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Abstract

Background: Chagas disease is a neglected disease caused by the intracellular parasite Trypanosoma cruzi. Around 30% of
the infected patients develop chronic cardiomyopathy or megasyndromes, which are high-cost morbid conditions. Immune
response against myocardial self-antigens and exacerbated Th1 cytokine production has been associated with the
pathogenesis of the disease. As IL-17 is involved in the pathogenesis of several autoimmune, inflammatory and infectious
diseases, we investigated its role during the infection with T. cruzi.

Methodology/Principal Findings: First, we detected significant amounts of CD4, CD8 and NK cells producing IL-17 after
incubating live parasites with spleen cells from normal BALB/c mice. IL-17 is also produced in vivo by CD4+, CD8+ and NK
cells from BALB/c mice on the early acute phase of infection. Treatment of infected mice with anti-mouse IL-17 mAb
resulted in increased myocarditis, premature mortality, and decreased parasite load in the heart. IL-17 neutralization
resulted in increased production of IL-12, IFN-c and TNF-a and enhanced specific type 1 chemokine and chemokine
receptors expression. Moreover, the results showed that IL-17 regulates T-bet, RORct and STAT-3 expression in the heart,
showing that IL-17 controls the differentiation of Th1 cells in infected mice.

Conclusion/Significance: These results show that IL-17 controls the resistance to T. cruzi infection in mice regulating the
Th1 cells differentiation, cytokine and chemokine production and control parasite-induced myocarditis, regulating the influx
of inflammatory cells to the heart tissue. Correlations between the levels of IL-17, the extent of myocardial destruction, and
the evolution of cardiac disease could identify a clinical marker of disease progression and may help in the design of
alternative therapies for the control of chronic morbidity of chagasic patients.
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Introduction

Trypanosoma cruzi is an intracellular protozoan parasite that

causes Chagas’ disease, the major cause of infectious heart disease

in Latin America. It is estimated that 13 million people are

infected with T. cruzi in the Central and South America, and 75

million are at potential risk of infection (WHO, 2005). In non-

endemic countries, blood transfusions, organ transplantations,

and mother-to-child infection represent real risks for disease

transmission, due to high numbers of immigrants and the

autochthonous transmission of T. cruzi in the USA has been

reported [1]. During chronic phase, around 10% and 20% of

infected patients develop digestive (megaesophagus and megaco-

lon) and cardiac (cardiomegaly) form of Chagas disease,

respectively. The myocarditis that occurs as a result of infection

is thought to be due to parasites in the lesions, although immune-

mediated mechanisms also appear to be involved in heart

pathology [2]. Of note, the immune hyperactivity that is

deleterious to the host is governed by the imbalanced production

of cytokines in response to the parasite [3].

The pro-inflammatory cytokines IL-12, IFN-c, and TNF-a act

in concert to activate macrophages to kill the parasites through the

production of nitric oxide and nitrogen free radicals [4]. In

addition, these cytokines also stimulate the differentiation and

proliferation of Th1-biased CD4+ T cells, which orchestrate a

CD8+ T-cell response that causes tissue destruction and fibrosis

[5]. As expected, the inflammatory response is down-regulated by

the anti-inflammatory cytokines IL-10 and TGF-b [6,7], regula-

tory T cells [8–10], and CTLA-4+ cells [11,12]. Lymphocytes of

patients with chronic chagasic cardiopathy (CCC) produce higher

amounts of IFN-c, TNF-a, and IL-6, but little or no IL-4 or IL-10

compared to asymptomatic individuals [3,13].
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For years, the balance of immune inflammation was explained by

