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Simple Summary: There has been an incredible amount of discovery in pediatric sarcomas, but
much remains to be accomplished. Clinical challenges include diagnostic heterogeneity and the poor
outcome of patients with high risk, metastatic, and relapsed disease. The emergence of single cell
sequencing has allowed the ability to document tumor cell heterogeneity in amazing detail, but it
does not allow the ability to visualize spatial orientation. This problem has been solved by spatial
multi-omics, which can be used to map tumors and visualize the distribution of critical transcripts,
mutations, and proteins. However, these tools only offer observational data. High-throughput
functional genomics provides a powerful way to highlight oncogenic drivers and potential therapy
opportunities. Research has been hamstrung by a need for annotated specimens, particularly in
post-therapy, relapsed, and metastatic disease, and initial biopsies offer only limited data oppor-
tunities. Data complexity, variability, and inconsistency present problems best approached with
AI/machine learning. We stand on the threshold of a revolution in cancer cell biology that has the
potential for translation into more effective and more directed therapies, particularly for previously
recalcitrant diseases.

Abstract: Pediatric sarcomas constitute one of the largest groups of childhood cancers, following
hematopoietic, neural, and renal lesions. Partly because of their diversity, they continue to offer
challenges in diagnosis and treatment. In spite of the diagnostic, nosologic, and therapeutic gains
made with genetic technology, newer means for investigation are needed. This article reviews
emerging technology being used to study human neoplasia and how these methods might be
applicable to pediatric sarcomas. Methods reviewed include single cell RNA sequencing (scRNAseq),
spatial multi-omics, high-throughput functional genomics, and clustered regularly interspersed short
palindromic sequence-Cas9 (CRISPR-Cas9) technology. In spite of these advances, the field continues
to be challenged by a dearth of properly annotated materials, particularly from recurrences and
metastases and pre- and post-treatment samples.

Keywords: pediatric sarcoma; molecular genetics; technology; scRNA seq; spatial multi-omics;
high-throughput functional genomics; CRISPR-Cas9; specimen annotation

1. Introduction

Sarcomas consist of a wide array of cancers that arise in bones and soft tissues. They
comprise a relatively rare form of cancer, particularly in adults where they are over-
shadowed by carcinomas, melanomas, and hematopoietic tumors such as leukemias and
lymphomas. In children, however, they gain some ascendancy in prevalence, making up
the fourth most common group of childhood cancer, following leukemia, brain tumors,
and lymphoma [1]. They form a heterogeneous group composed of a wide array of tissue
diagnoses, each caused by molecular alterations that vary in specificity and type. These
alterations include epigenetic changes seen in embryonic tumors such as embryonal rhab-
domyosarcomas, chimeric proteins found in cancers such as Ewing sarcomas, alveolar
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rhabdomyosarcomas, and synovial sarcomas, chromosomal deletions such as present in
rhabdoid sarcoma, amplified genes as seen in alveolar rhabdomyosarcomas, and chromoth-
ripsis and genomic complexity as exemplified by osteosarcoma. Inheritance of parental
mutations leading to cancer susceptibility is relatively common [2], and secondary muta-
tions and epigenetic changes are often seen in recurrent lesions and lead to chemotherapy
resistance [3].

Although there have been many major discoveries in the field of pediatric sarcoma
oncology, many unanswered questions remain, as evidenced by the relatively high number
of “undifferentiated sarcomas” and “sarcomas, not otherwise specified” [4]. Although
gene expression profiling solves many of these mysteries, the commercial production of
gene panels lags behind the rate of new discoveries. The mutational spectrum of some
pediatric sarcomas is much broader than initially realized, as with Ewing-like sarcomas [5]
and infantile fibrosarcoma spectrum lesions [6,7]. Another problem lies in solving the
mysteries behind the directed therapy-susceptibility of some tumors and the resistance of
others [8]. Solving the delivery of mutation-specific cancer delivery agents against aberrant
transcription factors remains a major challenge [3]. Finally, predicting potential therapy
responders and non-responders has major implications for preventing the untoward effects
of therapeutic agents in growing children and finding ways to combat non-responsive,
recurrent, and metastatic tumors remain challenges [3].

