
Research Article
Blueberry Attenuates Liver Fibrosis, Protects Intestinal Epithelial
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Objective. Recently, blueberry has been identified as a candidate for the treatment of liver fibrosis. Given the role of gut-liver axis in
liver fibrosis and the importance of the gut microbiota homeostasis to the maintenance of the intestinal epithelial barrier, this
study aimed to investigate whether blueberry could attenuate liver fibrosis and protect the intestinal epithelial barrier by
maintaining the homeostasis of the gut microbiota.Method. A CCl4-induced rat liver fibrosis model was used to detect the roles of
blueberry in liver fibrosis and intestinal epithelial barrier. -e liver weight and body weight were measured, the liver function was
monitored by ALTand ASTactivity, protein and mRNA were determined by western blot and RT-qPCR, and the gut microbiome
was detected byMiseq. Results.-e results showed that blueberry could reduce the rate of liver weight/body weight gain (p< 0.05),
ALT (p< 0.01) and AST (p< 0.05) activity, and the expression of collagen I (p< 0.01), collagen IV (p< 0.01), and α-SMA
(p< 0.01) expression in CCl4-induced rat liver. CCl4 impaired the intestinal epithelial barrier and decreased the expression of the
tight junction protein. Blueberry restored the intestinal epithelial barrier and increased the expression of the tight junction
protein. -e gut microbiota homeostasis was impaired by CCl4, but after treatment with blueberry, the intestinal flora returned to
normal. Conclusion. Blueberry attenuated liver fibrosis, protected intestinal epithelial barrier, and maintained the homeostasis of
the gut microbiota in a CCl4-induced injury rat model.

1. Introduction

Liver fibrosis refers to the excessive accumulation of ex-
tracellular matrix (ECM) proteins, including hepatic colla-
gen, which results from chronic liver injury and occurs in
most chronic liver diseases [1]. -e main causes of liver
fibrosis include chronic HCV/HBV infection, alcohol abuse,
and nonalcoholic steatohepatitis (NASH) [1]. Advanced

liver fibrosis leads to liver cirrhosis, resulting in portal
hypertension and liver failure and often requires liver
transplantation. Liver fibrosis is also a key risk factor for
hepatocellular carcinoma progression [2]. -e liver injury
model induced by CCl4 has been widely used in the study of
liver fibrosis, liver necrosis, and medicinal plant extract
assessments [3, 4]. Continuous CCl4 treatment increases
hepatic cell damage and results in pathological processes of
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hepatocytes, which undergo apoptosis and regeneration and
gradually return to normal. However, when necrotic liver
cells exceed their regenerative capacity, they can lead to liver
cell damage and even liver failure [5].

-e intestinal tract and the liver are anatomically and
physiologically connected. -e relationship between the two
has been called the “gut-liver axis,” and the effects of in-
testinal metabolites on the liver are essential to the onset and
progression of liver diseases [6–8]. -e gut microbiota, in
particular, has recently emerged as an important gut-liver
axis-mediated factor [9–11]. Alterations of the intestinal
microbial composition could induce liver damage and ini-
tiate liver fibrosis changes to the development of cirrhosis
and associated complications [12]. -e tight junctions (TJ)
within the gut epithelium represent a natural barrier to
bacteria and their metabolic products [13]. Breaking down
the barrier allows harmful components to injure the liver.
-erefore, the gut-liver axis is an important focus for the
treatment of liver diseases.

Blueberry (BB) is a flowering plant that belongs to
Vaccinium spp. of the family Ericaceae. -e Human Nu-
trition Research Center (Mayer, USA) has conducted a series
of in-depth studies on blueberries. -ese studies have in-
dicated that blueberries contain anthocyanins, polyphenols,
and flavonoids and appear to have the highest antioxidant
capacity among common fruits and vegetables [14, 15].
Blueberries may also have anti-inflammatory and antitumor
effects [16, 17]. Recently, BB has been found to be a potential
candidate for the treatment of liver fibrosis [18–21]. How-
ever, the underlying mechanisms remain unclear.