the dichotomy of cytokines produced. However, the Th1-Th2

paradigm has been reconsidered following the discovery of a novel

lineage of effector CD4+ T helper lymphocytes, called Th17 cells,

which produce interleukin 17 (IL-17)-A and F, IL-21, IL-22, and

TNF-a [14]. Th17 differentiation is thought to be mediated by the

combined effects of the transcription factors RORct and RORa,

which are dependent on STAT-3, and requires IL-1b, IL-6, IL-21,

TGF-b, and the expression of the CCR6 chemokine receptor

[15,16]. In addition to Th17 cells, other cells produce IL-17,

including CD8+ T cells, cd T cells, neutrophils, monocytes, and NK

cells [17]. IL-17 has pro-inflammatory properties and induces

fibroblasts, endothelial cells, macrophages, and epithelial cells to

produce several inflammatory mediators, such as GM-CSF, IL-1,

IL-6, TNF-a, inducible nitric oxide synthase (iNOS) activation,

metalloproteinases, and chemokines (CXCL1, CXCL2, CXCL8,

CXCL10), leading to the recruitment of neutrophils and inflamma-

tion [18–20]. The Th17 response has been linked to the

pathogenesis of several inflammatory and autoimmune diseases,

such as multiple sclerosis, psoriasis, rheumatoid arthritis, colitis,

autoimmune encephalitis [21], schistosomiasis [22], and toxoplas-

mosis. Infection with T. cruzi also leads to the production of several

chemokines and cytokines [23] as well as iNOS [4] and

metalloproteinase activation [24]. Also, lymphocytes from infected

mice and chagasic patients recognize self-epitopes [2], suggesting a

possible autoimmune response. Altogether, these observations

suggest the possible involvement of IL-17 in the pathogenesis of

T. cruzi infection. Therefore, we investigated IL-17 production in T.

cruzi-infected mice and its role in the modulation of the immune

response. Our results show that IL-17 is produced during the acute

phase of T. cruzi infection and controls cardiac inflammation by

modulating the Th1 response.

Methods

Animals, parasites, and experimental infection
BALB/c female mice, 6 weeks old, were cared for according to

institutional ethical guidelines and the Ethics Committee in Animal

Research of the FMRP-USP approved all experimental protocols.

Mice were infected via the i.p. route with 100 blood trypomastigotes

of T. cruzi, Y strain. For in vitro experiments, the trypomastigotes

were grown and purified from a fibroblast cell line (LLC-MK2).

Treatment of mice with mAb against IL-17
Balb/c mice were treated one day before inoculation, and on

days four and eight with i.p. injections of 100 mg of normal rat IgG

or rat anti-mouse IL-17 (IgG2a, clone M210, Amgen, Seattle,

WA). Parasitemia was measured in 5 mL of blood obtained from

the tail vein, and mortality was evaluated with five mice per

treatment group. Sera, heart tissue, livers, and spleens were

collected 14 days p.i from five infected and treated mice.

Splenocyte cultures
To determine if the parasite induces IL-17 production, naive

splenocytes (56106 cells/ml) from Balb/c mice were cultured for

48 h with trypomastigotes (2.56107/ml) in 48-well plates (final

volume of 0.5 ml) and intracellular IL-17A in CD4+, CD8+, and

NK cells was determined. To shed light on the mechanism that

controls IL-17 production, splenocytes (16106 cells/ml) from

normal or T. cruzi-infected Balb/c mice (14 days p.i.) were

cultured with Con-A (5 mg/ml) (Sigma-Aldrich, St. Louis) and T.

cruzi antigen (10gg/well), with or without antibodies against IL-17

or IFN-c (IgG1, clone R46A2) (10 mg/well), and cytokine

production was determined.

Cytokine quantification (ELISA)
Cytokine production was assayed in sera, tissue heart, liver, and

spleen. Tissue fragments were added to vials containing PBS

(50 mg/ml) with a protease inhibitor cocktail (Complete, Roche).

The tissue fragments were macerated, centrifuged, and the

supernatants collected for cytokine quantification. The ELISA sets

were IL-1b, IL-4, IL-6, IL-10, IL-12, IL-17, IL-25, IFN-c, TNF-a,

and TGF-b (R&D, Minneapolis, MN), and procedures were

performed according to the manufacturers’ instructions. Optical

densities were measured at 450 gm. Results are expressed as

picograms per milliliter. The limits of sensitivity for the different

assays were as follows: IL-4, IL-17, IL-10, TGF-b and TNF-a:

15 pg/ml; IL-12: 10 pg/ml; IFN-c: 50 pg/ml, IL-1b: IL-25 and IL-

6: 20 pg/ml.

Isolation of leukocytes from cardiac tissue
To isolate mononuclear cells from myocardial tissues, the hearts

from five mice were removed at 14 days post infection (p.i.),

washed (to remove blood clots), pooled, minced with scissors into

small fragments, extensively washed, and subjected to enzymatic

digestion with a 500 mg/ml liberase solution (Roche Applied

Science, Indianapolis, IN) for 30 min at 37uC. The tissues were

processed with RPMI 10% FCS and 0,05% DNAse (Sigma-

Aldrich) using Medmachine (BD) for 4 min, the cell suspension

was spun, the supernatant removed, and the pellet suspended in

RPMI 10% FCS. Suspensions of total spleen cells were washed

and the leukocyte purification from these samples and from cardiac

cells was done in Ficoll Hypaque (d = 1077 g/ml, Sigma - Aldrich)

gradient by centrifuging at 4006g by 30 min at room temperature.

