite dynamics of T-cell subsets
and their interactions with immunity [220]. Type II cytokines
secreted by Th2 cells can stimulate cancer cell-intrinsic MYC
transcriptional upregulation to drive glycolysis, accelerating
tumour growth [221]. Tryptophan and arginine are required for
effector function and T-cell survival [222]. IDO is overexpressed in
PDAC and inhibits antitumour T cell responses, and it catalyses the
conversion of tryptophan to kynurenine [223]. To meet metabolic
demands upon glucose deprivation, tumour-infiltrating lympho-
cytes (TILs) may be forced to enhance OXPHOS, thereby increasing
ROS levels and ultimately leading to dysfunction and failure [224].
Regulatory T cells (Tregs) and myeloid-derived suppressor cells
(MDSCs) are also affected by metabolic reprogramming in the
TME, which results in immunosuppression [225]. B cells can induce
tumour-promoting and immunosuppressive effects. Tumour-
associated neutrophils (TANs) can promote a hypoxic microenvir-
onment and immunosuppression [226]. BHLHE40-driven TANs
exhibit hyperactivated glycolysis with pro-oncogenic and immu-
nosuppressive functions [227]. However, current research is
limited to the main metabolic pathways involved. The roles of
other metabolic pathways, such as cholesterol metabolism, and
some immune cells, such as natural killer (NK) and CD4+ T cells,
are still unclear, and the role of metabolic reprogramming in
immune cells remains to be explored. NK cells can exert cytotoxic
effects without antigen pre-sensitization, but some metabolic
features in the TME hinder NK cell immunotherapy [228]. NK cell
dysfunction may be induced by lactate accumulation [229] and
competitively inhibited by the active consumption of vitamin B6
in PDAC [230].
Recently, the link between the microbiome and PDAC has

attracted considerable interest [231, 232] and may be useful for
PDAC detection [233, 234]. Several microorganisms that act on the
adenosine pathway have been found to enhance the efficacy of
immune checkpoint blockade (ICB) [235]. The expression of genes
involved in the polyamine and nucleotide biosynthetic pathways,
which are strongly correlated with host tumorigenesis and can
serve as predictive markers for the early detection of PDAC, has
been shown to be significantly elevated [236]. Recent research has
suggested that the microbiome-derived metabolite trimethyla-
mine N-oxide (TMAO) may be a driver of antitumour immunity
[237] and that microbiota-derived 3-IAA can influence chemother-
apy efficacy [238]. The aryl hydrocarbon receptor in TAMs can be

activated by tryptophan-derived microbial metabolites to sup-
press antitumour immunity [239]. The role of intratumoural
bacteria in PDAC requires further study due to their ability to
modulate the host immune system and metabolize drugs
[240, 241].
The metabolic regulatory role of small extracellular vesicles

(sEVs), such as exosomes, as intercellular communication media-
tors in tumours should not be ignored [242, 243]. Pancreatic
cancer-derived extracellular vesicles may influence lipolysis to
induce cancer-related cachexia [244]. The detection of sEVs based
on lectin-glycan interactions has potential as an early diagnostic
marker [245]. Exosomes derived from the tumour microenviron-
ment can also mediate cancer cell metabolism [246].

METABOLISM OF THE BODY
In addition to local metabolic reprogramming in tumours,
systemic metabolism can also serve as a potential pathogenic
mechanism and therapeutic target [247]. A large-scale database
study showed that obesity is associated with various cancers [248].
Obesity and diabetes are increasingly recognized as risk factors for
PDAC, not only because of the remodelling of the tumour
microenvironment but also because of their effects on systemic
metabolism [249, 250].
Metabolic syndrome (MetS), a pathological condition character-

ized by abdominal obesity, insulin resistance, hypertension, and
hyperlipidaemia, is associated with the risk of PDAC [251]. In the
setting of diet-induced hyperinsulinaemia and obesity, insulin
dose-dependently increases the formation of acinar to ductal
metaplasia via trypsin and the insulin receptor (InsR) [252]. Stress
adaptation through phase-separated organelle stress granules
(SGs) mediates the development of PDAC, and obesity may be a
driving force behind this process [253]. At the same time, obesity
and diabetes are also important factors leading to chemotherapy
resistance [254]. Studies have shown that metformin increases the
sensitivity of PDAC cells to gemcitabine [255], suggesting the
development of new therapies [256]. Clinical trials using related
drugs for the treatment of PDAC have been carried out and will be
listed later.
There are already many forms and mechanisms of dietary

