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Chronic obstructive pulmonary disease (COPD) and lung cancer are leading causes of deaths worldwide which are associated with
chronic inflammation and oxidative stress. Lung cancer, in particular, has a very high mortality rate due to the characteristically
late diagnosis. As such, identification of novel biomarkers which allow for early diagnosis of these diseases could improve outcome
and survival rate. Markers of oxidative stress in exhaled breath condensate (EBC) are examples of potential diagnostic markers for
both COPD and non-small-cell lung cancer (NSCLC). They may even be useful in monitoring treatment response. In the serum,
S100A8, S100A9, and S100A12 of the S100 proteins are proinflammatory markers.They have been indicated in several inflammatory
diseases and cancers including secondary metastasis into the lung. It is highly likely that they not only have the potential to be
diagnostic biomarkers for NSCLC but also prognostic indicators and therapeutic targets.

1. Introduction

Chronic obstructive pulmonary disease (COPD) and lung
cancer are the leading causes of deaths worldwide which are
associatedwith cigarette smoking. COPD is a preventable and
treatable disease characterised by progressive, irreversible air-
flow obstruction resulting from chronic airway inflammation
[1–3]. It is responsible for 5.8% of all deaths (3.28 million
deaths in 2008) and expected to become the third leading
cause of death by 2030 [4]. Lung cancer, on the other hand,
is defined as cancer which arises from cells of respiratory
epithelium [5]. It has been the global leading cause of cancer
death (approximately 1.8 million deaths per year) since 1985
[5], accounting for 12.4% of total new cancer cases diagnosed
[5] and almost as many deaths as those from prostate,
breast, and colon cancer combined [6]. The majority (85%)
of lung cancer is non-small-cell lung cancer (NSCLC), and it
can be further divided into adenocarcinoma, squamous cell
carcinoma, and large cell carcinoma comprising 38.5%, 20%,
and 2.9% of all lung cancer cases, respectively [5].

Despite significant advances in 5-year survival rates of
other cancers, that of lung cancer remains low at 15.6%
(compared to 66% for colon cancer, 94% for melanoma,
90% for breast cancer, and 100% for prostate cancer) [6, 7].
Even more disappointingly, >52% of the patients have distant
metastases (stage IV) at the time of diagnosis with a resultant
5-year survival of<3.6% (Figure 1) [5].This is in stark contrast
to the 60%–80% 5-year survival rate for patients with stage I
lung cancer [8]. Patients usually present late as lung cancer
is silent early in its course of disease and the symptoms are
often nonspecific, thereby mistakenly attributed to ageing
or smoking [9]. Furthermore, screening procedures such as
sputum cytology and chest X-rays have failed to decrease
mortality [10, 11]. Although screening CT scans increase the
detection rate of early-stage lung cancer or small noncalcified
nodules, the effect on mortality rate is still being evaluated,
and the benefits need to be weighed against risks including
radiation exposure, false positives, and overdiagnosis [12–16].

Much research has thus been directed towards the hope
of finding new, simple, and minimally invasive biomarkers
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Figure 1: Stepwise progression towards lung cancer. Oxidants in cigarette smoking induce inflammation which subjects DNA to mutations.
The failure to repair damaged DNA in critical coding regions causes cell proliferation and lung cancer.

of early diagnosis or screening for COPD and lung cancer.
Exhaled breath condensate and serum samples are two such
examples.

2. Linking COPD and Lung Cancer

It is well established that both COPD and lung cancer are
usually due to tobacco smoking [17–22]. The majority (90%)
of lung cancers are associated with tobacco smoking [1], and
smokers have a 2–30-fold increase in the risk of developing
lung cancer [21, 23].

Apart from smoking, COPD is itself an independent risk
factor [5, 7, 18, 24] which elevates the risk of lung cancer
by 4.5 times [1, 7], and 1% of COPD patients develop lung
cancer each year [18] while 40%–70% of lung cancer patients
also have COPD [19, 22, 25, 26]. Furthermore, a positive
correlation exists between the extent of airflow limitation and
incidence of lung cancer [3, 18]. Even emphysema in never
smokers (such as that of𝛼 1-antitrypsin deficient carriers) also
carries an elevated risk of lung cancer by 2.4-fold [22].