The leukocytes obtained were evaluated by flow cytometry.

Intracellular cytokine detection
The expression of IL-17 and IFN-c in leukocytes (16106/well)

from heart and spleen were assayed after incubation with

monensin (2 mg/ml) for 6 h in RPMI 1640 supplemented with

fetal bovine serum (10%). The cells were washed in cold PBS and

samples of 56105 cells/tube were incubated for 30 min at 4uC
with 0.5 mg of anti-CD16/CD32 mAb (FC block), followed by the

Author Summary

Chagas disease is caused by the intracellular parasite
Trypanosoma cruzi. This infection has been considered one
of the most neglected diseases and affects several million
people in the Central and South America. Around 30% of
the infected patients develop digestive and cardiac forms
of the disease. Most patients are diagnosed during the
chronic phase, when the treatment is not effective. Here,
we showed by the first time that IL-17 is produced during
experimental T. cruzi infection and that it plays a
significant role in host defense, modulating parasite-
induced myocarditis. Applying this analysis to humans
could be of great value in unraveling the elements
involved in the pathogenesis of chagasic cardiopathy
and could be used in the development of alternative
therapies to reduce morbidity during the chronic phase of
the disease, as well as clinical markers of disease
progression. The understanding of these aspects of disease
may be helpful in reducing the disability-adjusted life years
(DALYs) and costs to the public health service in
developing countries.
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addition of 0.5 mg of PERCP- or FITC-labeled antibodies against

CD3, CD4, CD8, or PanNK (all from BD Pharmingen, San

Diego, CA) for an additional 30 minutes at 4uC in the dark. To

detect intracellular IL-17 and IFN-c, the cells were fixed with

cytofix and cytoperm solution for 15 min at room temperature,

washed, and then stained with FITC- or PE-labeled antibodies at

4uC in the dark and incubated overnight. Subsequently, the cells

were washed twice and suspended in 200 mL of PBS/1%

formaldehyde. For each assay 50,000 events were acquired and

data acquisition was performed using a FACSorter. Multivariate

data analysis was performed using FlowJo software. The data was

exported from the histogram and were processed in Prism

Software for statistical analysis and graphics.

Cardiac parasitism
DNA from the hearts of mice at 14 days p.i. was purified using the

SV Total DNA Isolation System kit (Promega, Madison, WI)

according to the manufacturer’s instructions. Real-time PCR was

performed using the Platinum SYBR Green qPCR SuperMix UDG

with ROX reagent (Invitrogen, Carlsbad, CA) with 100 gg of total

gDNA. The sequences of primers used were TCZ-F 59-GCT CTT

GCC CAC AMG GGT GC-39 and TCZ-R 59-CCAAGCAGCG-

GATAGTTCAGG-39. The samples were amplified in a thermal

cycler ABI PRISM 7000 Sequence Detection System (Applied

Biosystems, Foster City, CA) with the following PCR conditions: first

step (2 min at 50uC), second step (10 min at 95uC) and 40 cycles (30 s

at 95uC, 30 s at 60uC, and 1 min at 72uC), followed by a dissociation

stage. The results were based on a standard curve constructed with

DNA from culture samples of T. cruzi trypomastigotes (n = 3).

T-bet, GATA-3, Foxp3, STAT-3, RORct, and chemokine
mRNA expression

Total RNA from cardiac tissue was isolated using the TRIZOL

reagent (Invitrogen) and SV Total RNA Isolation System (Promega,

Madison, WI) according to the manufacturers’ instructions. cDNA

was synthesized using 1 mg of tRNA through a reverse transcription

reaction (ImProm-IITM Reverse Transcriptase, Promega). Real-time

PCR quantitative mRNA analyses were performed in an ABI Prism

7000 SDS (Applied Biosystems) using the Platinum SYBR Green

qPCR SuperMix UDG with ROX reagent (Invitrogen) for

quantification of amplicons. The standard PCR conditions were as

follows: 50uC (2 min), 95uC (10 min); 40 cycles of 94uC (30 s), 58uC
(30 s), and 72uC (1 min); followed by a standard denaturation curve.