While recent whole exome, whole genome, and whole transcriptome sequencing
studies of pediatric sarcomas have greatly advanced our understanding of this diverse set
of tumors, these analyses only provide bulk averages of DNA and RNA alterations across
a tumor’s constituent cells. Not only do such aggregate DNA and RNA analyses fail to
reveal the full extent of the biological diversity amongst the cancerous and non-cancerous
cells in a tumor, they also fail to shed light on the role of the epigenome, whose aberra-
tions are increasingly being shown to play a central role in pediatric tumorigenesis [9,10].
Pediatric sarcomas, similar to cells undergoing differentiation during embryogenesis, are
regulated by the complex interplay between transcription factors, chromatin regulators,
modified histones, regulatory elements, non-coding RNAs, and more. Therefore, gaining
a comprehensive view of the biology of pediatric sarcomas requires a new generation
of molecular methods capable of characterizing in detail the state of the genomes, tran-
scriptomes, and epigenomes within constituent cells of tumors, including the hierarchical
three-dimensional landscape of chromosomes, which play a central role in how specific
transcriptional programs are controlled [11–14].

Furthermore, even the highest resolution, multi-dimensional analyses of pediatric
sarcomas represent mere observational snapshots of the molecular states in which a given
tumor’s constituent cells reside. As a consequence, the significance of a set of observations
must be inferred based on prior knowledge, statistical inference, or in silico models. In
order to overcome this challenge of determining the biological consequence of observed
genomic alterations, tremendous progress has been made in recent years in the develop-
ment of “functional genomics” methods, laboratory approaches that enable the functional
characterization of specific molecular alterations.

In this review we explore some of the latest, cutting-edge laboratory tools that are
advancing our knowledge of the biological underpinnings of pediatric sarcomas, and
we will focus specifically on how these methods are shedding light on new potential
therapeutic strategies, especially for the most challenging high-risk cases.

2. Clinical Challenges of Pediatric Sarcomas

Sarcoma heterogeneity poses a large challenge to pediatric oncology research. The
number of cases is relatively small, so that diverse lesions must be lumped together in
order to reach the statistical power required for a five-year study. For the purpose of
therapy, pediatric sarcomas have to this point been divided into rhabdomyosarcomas
(RMS) and “non-rhabdomyosarcomatous soft tissue sarcomas” (NRSTS), since as a group,
RMS comprise roughly one-half of the soft tissue cancers seen in children [15]. RMS have
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been similarly divided into PAX-FOXO1 “fusion-positive” and “fusion-negative” tumors,
because of the more aggressive nature of the former lesions. However, it is now becoming
apparent that other mechanisms may be in play in therapy-resistant lesions, as with the
MYOD1 mutations seen with aggressive fusion-negative spindle cell RMS [15].

For treatment protocols, RMS has been divided into “low-risk”, “intermediate-risk”,
and “high risk”, based on prognostic indicators such as stage, age, histology (in for-
mer protocols), and fusion status (in current protocols) [15]. A combination of multi-
agent chemotherapy, comprising a backbone of vincristine, actinomycin D, and cyclophos-
phamide (VAC) has been utilized since the initial trials of the Intergroup Rhabdomyosar-
coma Study Group (IRSG), and more effective agents have been elusive [15]. Chemotherapy
has been combined with external beam radiation and newer radiotherapeutic agents, com-
bined with post-adjuvant surgery, for local control. These have yielded 89%, 63%, and 38%
three to four-year event-free survival rates for low-, intermediate-, and high-risk RMS, respec-
tively, in the most recently published Children’s Oncology Group (COG) trials [16–18]. Work
continues to find effective therapies for relapsed RMS, although a classification devised by
Oberlin et al. [17] has been useful in predicting response in these lesions.

NRSTS has been a relative newcomer to multi-institutional trials of pediatric NRSTS,
with the initial trials reported by the Pediatric Oncology Group (POG) in 1999 [19]. RMS-
type therapy was used in the initial POG trial, but without any apparent effect. Grading
appeared to be important in predicting outcome, and a pediatric sarcoma-specific grading
scheme was devised [20]. The COG assumed this effort with ARST0332, using a combi-
nation of ifosfamide, doxorubicin, and radiotherapy. This trial used a system devised by
Spunt et al. to assign patients to three risk groups, which proved to be useful in defining
treatment failure risk [4]. However, heterogeneity in terms of age, primary tumor site, and
histologic diagnosis posed a major limitation that may have masked therapy considerations
for patient subsets. During this trial, 5-year event-free survival rates ranged from 89% for
low-risk patients to 65% for intermediate risk patients to 21% for high-risk patients.