intervention for cancer [257]. However, there is still a long way to
go before clinical application. We list several dietary intervention
models in Text Box S4.
In addition to diet, physical exercise may reduce the progres-

sion of cancer [258]. Moreover, mild cold exposure activates
brown fat and hinders glycolysis-based metabolism in cancer cells
[259]. Patients with PDAC often experience weight loss and
skeletal muscle wasting [260]. Aerobic exercise can promote
immune mobilization and exert antitumour effects through the IL-
15/IL-15Rα axis [261]. However, due to individual differences in
body constitution, caution must be used when applying dietary
intervention and physical exercise in cancer treatment.

COOPERATION WITH OTHER ANTITUMOUR THERAPIES
Radiotherapy
Although there is some controversy regarding the survival benefit
of this technique, radiation therapy has been used to treat
borderline resectable PDAC, providing the possibility of resection
[262]. Additionally, metabolic changes in PDAC can cause radio-
resistance [263].
Overexpressed MUC1 enhances nucleotide metabolism, facil-

itates radiation resistance, and is targeted effectively through
glycolytic inhibition [264]. Multiple cholesterol synthesis-related
genes are associated with radio-resistance in cell lines [265]. Serine
and glycine starvation can inhibit the antioxidant response,
nucleotide synthesis, and the TCA cycle and has the potential to
become a cancer radio-sensitization strategy [266].
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Chemotherapy
Chemotherapy is the most commonly used systemic treatment.
Gemcitabine is a type of nucleoside analogue that can interfere
with DNA synthesis and block the cell cycle [267].
Gemcitabine-resistant cell lines exhibit increased aerobic

glycolysis and reduced ROS levels [268, 269]. Organoid-based
metabolomic analysis revealed that PDAC with high glucose
metabolism levels is more resistant to chemotherapy and that
GLUT1/ALDOB/G6PD axis inhibitors are promising pharmacologi-
cal agents [270]. The pentose phosphate pathway (PPP) supports
DNA replication and RNA production by regulating carbon flux
between nucleic acid synthesis and lipogenesis, where key
enzymes such as ribulose 5-phosphate isomerase (RPIA) and
ribulose-5-phosphate-3-epimerase (RPE) are upregulated to main-
tain cell proliferation [271]. Studies have shown that S100A11 can
enhance transketolase (TKT) synthesis and promote PPP [272]. In
addition, the acidic tumor microenvironment can activate the
YAP/MMP1 axis, promote the transition of cell metabolism to PPP,
and promote tumor progression [273]. Elevated G6PD expression
is also an important factor leading to erlotinib resistance [274].
Shukla et al. showed that mucin 1 (MUC1) and hypoxia-inducible
factor 1α (HIF1α) increased deoxyCTP (dCTP) pools, thus inducing
acquired resistance to gemcitabine through molecular competi-
tion [275]. ARNTL2-mediated cellular glycolysis was shown to
increase sensitivity to erlotinib treatment through the activation of
the PI3K/AKT signalling pathway [276]. Studies have also
confirmed that the ERK/E2F1 pathway can cause gemcitabine
resistance [277]. In amino acid metabolism, glutamine may
contribute to gemcitabine resistance due to its role in controlling
ROS and activating mTOR [269]. A nutrient-deficient environment
may help activate the RNA-binding protein HuR, thereby
upregulating isocitrate dehydrogenase 1 (IDH1) expression,
enhancing antioxidant defence, and leading to chemotherapy
resistance [278]. Increased glutamine uptake caused by MUC5AC
overexpression can cause gemcitabine resistance [279]. The
upregulation of FASN expression can induce endoplasmic
reticulum stress and promote gemcitabine resistance by enhan-
cing de novo lipid synthesis [92]. The inhibition of cholesterol
synthesis may also enhance the effect of anticancer therapy [280],
and the use of lipid rafts characterized by Cav-1-cholesterol may
be a breakthrough therapeutic approach [281]. By targeting
CRABP-II, lipid raft cholesterol accumulation can be reversed to
overcome drug resistance [282]. CD36 expression is correlated
with antiapoptotic protein expression and may protect PDAC cells
from drug-induced cell death [283]. In addition, UBE2T can affect
the remodelling of pyrimidine metabolism and confer gemcita-
bine resistance [284].