The sequences of primers were designed using the Primer Express

software package (Applied Biosystems) utilizing nucleotide sequences

present in the GenBank database (Table 1). Platinum SYBR Green

qPCR SuperMix UDG with ROX reagent (Invitrogen), 1 mg/ml of

each specific primer, and a 1:20 dilution of cDNA were used in each

reaction. The mean Ct values from triplicate measurements were

used to calculate expression of the target gene, with normalization to

an internal control (b-actin) using the 2–DCt formula.

Quantification of heart infiltrating cells
The total number of nucleated cells was counted in fifty

microscopic fields in at least four representative, nonconsecutive,

HE-stained sections (5 mm thickness) from each mouse. Sections

were examined using a Zeiss Integrationsplatte II eyepiece (Zeiss

Co, Oberkochen, Germany) reticule, using a microscope at a final

magnification of 400X.

Statistical analysis
Data are expressed as means 6 SEM. Student’s t test was used

to analyze the statistical significance of the observed differences in

infected vs. control assays. In time course studies, one-way

ANOVA was used followed by Tukey-Kramer post-hoc analysis.

The Kaplan-Meier method was used to compare survival curves of

the studied groups. All analyses were performed using PRISM 3.0

software.

Table 1. Primer sequences and reaction properties.

Target Sense and Antisense Sequences bp

B-actin AGC TGC GTT TTA CAC CCT TT 81

AAG CCA TGC CAA TGT TGT CT

Foxp3 ACA ACC TGA GCC TGC ACA AGT 155

GCC CAC CTT TTC TTG GTT TTG

T-Bet CCC ACA AGC CAT TAC AGG ATG 125

TAT AAG CGG TTC CCT GGC ATG

GATA-3 AGG AGT CTC CAA GTG TGC GAA 165

TTG GAA TGC AGA CAC CAC CT

STAT-3 GCC ACG TTG GTG TTT CAT AAT 58

GGA ATC GGC TAT ATT GCT GGT

RORct TGG AAG ATG TGG ACT TCG TTT 55

TGG TTC CCC AAG TTC AGG AT

CCR3 GCT CTC TGG ATT GAA GTG TGC A 82

AAG TAT CAC GTC CAC CAC CTG G

CCR4 CGA TTC CAA AGA TGA ATG CCA 127

TCC CCA AAT GCC TTG ATA CC

CCR5 TGC ACA AAG AGA CTT GAG GCA 191

AGT GGT TCT TCC CTG TTG GCA

CCR6 GCC CAG CAC ATC ATA GCA TT 52

CCA GGA TTT GTA AGT TGC CC

CCL2 AGG ACA GAT GTG GTG GGT TT 53

TGC AGC AGT CAA CAC AAA TTG

CCL3 TTC TGC TGA CAA GCT CAC CCT 117

ATG GCG CTG AGA AGA CTT GGT

CCL4 CCT GAC CAA AAG AGG CAG ACA 169

AGC AAG GAC GCT TCT CAG TGA

CCL5 TTC CCT GTC ATC GCT TGC TCT 101

CGG ATG GAG ATG CCG ATT TT

CCL11 AGA TGC ACC CTG AAA GCC AT 107

TTT GGT CCA GGT GCT TTG TG

CCL17 GAA GTC CCT GTT CCC TTT TTT 57

TGT GTT CGC CTG TAG TGC ATA

CCL20 TTT GGG ATG GAA TTG GAC AC 51

ACC CCA GCT GTG ATC ATT TC

CCL22 ATG GTG CCA ATG TGG AAG A 68

TAA ACG TGA TGG CAG AGG GT

CXCL9 AAT TTC ATC ACG CCC TTG AGC 90

CAG CTG TTG TGC ATT GGA TAG C

CXCL10 AGC GTT TAG CCA AAA AAG GTC 51

TGG CTT CAC TCC AGT TAA GGA

T. cruzi GCT CTT GCC CAC AMG GGT GC 195

CCA AGC AGC GGA TAG TTC AGG

bp: base pairs of amplicon size.
doi:10.1371/journal.pntd.0000604.t001

IL-17 Controls T. cruzi-Induced Myocarditis

www.plosntds.org 3 February 2010 | Volume 4 | Issue 2 | e604



Results

T. cruzi induces IL-17 production
First, we evaluated IL-17 production by spleen cells from naive

mice incubated with live trypomastigotes. We found that the

percentage of IL-17+ splenocytes in cultures containing T. cruzi

(13.8664.59%) was higher than in the controls (5.4562.87%)