It is also known that COPD patients are at increased
risk of developing squamous cell carcinoma with a worse
prognosis as they not only develop higher grade tumours but
also suffer from a higher rate of recurrence [1, 18, 27, 28].

3. Chronic Inflammation and Oxidative Stress

COPD and lung cancer are both associated with chronic
inflammation and oxidative stress, [3, 19, 29, 30] in which
oxidants, inflammatory mediators, and antioxidants are key
players.

3.1. Oxidants. Oxidants can be generated exogenously or
endogenously. Exogenous sources of oxidants include tobac-
co smoke, infections, and pollutants (such as ozone and
nitrogen dioxide) [31, 32]. Of these sources, cigarette smoking
is a major contributor as one puff contains up to 1015

oxidants particles and approximately 4700 different com-
pounds [19, 31, 33]. Endogenously, oxidants are not only
produced from the lung epithelial cells during respiration
but also inflammatory mediators are released from cells such
as neutrophils, eosinophils, and activated macrophages dur-
ing inflammation [34–37]. They are generated through the
mitochondrial electron transport chain during respiration
and peroxidase enzymes such as myeloperoxidase (MPO),
eosinophil peroxidase (EPO), and heme peroxidase during
inflammation.

Under normal physiological conditions, oxidants have a
role in growth regulation, intracellular signaling, and host
defence (inflammation) against infection [38]. They com-
prise reactive oxygen species (ROS) or reactive nitrogen
species (RNS). Examples of ROS include superoxide ( ∙O

2

−),
hydroxyl radicals ( ∙OH), and hydrogen peroxide (H

2
O
2
)

while RNS includes nitric oxide ( ∙NO), nitrogen dioxide, and
peroxynitrite (ONOO−) [32]. Superoxide can be dismutated
to hydrogen peroxide. In the presence of redox-active transi-
tion metals such as iron or copper, highly unstable hydroxyl
radical can be generated from hydrogen peroxide in a reac-
tion known as the Fenton reaction. Meanwhile, nitric oxide
readily reacts with ROS to form peroxynitrite which breaks
down into nitrite (NO

2

−) and nitrate (NO
3

−).
Reactive species are very unstable and potentially damag-

ing as their unpaired electrons can exert injurious effects by
oxidising DNA, proteins, and lipids [37, 39].

3.2. Inflammation and Oxidative Stress. The introduction of
oxidants into the lung from tobacco smoking activates the
innate immune cells such as lung epithelial cells whereby
damage-associated molecular patterns (DAMPs) are released
from injured cells [40]. Following this event, inflammation,
which is the body’s normal response to combat toxicants,
is triggered [41–44] by the activation of transcription factor
nuclear factor-𝜅B (NF-𝜅B) and activator protein 1 (AP-
1) in airway epithelial cells and macrophages [29, 45].
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The activated transcription factors are then responsible for
the transcription of downstream inflammatory cytokines
such as interleukin-6 (IL-6), interleukin-8 (IL-8), and tumour
necrosis factor 𝛼 (TNF-𝛼) [34, 45–47]. The resultant ele-
vated cytokine levels then attract more neutrophils and
macrophages to augment inflammation (Figure 3) [29, 32,
45]. The degree of inflammation as evident by the infiltration
of inflammatory cells correlates with disease severity [1, 19,
29].

Following recruitment, neutrophils and macrophages
release neutrophil elastase and matrix metalloproteinases-
9 which are proteases that degrade lung matrix elastin and
collagen [29, 32, 36, 44]. In addition, antiproteinases such
as 𝛼-1-protease-inhibitor (𝛼-1-PI) and antileukoprotease [32]
are inactivated by oxidants [34], leading to a proteinase/anti-
proteinase imbalance which destroys the alveolar wall, caus-
ing airspace enlargement (emphysema) in COPD (Figure 2)
[19, 29].