Mutation-specific therapy has been successful in eradication of some sarcomas, be-
ginning with the discovery of the use of imatinib as targeted therapy for gastrointestinal
stromal tumors (GIST). However, since many pediatric GIST are negative for c-kit/PDGFRB
mutations, more effective therapy is still needed for children [21]. Crizotinib has been
effective in eliminating many inflammatory myofibroblastic tumors (IMT), but responses
have been unpredictable [22]. More recently, larotrectinib has been used as directed ther-
apy against the infantile fibrosarcomas and related tumors with TRK mutations [23]. The
mutational spectrum of this group grows increasingly complex, so that additional agents
may be required for future directed therapy.

Bone sarcomas are slightly less common in pediatric age patients, but they never-
theless comprise a major cancer group in children. The most common bone sarcoma,
osteosarcoma, has a bimodal age distribution, peaking in adolescence and older adult-
hood. Osteosarcomas require complex multi-disciplinary therapy, including multi-agent
induction chemotherapy, surgical resection, adjuvant chemotherapy, and local control for
metastases [24]. Radiation is used as an adjuvant therapy for microscopic disease or incom-
plete gross resection. A combination of methotrexate, Adriamycin, and cisplatin (MAP) has
been the most commonly used therapy backbone. Overall survival has been around 70%
after 5–6 years [24]. Because treatment intensification has failed to improve survival rates,
the use of targeted therapy for recalcitrant tumors is being investigated [25]. However,
osteosarcomas are biologically complex childhood tumors, characterized by genomic insta-
bility, unchecked cell cycle progression, and a propensity to develop drug resistance [25].
Osteosarcoma pathogenesis involves the Notch, Wnt, NF-κB, p53, PI3K/Akt, and MAPK
pathways, as well as regulatory miRNAs [26], and chromosomal instability is characterized
by chromothripsis and kataegis. Similarly, osteosarcomas possess complicated cellular
microenvironments, with bone, stroma, vascular cells, and immune cells that support their
growth and dissemination. Analysis of this complex microenvironment offers insight into
future therapy approaches [27].
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The second most common bone sarcoma, Ewing’s sarcoma, occurs most commonly
in adolescents and young adults but may occur at all ages. Extraosseous Ewing sarcomas
occur relatively frequently, but extraskeletal osteosarcoma is extremely uncommon in chil-
dren. Although extraskeletal Ewing sarcomas were once treated with rhabdomyosarcoma
therapy [28], extraosseous and skeletal Ewing sarcomas have been treated with the same
COG protocol [29]. An extraskeletal location appears to be a favorable prognostic sign [30],
and patients appear to benefit by being on an osseous Ewing sarcoma protocol instead of
soft tissue sarcoma therapy [31]. Use of ifosfamide and etoposide as chemotherapeutic
agents has led to improved survival with localized Ewing sarcoma, with response rates of
around 60 to 70% [3]. However, the outlook for metastatic and relapsed disease remains
poor, although high-dose ifosfamide appears to be an option for relapse therapy [3]. A num-
ber of factors affect outcome, including age, site, and histological response to therapy [3].
Targeted therapies are being investigated for relapsed disease [3]. As with osteosarcoma,
tumor cell microenvironment appears to play a role in Ewing sarcoma growth and therapy
resistance [3]. Ewing sarcomas contain a characteristic gene fusion between EWSR1 and a
variety of ETS family genes, most commonly FLI1, whose protein products offer attractive
but currently impregnable targets. Similar round cell bone and soft tissue sarcomas contain
either non-ETS fusions or other rearrangements, notably CIC or BCOR fusions [3].

3. Comprehensive Molecular Profiling at Single-Cell Resolution

Several groundbreaking technologies have been developed in recent years that enable
the comprehensive profiling of the genomes, transcriptomes, epigenomes, and proteomes
of single human cells [32–39], opening the door to new potential breakthroughs in our
understanding of pediatric sarcoma biology. Of these technologies, single-cell RNA se-
quencing (scRNA-seq) has led the way in characterizing tumor cell heterogeneity, especially
for pediatric cancers since the mutational burden is quite low. The advantage of scRNA-seq
is that the gene expression profile of a single tumor cell most informatively reflects that
cell’s functional state, which can vary markedly due to mutations, epigenetic modifications,
cell cycle position, stress, lineage, cell–cell interactions, and other causes. scRNA-seq also
enables the classification and functional characterization of a tumor’s non-cancerous cells,
which is not possible with single-cell DNA sequencing, and cannot functionally classify and
characterize non-cancerous cells because of the identical nature of their genomes [40–42].