Immunotherapy
Immunotherapy has gradually developed into a mature anti-
tumour strategy, but its efficacy in PDAC is limited [285]. Some
studies have attempted to predict the response to immunother-
apy based on metabolic characteristics [286]. Metabolic disorders
of the immune system in the TME are expected to improve the
efficacy of metabolism-targeted anticancer strategies [287, 288].
Nucleotide metabolism provides genetic material and energy

resources for immune system activation and proliferation [289].
Purine analogues, such as released extracellular ATP or adenosine,
activate the purinergic and adenosine receptors of immune cells,
thereby promoting or suppressing immune responses [290]. IFN
triggers cell cycle arrest in the S phase, resulting in insufficient
nucleotide pools and nucleoside efflux, and IFN combined with
ATR inhibitors can induce lethal DNA damage and decrease
nucleotide biosynthesis, thereby limiting the growth of PDAC
[291].
Understanding the influence of metabolic regulation on the

efficacy of immunotherapy is still in its infancy. Modulating cell
metabolism via the autologous T cell adoptive transfer protocol

can promote the generation of T cells with a memory phenotype
and improve their antitumour effect [292, 293]. Engineering
oncolytic viruses to express leptin can also enhance antitumour
responses by increasing FAO and OXPHOS [294]. PD-1 blockade
immunotherapy is a widely used therapy, but PDAC patients
respond poorly. Targeting glycolysis impacts the accumulation of
PD-1+ TILs in PDAC preclinical models [295]. Activating the AMPK
and mTOR pathways related to mitochondrial metabolism is also
expected to enhance the therapeutic effect of PD-1 blockers
[296, 297].
Based on the aforementioned immune-metabolic crosstalk, new

therapeutic targets have been investigated. For example, indo-
leamine 2,3-dioxygenase (IDO), which can degrade tryptophan
and inhibit immune responses [298], has been explored in several
clinical studies, which we will describe below.

Other therapies
Other drug therapies are gradually being explored through
emerging technologies [299]. The use of some nanomedicines
can enhance oxidative stress [300]. Reduction-responsive nano-
platforms that can regulate lipid metabolism and polarize
macrophages are available for the combined treatment of PDAC
[301]. A novel dendrimer nanogel enhances chemoimmunother-
apy through endoplasmic reticulum stress [302]. After degrading
the ECM, nanoparticle transport can be enhanced, increasing the
killing effect on PDAC [303, 304]. Studies have shown that
selenoorganic compounds and dihydroartemisinin can induce
ferroptosis in PDAC cells [305, 306]. Tailored ruthenium complexes
can also affect OXPHOS and exert anticancer effects [307].
Although such investigations are still in the preclinical stage, they
are providing new directions for the treatment of PDAC.

CLINICAL TRIALS TARGETING METABOLISM
Metabolic targeted therapy still has a long way to go before being
applied as a routine treatment (Table 1). Some metabolic
modulators, such as metformin [308] and statins [309], have been
used to exert additional cancer-treatment effects. Metformin can
affect the malignant behaviour of SMAD4-deficient PDAC cells by
inhibiting HNF4G activity [310]; it can also destroy the dense
matrix by inhibiting PSC activity, significantly improving the
therapeutic efficacy of gemcitabine [311]. Several clinical trials of
metformin for the treatment of PDAC, such as NCT02048384,
NCT03889795 and NCT02201381, have been carried out. Through
in vivo metabolism tracking, it was found that statins can inhibit
the synthesis of coenzyme Q and that statins combined with MEK
inhibitors can promote oxidative stress and apoptosis [312]. Based
on these promising data, phase I and II clinical trials, such as
NCT00944463, NCT00584012 and NCT04862260, were conducted.
Irbesartan may reverse gemcitabine resistance by inhibiting iron
metabolism [313]. In addition, drugs such as digoxin
(NCT04141995), dapagliflozin (NCT04542291), omeprazole
(NCT04930991), and even combinations of multiple metabolism-
regulating drugs (NCT02201381) have been explored.
Clinical trials have begun to explore treatments based on the