In addition, injuries during inflammation also lead to
goblet cell hyperplasia and squamous metaplasia. This
impairs mucociliary clearance, and inflammatory mediators
accumulate in the airways as a result, which again amplifies
inflammation [1]. The activation of epithelial growth factor
receptor (EGFR) in response to neutrophil elastase and oxi-
dative stress is another reason for mucus hypersecretion [1].

Apart from initiating inflammation, oxidants also readily
attack polyunsaturated fatty acids of cell membranes to form
lipid peroxidation products (LPPs) such as hydroperoxides,
endoperoxides, and aldehydes including ethane, pentane,
isoprostanoids, malondialdehyde, and 4-hydroxy-2nonenal
which are even more reactive [31, 32, 46, 48]. Lipid peroxida-
tion destroys cells by damaging cell membrane [31], and LPPs
also react with DNA to cause genomic instability [48].

3.3. Oxidant/AntioxidantDisequilibrium. Under normal con-
ditions, oxidants are counterbalanced by antioxidants which
consist of enzymes (superoxide dismutase, catalase, glutathi-
one peroxidase, and glutathione-S-transferase) and nonenzy-
matic free radical scavengers (glutathione, cysteine, thiore-
doxin, vitamins C and E, beta-carotene, and uric acid) [46].

In response to elevated levels of oxidants, local antiox-
idants such as superoxide dismutase, catalase, glutathione
associated enzymes, and manganese superoxide dismutase
may increase in an attempt to counter the insult [49–51].
The continuous introduction of oxidants from smoking,
however, persistently exposes the lung parenchyma to raised
oxidant levels, causing chronic inflammation. This exhausts
the buffering capacity of antioxidants, giving rise to an
oxidant/anti-oxidant disequilibrium which leads to oxidative
stress and cellular damage [32, 42, 45, 52].

3.4. Chronic Inflammation and DNA Damage. Chronic
inflammation increases cell turnover and replication errors
[19, 42, 44, 53–55]. Replication errorswhich can occur include
adduct formation, single or double stranded DNA breaks,
promoter hypermethylation, sequence mutations, base inser-
tions and deletions, translocations, microsatellite alterations,

oncogene activation, and tumour suppressor gene inacti-
vation [1, 46, 48, 56–59]. For smokers with lung cancer,
mutations commonly occur in the K-ras oncogene and p53
tumour suppressor genes as well as there being p16 promoter
hypermethylation [60–65]. The DNA mutations may confer
on the cells a survival advantage by allowing cells to escape
from apoptosis thereby proliferating uncontrollably [5, 62,
64].

Proofing mechanisms of DNA may attempt to repair or
remove the damaged DNA via direct repair, double-strand
break repair, cross-link repair, nucleotide excision, and base
excision [1]. When damaged beyond repair, the cell usually
undergoes apoptosis [5]. However, if any of the steps of
reparation fail, or that damage to DNA is too extensive,
permanent mutations may occur in the DNA, resulting in
oncogenesis.

Apart from direct DNA damage, oxidants also promote
tumorigenesis by direct reaction with proteins (protein per-
oxidation) to impair DNA reparative enzymes such as DNA
polymerase [58].

4. Exhaled Breath Condensate

Exhaled breath condensate (EBC) is the cooling of exhaled
gas to gain insight into the composition of extracellular lining
fluid (ELF) and soluble exhaled gases [35, 66–68]. Com-
poundswhich have beenmeasured include lipid peroxidation
products, products of nitrogen oxide metabolism, hydrogen
ions, hydrogen peroxide, cytokines, proteins, and DNA [69–
71].

EBC has several advantages as an investigational tech-
nique. It is noninvasive (unlike bronchoalveolar lavage),
inexpensive, easy to collect, and also easily repeatable without
causing airway inflammation or dysfunction (unlike bron-
choalveolar lavage, transbronchial biopsy or induced spu-
tum analysis) [66, 67, 72, 73]. Furthermore, EBC collection
devices are portable, do not induce any patient discomfort,
and can thus be used in children and mechanically ventilated
patients [67, 71, 74–76].