While the specifics of different scRNA-seq protocols vary, they share a common strat-
egy that consists of (1) disaggregating tumors into a suspension of single cells;
(2) isolating the disaggregated cells using microfluidics, flow cytometry, or micro-droplet
separation; (3) converting the RNA of each isolated single cell into cDNA using reverse
transcriptase; (4) ligating a cell-specific oligonucleotide barcode to the cDNA fragments
from each cell; and (5) sequencing the entire pool of barcoded cDNA via next-generation
sequencing (Figure 1). By using barcode sequences, the expression data can then be com-
putationally parsed, enabling the measurement of the complete transcriptional output of
every cell [43,44].

In addition to scRNA-seq, a number of groundbreaking approaches have emerged
in recent years that make it possible to study the epigenomes of pediatric sarcomas at
unprecedented single-cell resolution.

Several of these next-generation epigenomic profiling methods, namely ATAC-seq,
ChIP-seq, and AQuA-HiChIP were deployed by Khan and colleagues in a recent study
that delineated the core regulatory circuitry of pediatric rhabdomyosarcoma (RMS) in
breathtaking detail [45]. These methods enabled the investigators to show that the product
of the PAX3-FOXO1 fusion gene binds to super enhancer histone regulatory complexes
associated with SOX8, and that SOX8 negatively regulates the pro-myogenic core regulatory
transcription factors MYOD1 and MYOG. These discoveries indicate a histone deacetylase
(HDAC)-mediated mechanistic link between the PAX3-FOXO1 fusion protein and a halt
in skeletal muscle differentiation, an insight that would have been impossible to derive
through bulk DNA or RNA sequencing alone.
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malignant cell populations within each subtype, providing the first ever cellular atlas of me-
dulloblastoma [46]. The study also delineated the developmental origins leading to the bio-
logical differences between each molecular subtype. 

Similar approaches are now beginning to be applied in other pediatric tumors, including 
sarcomas [45,47–53]. A study of synovial sarcoma using an integrative approach with scRNA-
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be repressed by immune cytokines and targeted with HDAC and CDK4/CDK6 inhibitors that 
enhanced tumor cell immunogenicity [54]. In another study, Miller et al. generated single 
cell transcriptomes of Ewing sarcoma cell lines and merged them with other published pro-
files to uncover subpopulations enriched for mesenchymal markers and low EWSRI-FLI1 
expression [55]. Similarly, a recent scRNA-seq study of advanced osteosarcoma revealed 
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osteosarcoma specimens [56]. A recent report by Patel et al. [57] used scRNAseq to study 
how chemotherapy affects myogenesis and post-therapy tumor cell reconstitution in em-
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Figure 1. Overview of single-cell RNA sequencing. Tumor tissue is disaggregated into constituent
single cells which can be isolated through various methods. Isolated single cells are lysed, and cellular
RNA is converted into cDNA. cDNA from individual cells is ligated to cell-specific oligonucleotide
barcodes after which all cDNA is pooled and sequenced collectively via next-generation sequencing.
The transcriptomes of each cell are then segregated computationally using the barcode sequences,
enabling the analysis of single-cell gene expression profiles.

The impact that such single-cell datasets are beginning to have on our biological
understanding of pediatric tumors cannot be overstated. A recent large collaborative study
examined the transcriptomes of nearly 9000 single cells from 25 medulloblastomas spanning
all four molecular subtypes (SHH, WNT, Group 3, and Group 4) identified multiple distinct
malignant cell populations within each subtype, providing the first ever cellular atlas of
medulloblastoma [46]. The study also delineated the developmental origins leading to the
biological differences between each molecular subtype.