glycolytic pathway. In the case of NCT00096707, 2-deoxy-D-
glucose (2-DG) combined with docetaxel was used for advanced
solid tumours and had tolerable adverse effects and certain
clinical benefits [314]. The lipoic acid analogue CPI-613 was shown
to selectively inhibit PDH activity and inhibit the growth of PDAC
[315]. In NCT01835041 and NCT03504423, CPI-613 was combined
with chemotherapy for the treatment of metastatic PDAC, yielding
a good response rate [316].
Inducing metabolic crises through the antagonism of glutamine

inhibitors, such as 6-diazo-5-oxo-L-norleucine (DON) and DRP-104,
is a promising strategy in preclinical models [317]. NCT03965845
explored the efficacy of the glutaminase inhibitor telaglenastat
(CB-839) in advanced or metastatic solid tumours. In
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NCT04634539, L-glutamine was combined with standard che-
motherapy for advanced PDAC treatment. In recent years, in
NCT01523808, NCT02195180, and NCT03665441, the combination
of red blood cell-encapsulated asparaginase (such as GRASPA and
eryaspase) with chemotherapy has been shown to improve the
prognosis of patients, indicating its great potential as a second-
line treatment [318]. Calaspargase pegol-mknl, which converts the
amino acid L-asparagine into aspartic acid and ammonia, leading
to cell death, was recently used in combination with cobimetinib
in NCT05034627. The role of tryptophan and IDO1 in the immune
microenvironment has recently been emphasized. In
NCT00739609, NCT03432676, and NCT03006302, IDO1 inhibitors
and PD-1 checkpoint inhibitors caused PDAC to respond to
immunotherapy [319], and their efficacy in combination with

chemotherapy has been further explored in clinical trials, such as
NCT02077881 and NCT03085914. In addition, research on arginine
(NCT02101580) and methionine (NCT03435250) has improved the
understanding of targeting amino acid metabolism to treat PDAC.
Although lipid synthesis-related genes are overexpressed in

a variety of cancers, relevant clinical trials are still exploratory.
The application potential of the FASN inhibitor TVB-2640 and
an antagonist of PPARα TPST-1120 were explored in
NCT02223247 and NCT03829436, respectively. NCT03450018
was conducted to determine whether the CA IX inhibitor SLC-
0111 exerts a synergistic anticancer effect by affecting
ferroptosis.
There are also several drugs that may exert anticancer effects by

affecting redox balance. For example, phase I clinical trials of

Table 1. Representative clinical trials targeting cancer metabolism in pancreatic cancer.

NCT identifier Main target Therapeutic agents Intervention Phase

NCT00096707 Glycolysis 2-deoxy-D-glucose (2-DG) Monotherapy/
Combination

I

NCT01835041 TCA cycle CPI-613 Combination I

NCT03504423 TCA cycle CPI-613 Combination III

NCT03965845 Glutamine CB-839 (glutaminase
inhibitor telaglenestat)