(Figure 1A). The mean fluorescence intensities of intracellular IL-

17 staining in the absence (6.0261.15) and presence of parasites

(11.2961.54) indicated that culture with parasites increased the

Figure 1. Trypomastigotes of T. cruzi induce IL-17 production by mouse splenocytes in vitro. Leukocytes from BALB/c mice (56106 cells/
ml) were cultured with or without trypomastigotes (2.56107/ml) of T. cruzi for 48 hours and the intracellular expression of IL-17 determined in total
splenocytes (A), CD4+, CD8+, and NK cells (B) (mean 6 SEM of cultures in triplicate, 3 animals/group). In A, the empty histograms represent IL-17+

cells harvest from cultures in the presence (black line) or absence of parasites (gray line) and the full histogram represents an IgG FITC control. The
data are representative of two independent experiments. * P,0.05 compared to uninfected mice.
doi:10.1371/journal.pntd.0000604.g001

Figure 2. Trypanosoma cruzi infection induces IL-17 expression in mouse splenocytes. The ex vivo frequencies of IL-17+ cells were
determined in total splenocytes (A) of BALB/c mice on 0, 7, 14, and 21 days p.i.. In B and C, the percentage (mean 6 SEM) of IL-17+ lymphocytes and
CD4+, CD8+, NK cells of mice on day 14 p.i. are shown. The data are representative of two independent experiments with 3 mice in each day of
infection. * P,0.05 compared to uninfected mice.
doi:10.1371/journal.pntd.0000604.g002
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degree of IL-17 production. The major IL-17 expressing cells were

CD4+ and CD8+ T lymphocytes as well as NK cells (Figure 1B).

IL-17+ cells were significantly increased in spleens of mice during

the course of acute infection (Figure 2A). The percentage of IL-17+

lymphocytes on day 14 p.i. was also significantly increased

compared with uninfected control mice (Figure 2B). On day 14

p.i., the main IL-17+ lymphocytes were CD4+ (4.7960.87)

followed by CD8+ T cells (1.9260.79) (Figure 2C). These results

clearly indicate that infection with T. cruzi leads to IL-17

production.

Blockade of IL-17 increases susceptibility to T. cruzi
infection

Since IL-17 is produced during the acute phase of T. cruzi

infection, we investigated its role in parasite control. We treated

mice with anti-IL-17 neutralizing antibody and evaluated the

course of infection and mortality. We did not find significant

differences in the course of parasitemia of anti-IL-17 treated mice

compared with the control group (Figure 3A). However, there was

a significant reduction in cardiac parasitism of anti-IL-17 treated

mice (day 14 p.i.) compared with infected mice treated with

normal rat IgG (Figure 3B). Importantly, infected mice treated

with anti-IL-17 exhibited significantly earlier mortality compared

to controls. The anti-IL-17 treated mice survived only until day 18

p.i., whereas the control group survived until 24 days p.i.

(Figure 3C). Inhibition of IL-17 also resulted in more inflamma-

tory cells in the heart tissue of T. cruzi-infected mice on day 14 p.i.

(Figure 4A and B). The total number of nuclei per 50 mm section

of heart tissue was higher in infected mice treated with anti-IL-17

(677.25689.36) than in controls (439.75654.87) (Figure 4A). It is

noteworthy that by microscopy analysis, the inflammatory

infiltrate found in all infected mice was characterized by

mononuclear cells, and scarce presence of polymorphonuclear

cells, and no difference were detected in the cellular composition

of the myocarditis between the groups at day 14 pi. We conclude

that IL-17 plays a role in resistance to the infection, modulating

the inflammatory reaction that occurs in infected mice.