In this study, we aimed to investigate the preventative
effects of BB treatment on CCl4-induced liver fibrosis, in-
testinal epithelial barrier disruption, and gut microbiota
imbalance. -e results demonstrated that treatment with BB
improved liver fibrosis, intestinal epithelial barrier balance,
and gut microbiota homeostasis.

2. Materials and Methods

2.1.ChemicalsandMaterials. CCl4 and other chemicals were
supplied by Chengdu Jinshan Chemical Reagent Co., Ltd.
CCl4 was dissolved in vegetable oil.

2.2. Animals and Experimental Design. Male Sprague-
Dawley rats weighing 200–250 g were selected for use in the
study. -ey were obtained from the Laboratory Animal
Center of the -ird Military Medical University of the
People’s Liberation Army. Rats were housed in a light- and
temperature-controlled room on a 12/12 h light/dark cycle.
-e animals were allowed free access to food and water and
were kept in SPF. -e whole experiment was conducted in
accordance with the guidelines of the Animal Care and Use
Committee of Guizhou Medical University.

Rats were randomly divided into two groups as follows:
Ctrl group and CCl4 group. -e rats in the Ctrl group were
injected with vehicle every other day for 8 weeks, while the
rats in the CCl4 group were injected every other day with
CCl4 (3ml/kg 40%CCl4; i.p.) for 8 weeks.-e Ctrl group was

randomly subdivided into two groups as follows: (1) Ctrl
(control) group (n� 6): animals were fed with 10ml/kg
saline daily by gavage and (2) BB (blueberry) group (n� 6):
rats were perfused daily with 10ml/kg BB juice by gavage.
-e CCl4 group was also randomly subdivided into two
groups: (3) CCl4 (n� 6): rats were injected with CCl4 (3ml/
kg 40% CCl4; i.p.) once a week, and 10ml/kg saline was
administered daily by gavage and (4) CCl4 + BB group
(n� 6): rats were injected with CCl4 (3ml/kg 40% CCl4; i.p.)
once a week, and 10ml/kg BB juice was administered daily
by gavage.-e rats were fed for another 8 weeks for a total of
16 weeks.

2.3. Blood and Tissue Samples. At the end of the treatment,
all rats were sacrificed by cardiac puncture under sodium
thiopental anesthesia (50mg/kg, i.p.). Blood was collected in
dry tubes.-e livers and colon tissues were rapidly removed,
washed in 0.9% NaCl, and stored in ice. -e materials were
stored at − 80°C until the main analysis.

2.4. Determinations in Serum. Alanine aminotransferase
(ALT) and aspartate aminotransferase (AST) measurements
were performed on a Siemens ADVIA-2400 automatic
biochemical analyzer.

2.5.Western Blot Analysis. Total protein was extracted from
the rat liver and colon with RIPA buffer. Protein concen-
tration was determined via BCA assay. Equal amounts of
protein and 5x SDS loading buffer were mixed and boiled for
5min. Proteins (30 μg per lane) were separated via SDS-
PAGE on a 10% gel and transferred onto polyvinylidene
difluoride membranes (Zhongshan Jinqiao Biology and
Technology Co., Ltd., Beijing, China). Membranes were
blocked with 5% nonfat milk for 1 h at room temperature.
-e membranes were incubated with primary antibodies
against Collagen I (3241980-1, Abcam), Collagen IV
(AA06195689, Bioss), α-SMA (GR282976-35, Abcam),
Claudin1 (ab15098, Abcam), Claudin2 (ab53032, Abcam),
ZO1 (21773-1-AP, Proteintech Group, Inc), and β-actin
overnight at 4°C, respectively. Following primary in-
cubation, membranes were incubated with horseradish
peroxidase-labeled goat antimouse or antirabbit immuno-
globulin G secondary antibody (A0208, Beyotime Bio-
technology) for 1 h at room temperature. Protein bands were
visualized using an ECL Prime Western Blotting Detection
Reagent (RPN2232SK, Shanghai Haoran Biotechnology Co.,
Ltd.).