EBChas the potential to be employed in the screening and
diagnosis of COPD and lung cancer, disease phenotyping,
exacerbations, and treatment response monitoring as well as
disease severity measuring and prognosis indicating [66, 68,
72, 77]. For instance, the use of EBC to measure lung antiox-
idant capacity could enable the monitoring of a response
to antioxidant or anti-inflammatory treatment [78, 79]. It
may also allow early anti-inflammatory treatment before
the development of symptoms and lung function decline in
COPD [78, 79].

EBC, however, has a number of limitations which include
dilution by water vapour, nonsite specificity, saliva contam-
ination and variable reproducibility. With >99.9% of EBC
comprising water vapour [67], concentrations of the media-
tors of interest can sometimes be close to or below the detec-
tion limit of the appropriate assays; thus, assays of sufficient
sensitivity are needed to effectively measure biomarkers in
EBC [71, 77]. There is currently no standardised assessment
of EBC dilution, but such issues can in part be overcome by
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Figure 2: Smoking is the major cause of COPD and lung cancer. Oxidants in cigarette smoking are not only a direct cause of lung cancer
by DNA damage through protein and lipid peroxidation but also an indirect cause by triggering inflammation. While products of recruited
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Figure 3: EBC consists of particles from ELF of alveoli, bronchi, and mouth, each with an unknown relative contribution.

correcting the dilution with urea, total protein, or cation con-
centration and conductivity of lyophilized EBC [71, 80, 81].
EBC dilution may also influence the pH. It is thus important
to deaerate the sample andmonitor the dilution and buffering
capacity of EBC when measuring pH [82].

As a result of the collection pathway, EBC also consists of
nebulised fluid droplets from the alveoli, bronchi, andmouth,
each with an unknown relative contribution (Figure 3). This
nonsite specificity is a limitation, and it is inevitable that
EBC of patients may consist of a fraction derived from areas
not affected by the specific lung disease [67, 81]. EBC from
lung cancer patients, for instance, will consist of a large
fraction derived from nonmalignant areas. As EBC is col-
lected through the mouth, saliva contamination is another
potential problem. It can, however, be minimised by asking
subjects to rinse their mouth prior to collection, swallowing
accumulated saliva where possible [67] and routinely testing
for salivary amylase in EBC samples [71].

While the volume of EBC is reproducible, levels of
biomarkers in EBC may vary, and this gives rise to problems
in repeatability and reproducibility [71, 81, 83]. This can,
however, be overcome by concentrating samples, using assays
with a low limit of detection and high sensitivity in many
cases [71].

A range of biomarkers have been studied inEBCofCOPD
and lung cancer patients. The results are as shown in Table 1.

5. Plasma Proteomics

In addition to EBC, the serumprotein profile is another easily
collected yet cost-effective tool in detecting and monitoring

lung cancer [9, 84, 85]. Elevated levels of C-reactive protein,
serum amyloid A (SAA),mucin I, and 𝛼-I-antitrypsin can aid
in distinguishing between healthy subjects or COPD patients
[85] but are however low in sensitivity and/or specificity [86].
As such, novel markers are being described, such as the S100
proteins.

6. S100 Proteins

The S100 proteins are a family of more than 20 lowmolecular
weight acidic proteins of 10–12 kDa which are calcium-
binding, and they belong to the EF hand proteins subfamily
[87–92].They consist of two EF-hands with different calcium
binding affinities joined together by a central hinge region
[87, 91, 93]. This explains their role in regulating calcium-
dependent intracellular processes [94] including protein
phosphorylation, enzyme activity, cytoskeletal components,
transcriptional factors, cell growth, and calcium homeostasis
[87, 89, 90]. The S100 proteins can form homodimers, het-
erodimers, and oligomers with varying functions [87, 89, 90].
Themajority of their coding genes are found on chromosome
1q21 which is frequently mutated [87, 95–97]. They have
been implicated in many epithelial and soft tissue cancers
including those of lung, breast, oesophagus, bladder, kidney,
prostate, thyroid, gastric oral, colorectal, and liver [87, 95–
97].