Cytokine production in T. cruzi-infected mice treated
with anti-IL-17

To investigate the mechanism by which IL-17 neutralization

changes the course of infection, we first compared cytokine

production in T. cruzi-mice treated or not with anti-IL-17. As

expected, we detected significant levels of IFN-c, TNF-a, IL-10,

and IL-12 in the sera and tissue heart of T. cruzi-infected mice

(Figure 5). Inhibition of IL-17 resulted in significantly higher levels

of IFN-c and IL-12 in the sera and heart tissue, and increased

TNF-a level in the heart tissue of infected mice compared with

mice treated with normal rat IgG. Treatment with anti-IL-17 did

not, however, change the levels of IL-10. IL-17 was not detected in

the sera but, consistent with previous results, infection increased

IL-17 levels in the heart tissue (Figure 5), where it was produced by

CD4+, CD8+ and NK cells (Figure 6A). Again, treatment with anti-

IL-17 decreased IL-17 levels (Figure 5) and production by CD4+

Figure 3. Enhanced cardiac parasitism and mortality in T. cruzi infected mice treated with anti-IL-17. Parasitemia (A), cardiac parasitism
(B), and survival (C) were determined in mice infected with T. cruzi. The quantification of genomic DNA was determined by real time PCR on tissue
heart of mice on day 14 p.i. The data (mean 6 SEM) are representative of two independent experiments (five mice per group). * P,0.05 compared to
infected mice treated with normal rat IgG.
doi:10.1371/journal.pntd.0000604.g003
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and CD8+ cells in the heart (Figure 6A), and increased IFN-c
production by CD4+ cells (Figure 6B). IL-17 neutralization did not

changed the frequency of CD4+ (29.3262.14 vs 24.3761.87%),

CD8+ (52.0165.38 vs 43.5262.90%) and NK (0.760.12 vs

1.0160.19%) cells in the heart. Low levels of IL-25 were detected

in the heart tissue and spleens of normal mice, but not in infected

mice. IL-1b, IL-4, IL-6, and TGF-b were detected in the sera,

myocardium, spleens, and livers of T. cruzi-infected mice, but did

not change with anti-IL-17 treatment (data not shown).

IL-17 controls IFN-c and TNF-a during the acute phase of
T. cruzi infection

Next, we investigated the mechanisms that regulate IL-17

production and the means by which IL-17 modulates Th1

cytokine production. IL-17 was detected only when leukocytes

from normal or infected mice were cultured with Con-A, and it

was significantly increased when endogenous IFN-c was inhibited

(Figure 7). IL-12, IFN-c, and TNF-a production by leukocytes

from acutely infected mice were also regulated by IL-17, as

addition of anti-IL-17 to the cultures significantly increased the

production of these cytokines in the presence of parasite antigen.

In the presence of mitogen, we found increased production of IL-

12 and IFN-c by the addition of anti-IL-17 (Figure 7). These

results show that IL-17 produced during T. cruzi infection

modulates IFN-c, TNF-a, and IL-12 production.

IL-17 neutralization during T. cruzi infection increases Th1
responses

To understand how IL-17 regulates the pattern of cytokine

production, we examined the expression of the transcription factors

Foxp3, T-bet, GATA-3, and STAT-3/RORct. T. cruzi infected mice

showed enhanced of Foxp3, T-bet, GATA-3, STAT-3, and RORct

Figure 4. IL-17 neutralization increases T. cruzi-induced heart
pathology. Quantification of nuclei (A) in the heart tissue of normal
mice (white bar) and infected mice (14 days p.i.) treated with normal rat
IgG (gray bar) or with anti-IL-17 (black bar). In (B), representative
microphotographs (original magnification 6400) of cardiac tissue of
mice on day 14 post T. cruzi infection are shown. Data (mean 6 SEM)
are representative of two independent experiments using five mice per
group. * P,0.05 compared to infected mice treated with normal rat IgG.
doi:10.1371/journal.pntd.0000604.g004

Figure 5. IL-17 controls IFN-c, TNF-a, IL-12, and IL-17 produc-
tion in heart tissue of mice infected with T. cruzi. IFN-c, TNF-a, IL-
10, IL-12, and IL-17 were quantified in the sera and heart tissue of
infected mice (14 days p.i.) that were treated or not with anti-IL-17. For
heart cytokine quantification, 50 mg of tissue was homogenized in
1.0 ml of PBS plus protease inhibitors. The data (mean 6 SEM) are
representative of two independent experiments (five mice per group).
* P,0.05 compared to infected mice treated with normal rat IgG.
doi:10.1371/journal.pntd.0000604.g005
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mRNA expression in heart tissue compared to uninfected animals.

IL-17 neutralization in T. cruzi-infected mice significantly increased T-

bet but decreased STAT-3 and RORct mRNA expression in the

heart when compared to infected control animals (Figure 8A).