2.6. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). Total RNA was extracted from the
colon using TRIzol reagent (TAKARA). Total RNA (2 μg)
was reverse transcribed into cDNA using the BestarTM
qPCR RT kit (DBI). To detect the mRNA expression levels of
cluadin1, cluadin2, and ZO1, qPCR was performed using the
BestarTM qPCR MasterMix (DBI) on an ABI 7900 Real-
Time PCR system (Applied Biosystems; -ermo Fisher
Scientific, Inc.). -e following primer pairs were used for
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qPCR: claudin1: forward, 5′-GGACAACATCG TGACT-
GCTC-3′ and reverse, 5′-CCCAGCAGG ATGCCAAT-
TAC-3′; claudin2: forward, 5′-GCTGTAGTGG GTGGAG-
TCTT-3′ and reverse, 5′-GGCCTGGTAG CCATCATAGT-
3′; ZO1: forward, 5′-CACCTCGCACG TATCACAAG-3′
and reverse, 5′-GGCAATGACAC TCCTTCGTC-3′; GAP-
DH: forward, 5′-CCTCGTCTCAT AGACAAGATGGT-3′
and reverse, 5′-GGGTAGAGTCATA CTGGAACATG-3′.
-e thermocycling conditions for qPCR were as follows:
initial denaturation at 95°C for 10 sec and 40 cycles of 95°C
for 10 sec and 60°C for 60 sec. -e expression was quantified
using the 2− ΔΔCq method and normalized to the internal
reference gene GAPDH.

2.7. Histological Analysis. -e liver and colon tissues were
paraffin-embedded after fixation and cut into 5 μm thick
sections. Afterwards, the haematoxylin and eosin (H&E)
stain was used to stain sections of liver and colon for his-
tological analysis according to standard instructions.
According to the standard instructions, Masson’s stain was
also performed, with the results showing reticulin fibers in
the fibrotic areas. In order to randomly select microscopic
areas in liver sections for examination, a Ti-S inverted
fluorescence microscope (Nikon, Tokyo, Japan) was used.

2.8. 16S rRNA Gene V4 Amplification, Quantitation, and
Sequencing. -e sample was subjected to targeted meta-
genomic analysis by sequencing the V4 region of the 16S
rRNA gene. Primers modified from Caporaso et al. [22] were
utilized to conduct V4 amplification. As a brief introduction,
these primers were designed to amplify the 16S rRNA gene
from 515 to 806, which includes a barcode and an adapter
for annealing to the Illumina flow cell. -e primers in this
study differed from those in Caporaso et al. because both of
the primers contained a 12 bp barcode and not just the
reverse primer (Dataset S25).-is makes it possible to pool
many samples using a unique combination of barcodes,
overcoming the dependence on a large number of reverse
primers with unique barcodes. -e PCR reaction mixture
was prepared using Qiagen HotStar HiFidelity polymerase.
Qiagen HotStar HiFidelity polymerase was employed to
prepare the PCR reaction mixture. Each mixture had a
volume of 25 μL and was polymerized using 0.5 μL HotStar
92 polymerase, 1 μL sample DNA, 2.5 μL reverse primer
(10 μM), 2.5 91 μL forward primer (10 μM), 5 μL HotStar
PCR Buffer, and 14 μL·H2O. A touchdown PCR program
was utilized on a Biometra TProfessional Basic Gradient
thermocycler: 95°C for 5min, followed by 7 cycles of 95°C
for 45 sec, 65°C for 1min (decreasing at 2°C/94 cycle), and
72°C for 90 sec, followed by 30 cycles of 95°C for 45 sec,
50°C for 30 sec, and 72°C for 95 sec. A final extension at
72°C was carried out for 10min, and the reactions were
held at 4°C. -e reactions were run on a 1% agarose gel in
order to ensure the success of the amplification. Un-
successful reactions were followed by one more trial,
failure of which would lead to removal from the experi-
ment. -e amplicon libraries were diluted 40x. To quantify
the amplicons, either an Agilent Bioanalyzer (greenhouse