Similar approaches are now beginning to be applied in other pediatric tumors, includ-
ing sarcomas [45,47–53]. A study of synovial sarcoma using an integrative approach with
scRNA-seq and spatial profiling revealed a malignant subpopulation marking immune-
deprived regions and predicting poor clinical outcome. Further study revealed that
this population could be repressed by immune cytokines and targeted with HDAC and
CDK4/CDK6 inhibitors that enhanced tumor cell immunogenicity [54]. In another study,
Miller et al. generated single cell transcriptomes of Ewing sarcoma cell lines and merged
them with other published profiles to uncover subpopulations enriched for mesenchymal
markers and low EWSRI-FLI1 expression [55]. Similarly, a recent scRNA-seq study of
advanced osteosarcoma revealed distinct patterns of intratumoral heterogeneity between
primary, metastatic, and recurrent osteosarcoma specimens [56]. A recent report by Patel
et al. [57] used scRNAseq to study how chemotherapy affects myogenesis and post-therapy
tumor cell reconstitution in embryonal rhabdomyosarcoma. This study suggested that
targeting the developmental stage offers an effective stratagem in preventing recurrence of
that tumor. These findings all underscore the importance of tumor cell heterogeneity to
newer therapy approaches.
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4. Spatial Multi-Omics

One of the limitations of single-cell sequencing is that it requires tumor cells to be
disassociated and then lysed prior to analysis. Current single-cell sequencing methods are
therefore inherently incapable of providing any information regarding the intratumoral lo-
cation of individual cells or the intracellular location of specific analytes such as transcripts
or protein. Given the important biological roles that spatial gene and protein expression
heterogeneity plays in various physiologic and pathologic contexts [58,59], significant
efforts have been made by multiple groups in recent years to develop high-resolution,
comprehensive spatial maps of proteins, transcripts, and the genome [60–76].

Two broad categories of methods provide parallel in situ characterization of the
intracellular and intercellular spatial orientation of large numbers of biomarkers via high-
resolution fluorescence microscopy, though their application to pediatric sarcomas has
been limited to date. The core strategy of one category partitions tissue sections into
an ultrafine two-dimensional grid and, by using techniques such as mass spectroscopy,
immunofluorescence, or next-generation sequencing, performs a massively multiplexed
assay on the tissue fragment at each “pixel” of the grid. After storage of assay results for
each pixel, a spatial biomarker map computationally reconstructs the biomarker milieu
of the tissue (Figure 2). Two prominent recent examples of this strategy are “Slide-seq”,
a method that can quantify the spatial distribution of RNA transcripts comprising the
whole transcriptome in single tissue section [72], and “Slide-DNA-seq”, a similar approach
that enables spatially resolved DNA sequencing within intact tissue sections [77]. The
second broad strategy for spatial multi-omic profiling relies on differential labeling of
large numbers of probes such as antibodies or in situ hybridization probes followed by
the microscopic visualization of those labels. Using fluorescence tagging for differential
labeling, sections incubated with fluorescently labeled probes indicate the location and
abundance of each analyte via high-resolution fluorescence microscopy (Figure 2). These
two general strategies (high-resolution, cyclic fluorescence imaging versus multiplexed
molecular analysis of partitioned tissue section) are not mutually exclusive, as evidenced
by the recent emergence of “in situ genome sequencing” or “ISH”, whereby thousands of
genomic loci within a single nucleus can be spatially localized and fully sequenced [78].
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In contrast to RNA, for which it is now possible to spatially map the entire tran-
scriptome within individual cells [64,72], the spatial profiling of proteins has proven to
be somewhat more challenging, largely due to the inherent limitations of antibodies and
mass spectrometry [79], and due to the fact that the abundance of individual proteins
within single cells can span over seven orders of magnitude [80]. However, advancements
in protein chemistry, imaging, and data processing are rapidly increasing the number of
proteins that can be spatially characterized [81]. New tools are emerging at an accelerating
pace, and collectively, offer unprecedented promise for pediatric sarcoma research. For
example, a recent study of chordoma, a mesenchymal tumor of bone with aggressive behav-
ior, utilized a combination of RNA-seq and imaging. In this comparison of chordoma and
benign nucleus pulposus, microenvironmental differences in expression of certain proteins,
particularly carbonic anhydrase II, appeared to facilitate cell growth and migration and
could be targeted for cancer inhibition [82].