6.1. S100A8 and S100A9. S100A8 is also known as calgranulin
A or myeloid-related protein 8 while S100A9 is also known
as calgranulin B or myeloid-related protein 14. While much
of the literature suggests that the S100A8 and S100A9 are
proinflammatory, a body of research presents an opposing
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Table 1: Summary of EBC markers of oxidative stress and antioxidant capacity including S100 proteins in COPD and lung cancer (legend:
“↑”: elevated, “↓”: decreased, “≈”: no difference, “×”: undetectable).

Category Biomarkers COPD patients Lung cancer patients

EBC (compared to
healthy volunteers)

EBC (compared to
smokers or
ex-smokers)

EBC (compared to
healthy volunteers)

EBC (compared to
specific controls)

Markers of oxidative stress
Reactive oxygen species Hydrogen peroxide ↑ [34, 135–138] ↑ [34] ↑ [135]

Reactive nitrogen species

Nitric oxide ↑ [139–144] ↑ [139, 141] ↑ [140] ↑ (controls = cancer
patients) [142]

Nitrite ↑ [145] ↑ [145]
↑ (controls = cancer
patients) [142]

Nitrate
High variability

[146]

↓ (controls = cancer
patients) [142]

≈ [141, 147]
Peroxynitrite ↑ [148, 149] ↑ [148, 149]

Lipid peroxidation
products/eicosanoids
(arachidonic acid
derivatives)

8-isoprostane ↑ [137, 148, 150, 151] ↑ [34, 148, 150] ↑ [135]
≈ (controls = healthy
smokers) [152]

Malondialdehyde ↑ [138, 153] ↑ [153]
↑ [154]

≈ [137, 155] ≈ [137]

Leukotrienes B4 ↑ [156–158] ↑ [159]
↑ (controls = patients
without pulmonary
disease) [156]

Leukotriene C4 ↑ [160]
Leukotriene D4 ↑ [160]
Leukotriene E4 ≈ [158] ↑ [160]
Prostaglandin E2 ↑ [158]
Thromboxane B2 (the
stable form of
thromboxane A2)

↓ [158]

Prostaglandin
D2-methoxime ≈ [158]

Prostaglandin F2𝛼 ↑ [158]

Cytokines and proteins

Tumour necrosis
Factor-𝛼 ≈ [47] ↑ [161]

↑ (controls = smokers
without COPD or
lung cancer) [152]

Interleukin-6 ↑ [162]
↑ [163]

≈ [47]

Interleukin-8 ≈ [47, 164] ≈ [164]
↑ (controls = patients
without pulmonary
diseases) [156]

Metaloproteinase-9 ↑ [134]
↑ (controls = patients
without pulmonary
diseases) [165]

Vascular endothelial
growth factor

↑ (controls = healthy
smokers) [152]

Endothelin-1 ↑ [166] ↑ [167]
↑ [168]

Volatile organic
compounds

Alkanes, alkane
derivatives, benzene
derivatives

↑ (exhaled ethane)
[169] ↑ [170, 171]

Heme breakdown product Carbon monoxide ↑ [144] ↑ [144]
pH ↓ [164, 172–175] ≈ [173] ≈ [172]
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Table 1: Continued.

Category Biomarkers
COPD patients Lung cancer patients

EBC (compared to
healthy volunteers)

EBC (compared to
smokers or
ex-smokers)

EBC (compared to
healthy volunteers)

EBC (compared to
specific controls)

Deoxyribonucleic acid
mutations

3p microsatellite
alterations ↑ [176]

Tumour suppressor
gene P53 mutations ↑ [177]

Oncogene KRAS ↑ [178]
Epidermal growth
factor receptor
(EGFR) gene
mutations

↑ (in small number
of heavy smokers
with squamous cell
carcinoma) [179]

Gene promoter
methylation
mutations

↑ [180]

Mitochondrial DNA
mutations

↑ (controls = smokers,
exsmokers without
chronic respiratory
diseases, respiratory
illnesses, or lung
cancer) [70]