libraries) or a Caliper LabChip GX (field experiment li-
braries) was used at the DNA Technologies Core at the
Genome Center, UC Davis. -e libraries were then pooled
into 4 pooled libraries (2 for the greenhouse experiment
and 2 for the field experiment) at equivalent concentra-
tions. To remove any primer dimer from the polymerized
amplicon libraries, the 4 pooled libraries were run on 1.8%
5 agarose gels and a 400 bp band was extracted. As a final
check of quality, the bands were subjected to purification
(Macherey-Nagel Nucleospic Gel and 104 PCR Cleanup
kit) and bioanalysis. Afterwards, each library was sub-
mitted to the UC Davis DNA Technologies core for
250 × 250 paired end and dual index sequencing on an
Illumina MiSeq instrument.

2.9. Sequence Analysis. According to the barcode se-
quences, a customized Perl script based on the principle of
exact matching was utilized to decompile the sequences
obtained from the MiSeq runs. MOTHUR’s command
make.contigs was adopted to form contiguous reads by
overlapping these sequences [23]. A read containing any
base of ambiguity, along with any read exceeding 275 bp
was then discarded. -e sequences were then clustered into
operational taxonomic units (OTUs) by UCLUST [24]
based on 97% pairwise identity. -is was performed using
QIIME’s [25] open reference OTU picking strategy based
on the Greengenes 16S rRNA database (13_5 release) as a
reference [26]. Using default parameters, the QIIME’s
version of the Ribosomal Database Project’s classifier [27]
was pitted against the Greengenes 16S rRNA database
(13_5 release) to develop a taxonomy of the representative
sequences for each OTU. All OTUs identified as belonging
to chloroplast and mitochondria were deleted from the data
set. PyNAST [28] in QIIME was adopted for alignment of
the representative sequences for each OTU. QIIME’s
implementation of ChimeraSlayer [29] was performed to
identify the Chimeric OTUs, which were then removed
from the OTU table and OTU representative sequence file.
FastTree [30] generated a phylogenetic tree from the
alignment file.

2.10. Statistical Analysis. Data were reported as mean-
± standard deviation. All statistical analyses were performed
using GraphPad Prism (Version 8; GraphPad Software, Inc.,
La Jolla, CA, USA). -e two-way ANOVA test was used to
analyze differences among the four groups. Statistical sig-
nificance was obtained at p< 0.05.

3. Results

3.1. Blueberry Improved CCl4-Induced Liver Weight Loss and
Liver Function. To ascertain the effects of BB on CCl4-in-
duced liver injury, rats were injected with CCl4 for 8 weeks
and then subjected to treatment with BB by gavage for
another 8 weeks. -roughout the entire process, the rats’
body and liver weight were constantly monitored. -e re-
sults demonstrated that no significant difference in body
weight was found between the control group and the
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experimental group (Figure 1(a)). -e administration of
CCl4 increased liver weight, and treatment with BB pre-
vented CCl4-induced liver weight gain (p< 0.05)
(Figure 1(b)). A significant increase in the serum activities
of ALTand AST, two reliable indicators of liver injury [21],
is evidence of hepatocellular damage. Treatment with CCl4
indeed contributed to a significant increase in serum ALT
and AST. It was observed that these enzyme activities
decreased in CCl4-treated rats due to BB treatment
(Figures 1(c) and 1(d)). -e differences of ALT and AST
were statistically significant (p< 0.01 for ALT, p< 0.05 for
AST). -ese data indicated that blueberry could improve
CCl4-induced liver damage.

3.2. Blueberry Attenuated CCl4-Induced Liver Fibrosis.
-en, the role of BB in CCl4-induced liver fibrosis was
examined. After HE and Masson’s staining, there were signs
of CCl4-induced liver collagen fiber regeneration, diffuse
steatosis, hepatic plate disorder, and lobular structure de-
struction (Figures 2(a) and 2(b)). Treatment with BB im-
proved the dysfunction induced by CCl4 (Figures 2(a) and
2(b)). Western blot was conducted in each group to detect
the fibrotic protein collagen I, collagen IV, and α-SMA. -e
results showed that treatment with BB reduced the

expression of collagen I, collagen IV, and α-SMA induced by
CCl4 (Figures 2(c)–2(f)). -e differences were statistically
significant (p< 0.01).-ese data also indicated that BB could
alleviate CCl4-induced liver fibrosis.