Combination I

NCT04634539 Glutamine L-glutamine Combination I

NCT01523808 Asparagine GRASPA Monotherapy I

NCT02195180 Asparagine GRASPA Combination II

NCT03665441 Asparagine Eryaspase Combination III

NCT05034627 Asparagine/aspartate Calaspargase pegol-mknl Combination I

NCT02077881 Tryptophan Indoximod (IDO1 inhibitor) Combination I/II

NCT00739609 Tryptophan 1-methyl-D-tryptophan (IDO1 inhibitor) Monotherapy I

NCT03432676 Tryptophan Epacadostat Combination II

NCT03006302 Tryptophan Epacadostat and CRS-207 Combination II

NCT03085914 Tryptophan Epacadostat Combination I/II

NCT02101580 Arginine ADI-PEG 20 Combination I

NCT03435250 Methionine AG-270 Monotherapy/
Combination

I

NCT02223247 Lipid synthesis TVB-2640 (FASN inhibitor) Combination I

NCT03829436 Lipid synthesis TPST-1120 (antagonist of PPARα) Combination I

NCT03450018 Ferroptosis SLC-0111 (CA IX inhibitor) Combination I/II

NCT02353026 Redox balance Artesunate Monotherapy I

NCT01049880 Redox balance Ascorbic Acid Combination I

NCT02514031 Redox balance ARQ-761 (beta-lapachone) Combination I

NCT03825289 Autophagy Choloroquine Combination II

NCT01777477 Autophagy Choloroquine Combination I

NCT04132505 Autophagy Choloroquine Combination I

NCT01019382 Dietary intervention Omega-3 fatty acid Combination II

NCT01419483 Dietary intervention Ketogenic diet Combination I

NCT02336087 Dietary intervention Dietary supplements+ Metformin Combination I

NCT04930991 Metabolic Regulation Omeprazole Monotherapy I

NCT04141995 Metabolic Regulation Digoxin Combination II

NCT03889795 Metabolic Regulation Simvastatin+ Digoxin+ Metformin Combination I

NCT02048384 Metabolic Regulation Metformin Combination I

NCT04542291 Metabolic Regulation Dapagliflozin Monotherapy I

NCT04862260 Metabolic Regulation Evolocumab + Atorvastatin+ Ezetimibe Combination I

NCT00944463 Metabolic Regulation Simvastatin Combination II

NCT00584012 Metabolic Regulation Lovastatin Combination I

NCT02201381 Metabolic Regulation
metabolism-regulating drugs

Metformin +Atorvastatin +
Doxycycline +Mebendazole

Combination III
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artesunate and ascorbic acid have been conducted (NCT02353026
and NCT01049880, respectively). Combining β-lapachone
(ARQ761) with a GLS1 inhibitor can induce excessive ROS
production and selectively lead to PDAC cell death in preclinical
models [320]. The potential of ARQ761 combined with gemcita-
bine/nab-paclitaxel treatment was explored in NCT02514031.
Autophagy plays an important role in the progression of PDAC,

and the lysosomal inhibitor hydroxychloroquine may have
synergistic effects with the MEK inhibitor trametinib. In this

context, numerous clinical trials have been carried out
(NCT01777477, NCT03825289, and NCT04132505).
Finally, there are some clinical trials based on dietary

interventions, such as NCT01019382 and NCT01419483, but
they are all in their early stages. In NCT02336087, a variety of
dietary supplements were investigated, among which
epigallocatechin-3 gallate (EGCG) may act by inhibiting FASN.
However, these interventions are still far from clinical
application.

Fig. 2 Overview of metabolic characteristics and therapy targets of pancreatic cancer. In addition to cellular metabolism such as
nucleotide metabolism, carbohydrate metabolism, amino acid metabolism, lipid metabolism and oxidative homeostasis, complex tumor
microenvironment metabolism and body metabolism (outer gray circles) together construct the metabolic characteristics of pancreatic
cancer. With the development of novel experimental methods, precise tracking detection, integrated multi-omics analysis and personalized
metabolic therapy (arrows), therapeutic or sensitization targets (blue regular octagons in the middle layer) have gradually been revealed,
which is expected to break through the barriers to pancreatic cancer treatment (innermost), bringing new hope for the diagnosis and
treatment of pancreatic cancer.
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CONCLUSION AND FUTURE PERSPECTIVE
In recent years, the metabolic mechanism and translational
application of PDAC treatment have become new and challenging
research directions [321]. Both in vivo and in vitro experiments
have revealed the metabolic dependence of PDAC [322, 323]. The
use of stable isotopes has become a key method for exploring
metabolic pathways in PDAC [324]. Advanced technology plat-
forms such as organoids are also promoting advancements in the
translation of metabolism-related research [325]. Many molecular
subtyping methods based on metabolic characteristics are being
developed for the treatment and evaluation of different types of
PDAC patients [270]. Moreover, the development of single-cell
sequencing and spatial omics has made it possible to characterize
the metabolic crosstalk of different tissues at the cellular level
[326]. Our understanding of the function of cellular metabolism in
disease progression has progressed significantly (Fig. 2).
Given that most of the current understanding of how

metabolism supports cell proliferation is based on studies in
cancer cells, how metabolism shapes the interactions of different
cells needs be explored in more complex ecosystems. This
information is expected to help us gain a deeper understanding
of the metabolic regulatory network, thereby overcoming the
limitations of previous metabolic therapies and providing
opportunities for tailor-made treatment plans for patients.
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