Concomitant to the enhanced expression of the Th1 transcription

factor (T-bet) and reduction of Th17 transcription factors (STAT-3

and RORct), the cardiac tissue of IL-17 neutralized mice exhibited

higher expression of CCR5, and decreased expression of CCR3 and

CCR4 chemokine receptors, both involved in Th2 and regulatory T

cell migration [25,26]. The expression of CCR6, a chemokine

receptor expressed by Th17 cells, was markedly reduced in the heart

tissue of T. cruzi infected mice treated with anti-IL-17 (Figure 8B). The

expression of CCL2, CCL3, CCL4, CCL11, and CXCL9, which are

involved in T-cell migration to the heart tissue of infected mice, but

not CCL5, CCL17, CCL22, or CXCL10, was increased in the heart

tissue of anti-IL-17 treated mice (Figure 8C). Therefore, IL-17 inhibits

T-bet and Th1 chemokine expression in the heart tissue of T. cruzi

infected mice.

Discussion

The results shown here demonstrate that T. cruzi infection

results in the production of IL-17, which regulates the immune

response as well as the development of heart lesions during the

course of infection. Moreover, IL-17 regulates the expression of

the transcription factors T-bet, RORct, and STAT-3, the

production of inflammatory cytokines and chemokines, and the

expression of their receptors in the heart. First, we showed that

trypomastigotes induce IL-17 production by CD4+, CD8+, and

NK cells from naı̈ve mice, and that an increased number of IL-

17+ cells is observed during the acute phase of infection. Low IL-

17 production was previously described for splenic CD4+ T cells

from infected mice cultured with T. cruzi antigen [27]. In vivo the

amount of leukocytes expressing IL-17 is very relevant, mainly if

we consider that the number of lymphocytes increase dramati-

cally during the infection [28]. The mechanism by which the

parasites can trigger IL-17 production is unknown, but it could

involve antigen recognition by pathogen associated pattern

receptors. Parasite compounds lead to the production of IL-12

[29], TNF-a [30], and IL-10 [31], and they activate TLR2 [32],

TLR4 [33], and TLR9 [34]. The glycoinositolphospholipid from

T. cruzi is a TLR4 agonist with proinflammatory effects [35], and

TLR4 activation is important for Th17 cell survival through the

induction of IL-23 production by dendritic cells [36]. Moreover,

mice deficient in TLR4 have markedly lower numbers of Th17

cells and a reduced capacity to produce IL-17 in an experimental

model of arthritis [37]. IL-17 production and Th17 differentia-

tion can be induced by IL-1b, IL-6, and TGF-b[15], which are

all produced during T. cruzi infection [7,38,39]. Additionally, the

phagocytosis of apoptotic leukocytes [40], a frequent occurrence

in T. cruzi-infected mice [41], induces TGF-b synthesis [7,42] and

IL-6 production [39], thereby setting the stage for Th17

differentiation. Thus, it is possible that IL-17 production and

Th17 driving do occur early after innate immune recognition of

T. cruzi. We are currently performing additional experiments to

study the possible role of TLR2 and TLR4 in T. cruzi-driven IL-

17 production showed herein. Since trypomastigotes induced IL-

17 production by spleen cells in vitro, it is possible that other

strains with different tropism also induce similar amount of this

cytokine production. However, this important question has to be

addressed.

Neutralization of IL-17 using an anti-IL-17 monoclonal

antibody [43] did not change the parasitemia of T. cruzi-infected

mice but resulted in decreased parasitism in heart tissue, and led to

earlier mortality. As the Y strain is infective to several cell types,

many tissues besides heart can act as parasite reservoirs and

consequently can contribute to the peripheral blood parasitemia.

IL-17 neutralization also resulted in increased production of IFN-c
and TNF-a in tissues and sera; both cytokines are known to

activate macrophages to produce nitric oxide and promote the

killing of intracellular amastigotes [4]. In fact, neutralization of IL-

17 resulted in significantly less parasite DNA in the heart tissue,

probably due to an increase in iNOS production (data not shown).

Unlike in rheumatoid arthritis, colitis, and autoimmune enceph-

alitis (EAE) [21], where IL-17 induces and sustains inflammation,

in T. cruzi infection, IL-17 exhibits a regulatory effect. Some Th17

cells generated via TGF-b and IL-6 [15], cytokines produced

during T. cruzi infection [7,39], produce high levels of IL-10 and

prevent lesions in EAE [44], consistent with our data suggesting an

anti-inflammatory role for IL-17. In accordance, scarce neutro-

phils were found in the inflammatory substrate of heart of T. cruzi-

infected mice, independent of treatment or not with anti-IL-17.

Our data also show that IL-17 controls IFN-c production, as

previously observed in mice with EAE [45].