3.3. Blueberry Protected Intestinal Epithelial Barrier Break-
down Induced by CCl4. -e tight junctions (TJ) within the
gut epithelium represent a natural barrier to bacteria and
their metabolic products and play a key protective role in
preventing liver injury [13]. -en, we tested whether BB
could mitigate liver damage by maintaining the balance of
the intestinal epithelial barrier. CCl4 disrupted the intestinal
epithelial barrier and reduced the expressions of TJ protein
(Figure 3). Treatment with BB could improve the structure of
colon (Figure 3(a)) and increase the protein (Figures 3(b)
and 3(c)) and mRNA levels (Figure 3(d)) of claudin1,
claudin2, and ZO1 reduced by CCl4. -e differences were
statistically significant (p< 0.0001 for protein and p< 0.05
for RNA). -ese data indicated that BB could improve the
intestinal epithelial barrier.

3.4. Effects of BB on the Alterations of the Gut Microbiota
Induced by CCl4. An aggregate of 1,934,046 sequences was
procured from the 24 faecal samples, with an average of
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Figure 1: Blueberry attenuated CCl4-induced liver injury-e body weights (a) and liver weights/body weights (b) in the Ctrl, BB, CCl4, and
CCl4 + BB groups. -e plasma levels of ALT (c) and AST (d) in the Ctrl, BB, CCl4, and CCl4 + BB groups. n� 6. ∗p< 0.05 and ∗∗p< 0.01.
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438.86 bp per sample. A total of 1352 OTUs (similarity
greater than 97%) were determined after quality and
chemical composition analysis. As Figures 4(a)–4(c) suggest,
a significant decrease in firmicutes and bacteroidetes was
observed following CCL4 treatment in the dominant phyla of
the identified bacterial phyla, including Bacillus and

Bacteroides. After BB treatment, the gut microbiota showed
a recovery trend, suggesting that administration of BB
helped prevent CCL4-induced hardness and changes in the
number of bacteroides. After treatment with BB, the gut
microbiome showed a trend of recovery, suggesting that BB
administration contributed to the prevention of CCl4-
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Figure 2: Blueberry attenuated CCl4-induced liver fibrosis. H&E (a) and Masson’s (b) staining in rat livers among the Ctrl, BB, CCl4, and
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induced alterations in the abundance of firmicutes and
bacteroidetes.

In order to compare the differences between groups with
differing taxon abundance, a linear discriminant analysis
effect size (LEFSE) method was adopted, with a higher score
indicating greater consistency. Low-density lipoprotein A
showed different taxa in the gut microbiota between

different groups. LEFSE analysis was performed on the
sequence of each sample to generate a cladogram. -rough
the cladogram, the different microbial communities of each
group could be observed at different levels. Each circle
represents the classification level from phylum to species.
-e diameter of the small circle is proportional to the relative
abundance of gut microbiota. As shown in Figure 5, there
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Figure 5: Differences in microbiota composition among the Ctrl, BB, CCl4, and CCl4 + BB groups with linear discriminant analysis effect
size (LEFSE), visualized by cladogram (a) and histogram (b).
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were 22 largest differences in the intestinal flora (from
phylum to species) of the four groups: the Ctrl group, the
CCl4 group, the BB group, and the CCl4 + BB group
(Figures 5(a) and 5(b)). -ese data suggest that oral ad-
ministration of BB considerably contributed to the pre-
vention of CCl4-induced alterations in the abundance of gut
microbiota.