Characterization of spatial relationships of protein expression in pediatric sarcomas
offers significant advantages in the study of pediatric sarcomas, in order to explore con-
nection between cell and tissue development and disease progression and how genetic
changes affect cellular relationships [83]. Heterogeneity of the tumor cell microenvironment
constitutes a major factor in a variability of these spatially complex neoplasms, such as
osteosarcoma where tumor cells interact with stromal cells to support growth and metasta-
sis [56]. Even in less obviously complex tumors such as Ewing sarcoma, stromal interactions
give rise to differences in gene expression signatures, methylation profiles, and fusion gene
expression [3]. The ability to visual gene expression may assist us in understanding the
relationships between treatment response and the cellular microenvironment. However,
these techniques are limited by the relatively small number of proteins that can be visu-
alized on a single cell, as well as the problems inherent with small biopsies and limited
samples that may neglect important components in a large tumor.

5. High-Throughput Functional Genomics

As illuminating as the aforementioned genomic profiling technologies have proven in
recent years, they can only provide a static view of the biological state of the cells within a
sarcoma patient’s tumor, often making the interpretation of the alterations observed quite
challenging. To overcome this challenge, investigators frequently simulate an observed
set of alterations in a model system (i.e., cell line or animal model), referred to as the
“perturbation,” and then monitor its biological impact, referred to as the “phenotype.” This
kind of targeted, hypothesis-driven, perturbation-to-phenotype empirical analysis has been
the workhorse of cancer research for decades [84,85].

However, validating molecular alterations one perturbation at a time is a tedious
process that requires inference by use of prior knowledge and observations. In response to
these bottlenecks, high-throughput genetic screening was developed. The basic strategy
of high-throughput screening consists of performing thousands of parallel cellular pertur-
bations, and then using defined phenotypic criteria (e.g., cell death, cell growth, specific
gene expression changes, etc.) to identify biologically significant alterations. In essence,
high-throughput screening is the reverse of the classical approach, where the perturbation
is known and the phenotype is unknown. In high-throughput screening, the phenotype
(i.e., the “screen”) is known, while the perturbation (i.e., the causal mechanism of the
desired phenotype) is unknown.

The methods used to perturb cells in the earliest generation of high-throughput
screens included DNA mutagenesis, exposure to pharmacodynamically active drugs, and
overexpression of genes via transfection or viral transduction [86–88]. While immensely
impactful, these initial screening strategies exhibit a number of shortcomings, the most
significant of which is lack of specificity. A mutagen, drug, or virus may introduce a diverse
array of different perturbations within a single cell, making delineation of the true cause of
the phenotype a difficult task [89].
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High-throughput genetic screening enjoyed a massive improvement following the
advent of genome-scale RNA interference (RNAi), and even more so following the sub-
sequent discovery of the bacterial adaptive immune system CRISPR (clustered regularly
interspersed short palindromic sequences) and its associated RNA-guided endonuclease
Cas9 [90–95]. By allowing precise perturbation of any RNA sequence in the genome, these
tools officially herald the era of large-scale “functional genomics”.

Re-engineering of the CRISPR/Cas9 system enables the induction or repression of any
gene’s expression, and high-throughput genetic screening using this tool offers a promising
advancement for pediatric sarcomas. In 2013, investigators at the University of California,
San Francisco (UCSF), and the University of California, Berkeley, demonstrated use of the
CRISPR/Cas9 system for ultraspecific control of gene expression [96], using an approach
referred to as CRISPR-inhibition (“CRISPR-i”) and CRISPR-activation (“CRISPR-a”). In a
seminal study published in 2014, the same group published the results of a groundbreaking
genome-wide CRISPR-i/a screen, which assessed the cellular consequences of systemati-
cally modulating the levels of specific transcripts [97]. In 2021, this innovation was followed
by a landmark optimization of the CRISPR-i/a approach, “CRISPRoff,” whereby the Cas9
protein is modified to enable the programmable epigenetic silencing of any part of the
genome [98]. Given the role that dysregulated transcription plays in pathogenesis of pedi-
atric sarcomas [99,100], these powerful new tools for high-throughput genetic screening
have the potential to transform the therapeutic landscape for pediatric sarcomas.