To further understand the regulatory effects of IL-17, cultures of

spleen cells from normal or infected mice were treated with anti-

IL-17. As observed in vivo, the cells exhibited increased

intracellular expression of IL-12, IFN-c, and TNF-a, confirming

Figure 6. IL-17 controls Th1 differentiation in T. cruzi-infected
mice. BALB/c mice were infected, the heart harvested on day 14 p.i.,
the leukocytes isolated and incubated with monensin for 6 h in culture
medium, and the intracellular expression of IL-17 (A) and IFN-c (B) were
determined. Data (mean 6 SEM) are representative of two independent
experiments using five mice per group. * P,0.05 compared to infected
mice treated with normal rat IgG.
doi:10.1371/journal.pntd.0000604.g006
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a regulatory role for IL-17 in the immune response of T. cruzi

infected mice. Since a high level of IFN-c and TNF-a production

can generate undesirable side effects [11,30,31], IL-17 could be

important in modulating these cytokines during acute T. cruzi

infection, resulting in fewer heart lesions and delayed mortality.

The increased IFN-c production observed in mice treated with

anti-IL-17 could be due to enhanced IL-12 secretion and

increased T-bet expression, a transcription factor crucial for Th1

differentiation [46]. Therefore, IL-17 seems to act indirectly on the

differentiation of Th1 lymphocytes through the control of IL-12

production. In contrast, the expression of RORct and STAT-3,

which lead to Th17 differentiation [15], were decreased in infected

mice treated with anti-IL-17. Analogous to Th1 and Th2 cell

responses, Th17 cell responses are amplified by a positive feedback

loop [47]. The expression of GATA-3, a Th2 transcription factor

[48], remained unchanged. Of note, T. cruzi infection induces

markedly increased expression of RORct and STAT-3, clearly

indicating the induction of Th17 differentiation.

Figure 7. Cross-regulation of IL-12, IFN-c, and IL-17 during T. cruzi infection. Splenocytes from BALB/c mice infected (14 days p.i.) or not
with T. cruzi were harvested, cultured for 72 hours with or without Con-A (5 mg/ml), T. cruzi antigen (10 gg/well), anti-IL-17 (10 mg/well) or anti-IFN-c
(10 mg/well). The cytokines IL-17, IL-12, IFN-c, and TNF-a were determined by ELISA. The data show the mean 6 SEM of triplicate cultures with 3 mice
per group and are representative of two independent experiments. * P,0.05 compared to control culture.
doi:10.1371/journal.pntd.0000604.g007
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One important question regards the mechanism of IL-17

modulation of the migration of inflammatory cells to the heart

tissue of infected mice. Chemokines, including the ligands of

CCR5 [49] and CCR2 [50,51], are important to the mechanism

that leads to myocarditis. In the hearts of mice treated with anti-

IL-17, we found increased expression of CCL2, CCL3, CCL4,

CXCL9, and CCL11, which, except for the last, clearly favor the

Th1 type response. As the expression of chemoattractants is under

the control of IFN-c and TNF-a, it is possible that increased IFN-c
and TNF-a production, as a result of IL-17 neutralization and

elevated IL-12 production, is responsible for the increased

myocarditis. Accordingly, we found decreased expression of

CCR3 (a Th2-associated receptor) and increased expression of

CCR5, a receptor crucial for the development of myocarditis [49].

This may explain the decrease in heart tissue parasitism, since the

chemokines CCL2, CCL3, CCL4, CCL5, and CXCL9 as well as

IFN-c can induce iNOS activation in macrophages and cardiac

myocytes [51,52]. Also, since CCR4 and CCR6, but not CCR5,

are expressed by Th17 cells [53], the decreased expression of

CCR4 and CCR6 but increased expression of CCR5 clearly

indicates a reduction in Th17 cells in the inflammatory lesions,

confirming that treatment with anti-IL-17 was effective.

In summary, our results show that IL-17 plays a role in the

pathogenesis of T. cruzi-induced myocarditis. We propose that IL-

17 elicited during the infection reduces IL-12 production and T-

bet expression, which, as a consequence, decreases the production

of IFN-c, TNF-a, and chemokines. Therefore, IL-17 controls Th1

differentiation in T. cruzi-infected mice. The role of IL-17 in the

pathogenesis of Chagas’ disease is a question that deserves further

investigation. Correlations between the levels of IL-17, the extent

of myocardial destruction, and the evolution of cardiac disease

could identify a clinical marker of disease progression and may

help in the design of alternative therapies for the control of chronic

morbidity of chagasic patients.
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