4. Discussion

-emain cause of liver fibrosis is chronic liver injury, which
is a reversible process in its early stage [31]. Previous studies
have demonstrated that BB has a strong antiliver injury effect
[18–21]. However, the underlying mechanisms of BB against
liver fibrosis remain obscure. -erefore, this study sought to
elucidate these mechanisms of BB in liver fibrosis. In this
study, the liver fibrosis model was induced by CCl4 in rats.
-e serum ALT and AST enzymes’ activities markedly in-
creased after CCl4 administration, indicating serious hepatic
injury; treatment with BB significantly decreased the activity
of these enzymes (Figures 1(c) and 1(d)). -e H&E and
Masson’s staining showed that CCl4 administration caused
severe histological damage of liver tissue; however, treat-
ment with BB notably attenuated the degree of liver injury
(Figures 2(a) and 2(b)). -ese findings demonstrate that BB
has a protective effect against CCl4-induced liver injury.

To ascertain the underlying mechanisms of BB in liver
fibrosis, we first investigated the intestinal epithelial barrier.
-e intestinal epithelial barrier consists of multiple defense
mechanisms, which can be divided into an epithelial (i.e., the
mucus layer and epithelial cells) and an immunological
barrier (i.e., the epithelial secretions and immune cells). In
the current study, our principal focus was on the epithelial
barrier, particularly the monolayer epithelial cells, which are
interconnected by junctional complexes. On the one hand,
the epithelium promotes the absorption of nutrients, water,
and electrolytes in the lumen. On the other hand, it acts as a
barrier preventing the transport of potentially harmful
substances through the extracellular and paracellular com-
partment transport [32]. Paracellular transport is regulated
by the apical junctional complex and consists of the tight
junction (TJ) and the subjacent adherent junction (AJ) [33].

-e TJs seal the paracellular space and form a selective
barrier that allows transport via at least two pathways: a
high-capacity, charge-selective pore pathway for small ions
and uncharged molecules and a low-capacity leak pathway
for larger molecules, regardless of charge [34]. TJs are
considered highly dynamic, opening and closing continu-
ously in response to various stimuli [35]. -ey consist of
several transmembrane proteins, such as occludin, members
of the claudin family, and junction adhesion molecules, as
well as cytoplasmic plaque proteins, such as the zonula
occludens proteins (i.e., ZO-1, ZO-2, and ZO-3), which
connect the transmembrane proteins with the perijunctional
actomyosin ring [33, 36]. Contraction of this ring is im-
portant in regulating paracellular permeability and is mainly
mediated by activation of myosin light chain kinase
(MLCK), which phosphorylates myosin II regulatory light
chain (MLC) [33, 36]. In this study, we demonstrated that

BB could improve the intestinal epithelial barrier broken
down by CCl4 (Figure 3).

Now commonly referred to as “a new virtual metabolic
organ,” the gut microbiota (GM) is a diverse ecosystem of
archaea, bacteria, fungi, protozoa, and viruses that produces
pathogenesis of the gastrointestinal tract, liver, respiratory,
cardiovascular, endocrine, andmany other diseases [37].-e
gut-liver axis, which has received increasing attention in
recent years, is the result of close anatomical and functional
bidirectional interactions between the gastrointestinal tract
and the liver, primarily through the portal vein [38]. -e
symbiotic relationship between GM and the liver is regulated
and stabilized by a complex network of interactions, in-
cluding metabolism, immunity, and neuroendocrine
crosstalk between them [39]. Excessive intake of tissue-
destructive foods, such as alcohol, CCl4, and/or high-fat
diets (HFD), weakens the intestinal barrier function and
produces large amounts of intestinal microbial components
(so-called microbial-associated molecular patterns
(MAMPs)), bacterial metabolites, and even intestinal
microbiota, which are easy targets of transfer to the liver. As
a consequence, this can lead to serious liver diseases, such as
liver inflammation, fibrosis, and cancer [6]. -erefore, these
intestinal microbial components and metabolites not only
affect the intestinal tract where the gut microbes are located
but also the organs that are located away from the gut
through their systemic circulation [40, 41]. Our data dem-
onstrated that BB could prevent CCl4-induced alterations in
the abundance of gut microbiota (Figures 4 and 5).

In conclusion, the current study has demonstrated that
BB prevented CCl4-induced gut microbiota alterations to
attenuate liver fibrosis and maintain the balance of the
intestinal epithelial barrier.
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