Viruses Human papilloma
virus

↑ (controls = patients
suspected of lung
cancer but with
negative cytology)
[181]

Markers measuring antioxidant capacity

Enzymes Superoxide dismutase
↑ (controls = patients
without pulmonary
diseases) [182]

Nonenzymatic antioxidants

Ascorbic acid/vitamin
C

↓ (↑ in percentage
degrada-

tion/oxidation
rate) [161]

Urate × [175] × [175]

Ferritin

↑ (controls = patients
affected by
transudative pleural
effusion and without
pulmonary diseases)
[182]

Bilirubin ≈ [175] ≈ [175]

view. It is possible that the opposing effects of the calgranulins
are concentration dependent, being proinflammatory at low
concentrations and anti-inflammatory at high concentrations
[98, 99].

A100A8 and S100A9 are believed to be anti-inflammatory
by being preferentially oxidized, thereby scavenging ROS/
RNS. Oxidative modifications by ROS/RNS and posttransla-
tional modifications such as S-nitrosylation and S-glutathi-
onylation are proposed to be the regulatory switches which
activate such anti-inflammatory properties [98, 99].

Calgranulins S100A8 and S100A9, however, are also
believed to play a role in inflammation by acting as che-
mokines for neutrophils and monocytes [88, 91, 100–102].
They reportedly bind to the receptor for advanced glycation
end products (RAGE) and toll-like receptor-4 (TLR4) [88,
90, 103, 104]. This binding activates the NF-𝜅B transcrip-
tion pathway, subsequent generation of downstream proin-
flammatory cytokines, and recruitment of inflammatory
mediators such as neutrophils and monocytes in a positive
feedback loop (Figure 4) [90, 103, 104]. As such, the S100
proteins have implicatedmany inflammation-related diseases
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including rheumatoid arthritis, juvenile idiopathic arthritis,
cystic fibrosis, and chronic inflammatory bowel disease [88,
91, 93, 105–107]. Levels of S100A8 and S100A9 are elevated
in the bronchoalveolar fluid of COPD patients compared to
smokers, which suggest a potential as diagnostic markers
of COPD [108]. Another study comparing acute respiratory
distress syndrome (ARDS), cystic fibrosis (CF), and COPD
suggests that S100A8 and S100A9 are linked to chronic
inflammation while S100A12 is linked to acute inflammation
[109].

Apart from playing a role in inflammation which pro-
motes tumourigenesis (inflammation-induced cancer) [55],
the S100 proteins are also capable ofmodulating host immune
response to promote tumour progression [87].

S100A8 and S100A9 are expressed by cells of myeloid
origin, making up 40%–50% of their cytosolic content. Cells
expressing S100A8 and S100A9 include granulocytes (e.g.,
neutrophils), monocytes, and early differentiation stages of
macrophages [88, 93, 95, 97, 106, 110]. S100A12 is however
only expressed in neutrophils [102, 111]. S100A8 and S100A9
predominantly function as heterodimer complex S100A8/A9
which is also known as calprotectin [88, 112]. Calprotectin is
released by neutrophils and activated by monocytes, tumour
cells, and myeloid-derived suppressor cells (MDSCs) [113]. It
functions to regulate inflammation and inhibit myeloid cell
differentiation [114].

MDSCs are precursors of macrophages, granulocytes,
and dendritic cells [113] which increase in number during
inflammation, cancer, and infection [115]. They suppress
natural killer CD4+ and CD8+ T cell immunity against

cancer by inhibiting dendritic cell differentiation to compro-
mise antigen presentation (Figure 4) [112, 115–120]. MDSCs
suppress this innate immunity through the induction of
FOXP3+ T regulatory cells by secreting interleukin-10 (IL-
10), interferon-gamma (IFN-𝛾) and high levels of ROS, per-
oxynitrite, and nitric oxide [116].