Though the initial CRISPR-i/a screens relied on bulk phenotypic characterizations
such as cell growth and cell death, the field took a major step forward when single-cell
RNA-seq was used as the phenotypic readout of single and multiple (i.e., combinatorial)
perturbations [101–103]. This method, referred to as “Perturb-seq” now enables scientists to
obtain a comprehensive biological snapshot, at the single-cell level, of thousands of specific
gene expression perturbations in one experiment (Figure 3). These cutting-edge functional
genomics screening tools are now in the initial phases of being deployed in pediatric
malignancies. For example, a genome-scale CRISPR-Cas9 screen in Ewing sarcoma revealed
multiple therapeutic targets in wild-type TP53 cases [104]. More recently, a large-scale
CRISPR-based, perturbational screen in a panel of malignant rhabdoid tumor (MRT) cell
lines showed that the downstream signaling pathways of different receptor tyrosine kinases,
namely PDGFRA and MET, are activated in MRT and represent therapeutic targets [105].
The proliferation of such studies is only accelerating [106–108], and represents a significant
source of future optimism.
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Figure 3. Schematic of high-throughput genetic screening using clustered regularly interspaced short
palindromic repeats (CRISPR)-based perturbations and single-cell RNA sequencing. Tumor cell lines
that constitutively express the Cas9 protein are infected with lentiviruses that each contain (1) a single
guide RNA (sgRNA) specific for a single gene, and (2) a unique oligonucleotide barcode specific for
the sgRNA. In the context of a CRISPR-i or CRISPR-a screen, the Cas9 protein expressed by the cell
line has been modified to inhibit or activate transcription, respectively. In this context, the sgRNAs
target the regulatory regions of genes. In the context of a gene knockout screen, however, the Cas9
protein expressed by the cell line cleaves the genomic region targeted by the sgRNA, rendering the
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targeted gene inactive. Following the CRISPR-based perturbation, cells can be further manipulated
(e.g., treated with a drug) after which they undergo single-cell RNA sequencing. Using the sgRNA-
specific and cell-specific barcodes, the expression profile associated with each perturbation can then
be delineated.

In a particularly exciting recent development, CRISPR-based functional in vivo ge-
nomic screens have been specifically applied to mouse models [109–119]. The general
approach consists of: (1) selecting a relevant mouse model for a specific cancer type,
typically a genetically engineered mouse or a patient-derived xenograft system (PDX);
(2) performing high-throughput mutagenesis via coordinated delivery of Cas9 protein and
guide RNAs (sgRNAs); (3) selecting cells exhibiting the desired phenotype; and (4) delin-
eating the underlying genetic alteration induced by the screen. The advantage of using
an in vivo screen versus an in vitro cell-line-based screen is the higher degree of biological
relevance that in vivo models afford [120].

6. Need for Clinically and Pathologically Annotated Specimens

As new and increasingly powerful laboratory technologies emerge, a major factor
that may limit the clinical impact that they can make is access to specimens that are most
relevant in this clinical context, i.e., tissue from relapsed and metastatic lesions. The vast
majority of the sarcoma samples analyzed in recent comprehensive genomic studies have
been primary, pre-treatment specimens. For example, the COG Ewing sarcoma tissue
banking protocols AEWS02B1 and AEWS07B1 accrued tissue in only about 18% of patients,
and among these specimens only 29% comprised fresh, frozen tissues and only 7 were
metastatic [121]. Another problem has been a lack of clinical annotation from patients
not enrolled in a concurrent therapeutic trial, as attested by this occurrence in 95% of
samples obtained in the COG osteosarcoma biology study P9951. This discrepancy was
resolved after forming an office providing infrastructure and a linkage with annotated
patient data [122]. A further problem has been the variability of the samples received, as
shown by a COG of predictors of survival in Ewing sarcoma. Gene-specific enrichment
analysis revealed that samples with stromal contamination demonstrated a gene signature
associated with survival, whereas samples without stromal contamination did not [123].

The few studies that have comprehensively analyzed paired pre- and post-treatment
tumor specimens suggest that, similar to adult cancers, primary pediatric malignancies
comprise molecularly distinct subpopulations of cells that undergo clonal divergence
following exposure to the selective pressure of cytotoxic therapy. For example, a recent
whole-genome sequencing analysis of 33 paired diagnostic and post-treatment medulloblas-
toma specimens revealed that recurrent tumors retained only 12% of the somatic alterations
identified in their primaries [124]. This finding highlights the importance of assessing
both primary and post-treatment specimens. Given the diversity of somatic alterations in
pediatric sarcomas, these types of paired analyses will be critical for the development of
more effective treatments for high-risk patients.