In tumorigenesis, MDSCs are attracted from bone mar-
row to peripheral blood by inflammatory cytokines (e.g.,
interleukin-1𝛽, interleukin-6, prostaglandin E

2
), chemoki-

nes, tumour-derived growth factors, and myeloid-related
proteins such as S100A9 and S100A8 [116, 117]. The pro-
duction of proinflammatory S100A8/9 then sustains MDSC
accumulation by an autocrine feedback through TLR4 and
RAGE which activates the NF-𝜅B pathway and mitogen-
activated protein kinase [113, 116, 117, 121]. Hence, similar to
the positive feedback loop of oxidants, S100A8/A9 which is
released bymyeloid cells also promotes the recruitment of yet
more leukocytes [122, 123].

S100A8/A9-positive myeloid cells are not only early
infiltrating cells in the inflammatory process [97] but are also
upregulated in epithelial malignancies including that of the
prostate [124, 125], gastric [126], colon, and rectum [127, 128].
As such, S100A9 is suggested to be a potential marker in dif-
ferentiating prostate cancer from benign prostate hyperplasia
or healthy controls [125].

In lung cancer, a recent study found that the expression
of S100A8 and S100A9 is increased in patients with NSCLC
[116]. NSCLC patients with an overexpression of S100A9
are usually associated with poorly differentiated tumours
[129, 130], lower 5-year survival rate [108], and higher rate
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of relapse [129]. Moreover, S100A9 in CD11b+CD14+ mono-
cytic MDSC correlates with tumour response to platinum-
based chemotherapy with low CD11b+CD14+S100A9+ hav-
ing longer progression-free survival [116]. These suggest the
possibility of S100A8 and S100A9 as prognostic markers of
NSCLC.

Lastly, S100A8 and S100A9 also play a role in cell pro-
liferation and metastasis of primary tumours into the lung
[87].Their expression is increased in pulmonarymyeloid and
endothelial cells through the production of vascular endothe-
lial growth factor-A, transforming growth factor-𝛽, and TNF-
𝛼 by primary tumours before metastasis occurs [87, 131, 132].
S100A8 and S100A9 not only promote the recruitment of
CD11b+ myeloid cells but also act as chemoattractants which
draw tumour cells to premetastatic sites in the lungs [87,
110]. They recruit CD11b+ myeloid cells by activating p38
mitogen-activated protein kinase (MAPK) which promotes
migration [110]. SAA3, which is induced by S100A8, interacts
with TLR4 to stimulate the NF-𝜅B pathway in promoting
CD11b+ myeloid cell accumulation [110, 133]. In addition,
S100A8 and S100A9 also increase cancer cell motility through
p38-mediated activation of pseudopodia [87, 131].Thismakes
S100A8/A9 a potential target for inhibiting lung metastasis.

7. Future Directions

Early Diagnosis, Predicting Prognosis, and Personalised Medi-
cine. EBC and serum are noninvasive and minimally invasive
techniques which are cost effective and easily sampled. If EBC
markers of oxidative stress and serum proinflammatory S100
proteins or other candidate entities are diagnostic for COPD
and NSCLC, it could greatly improve survival outcome by
allowing early diagnosis and thus treatment.

As many NSCLC patients do not behave as predicted
based on tumour staging, new markers are also needed to
more accurately predict prognosis [134]. Prognostic biomark-
ers indicative of metastatic potential, response to treatment,
and patient survival could aid in deciding treatments. For
example, using CD11b+CD14+S100A9+ to predict response
to chemotherapy could be used to decide if patients should
be given adjuvant or neoadjuvant chemotherapy or any
chemotherapy at all.

Furthermore, it will be beneficial to discover more spe-
cific and sensitive serumbiomarkers for lung cancer as well as
to personalise anticancer therapies. For instance, knowing the
reduced overall survival of patients with an overexpression of
S100A9 may not only identify patients who are at high risk
of a poor outcome [134] but also allow the administration
of personalised anticancer therapy which targets S100A9
specifically to optimise outcome [64].

The S100 proteins have a great potential to be the
new diagnostic tumour markers, prognostic predictor, and
possibly therapeutic targets for NSCLC.
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