7. Artificial Intelligence/Machine Learning

In addition to the growing volume of data that the aforementioned methods will gen-
erate in the years to come, a major catalyst that stands to greatly accelerate the development
of therapeutically actionable insights for pediatric sarcomas is artificial intelligence (AI)
and machine learning (ML), specifically in the form of convolutional neural networks, also
referred to as “deep learning” [125,126]. By recognizing and classifying patterns embedded
in massive datasets of various types, from radiologic imaging to gene expression data [127]
to somatic mutational data [128] to biophysical spectra [129] to routine histolopathologic
images [130–132], deep learning can produce powerful predictions that humans are simply
incapable of generating due to the inherent limitations of our biology [133]. Furthermore,
with the recent landmark release of AlphaFold, a highly accurate, deep-learning-based,
protein-structure prediction tool [134], and the proliferation of AI-based drug discovery
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tools [135], AI is positioned to not only rapidly increase our understanding of pediatric
sarcomas, but also give rise to novel effective treatment strategies that otherwise would
have remained undiscovered.

One of the challenges of applying AI to pediatric sarcomas is their relative rarity
and heterogeneity, both intratumoral and intertumoral (i.e., case-to-case variability). In-
tratumoral cell heterogeneity of pediatric sarcoma poses challenges to the effective use
of machine learning, because the initial biopsy only contains a limited sample of tissue
and may underestimate factors such as tumor grade or treatment effect. For this reason,
machine learning for sarcoma research to date has been used most effectively in radiology.
For example, one group recently reported that MR images of soft tissue sarcomas of varying
grades could be used to create a validated data set in which a combination of features
yielded accuracy and specificity of >90% [136]. Another study used machine-learning
to delineate tissue components of soft tissue sarcomas in order to monitor post-therapy
changes [137], and in a similar vein, other groups trained AI algorithms to assess post-
therapy necrosis of osteosarcoma using MR images [138] and predict survival in high-grade
soft tissue sarcomas using “radiomics” [139]. Machine learning models have also been
shown to be useful in predicting metastasis from soft tissue sarcoma [140], and to out-
perform humans in separating malignant from benign malignant peripheral nerve sheath
tumors [141]. Furthermore, in addition to predicting survival and recurrence, groups have
demonstrated the feasibility of using AI to delineate gross tumor volume for radiation
therapy treatment planning [142].

With respect to pathology, a growing number of groups have demonstrated that AI
algorithms can not only be trained to perform as well as expert pathologists in diagnos-
ing and grading certain common adult cancers (e.g., prostate cancer) [143–145], they can
also predict the presence or absence of clinically significant molecular biomarkers based
on morphology alone [130,146]. These tools are now being deployed in pediatric sarco-
mas [147–151]. For example, a multi-institutional effort developed a deep learning neural
network-based diagnosis system to diagnose and classify rhabdomyosarcoma, suggesting
that AI may be useful to assist pathologists with limited diagnostic expertise [149]. Another
group recently used machine learning to develop an optimal gene signature for deter-
mining Ewing sarcoma prognosis [150], and in a study using Fourier transform infrared
(FTIR) spectroscopy of post-treatment Ewing sarcoma tissue sections, machine-learning
approaches predicted patient mortality in 92% of cases [151].

Though AI and machine learning have drawbacks in pathology, such as the limited
amounts of tissues in biopsies, potential problems caused by focus [152], and the potential
for user error in the acquisition of images and their interpretation. However, it is abun-
dantly clear that use of AI can be very advantageous in analysis of complex data sets and
identification of potential therapeutic targets. Whether they will become effective tools for
diagnosis of pediatric sarcomas remains an unanswered question, as large studies have yet
to be performed.

8. Conclusions

Conclusion: In spite of great strides made in the understanding and treatment of
pediatric sarcomas, a significant subset remains recalcitrant to treatment. Several new
research methods, including scRNAseq, spatial multi-omics, high throughput functional
genomics, and CRISPR-Cas 9 technology, complimented by artificial intel-ligence and
machine learning, offer the means to further delve into the biology of these cancers and
to find possible new ways to attack them. A number of recent studies show the potential
benefits of these new tools, but limitations in the availability of ma-terials for analysis
remains a setback that must be overcome.
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