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Abstract: Organic nonvolatile memory devices have a vital role for the next generation of electrical
memory units, due to their large scalability and low-cost fabrication techniques. Here, we show
bipolar resistive switching based on an Ag/ZnO/P3HT-PCBM/ITO device in which P3HT-PCBM
acts as an organic heterojunction with inorganic ZnO protective layer. The prepared memory device
has consistent DC endurance (500 cycles), retention properties (104 s), high ON/OFF ratio (105), and
environmental stability. The observation of bipolar resistive switching is attributed to creation and
rupture of the Ag filament. In addition, our conductive bridge random access memory (CBRAM)
device has adequate regulation of the current compliance leads to multilevel resistive switching of a
high data density storage.

Keywords: P3HT-PCBM; solution-processed; multilevel resistive switching; filament formation

1. Introduction

Recently, organic electronic devices have been considered to be a possible contender
in the field of photovoltaics, sensors, and next-generation memory devices, due to their
excellent performance and characteristics of organic materials [1–4]. Among them, organic
nonvolatile memories have recently received significant attention because of their ease of
fabrication, tunability of chemical structure, low power consumption, structural flexibility,
solution processability, and high data storage [5–8]. Organic resistive switching memory
has a simple structure composed of organic material as an active layer that sandwiches
between two electrode materials. Notably, this active material is composed of polymers,
organic small molecules, and hybrid organic–inorganic nanocomposites [9–11]. Investiga-
tions on such devices have also improved the resistive switching performance in terms
of RON/ROFF ratio, retention time, multilevel data storage, and switching speed of the
devices [12,13]. More recently, organic polymers have also been reported for neuromor-
phic computing due to their three-dimensional (3D) integration capability, low power
consumption, and unique second-order memristive properties [14–17]. However, due to
environmental sensitivity, poor stability, and low device reproducibility of organic mate-
rials, it has been serving together with inorganic materials [18]. To address these issues,
many researchers have attempted to develop organic memory devices. Recently, Varun
et al. reported the flexible resistive switching of PVP-GO composite with ultrathin HfO2
layer to harness the combined effect of composite material and thin oxide layer for better
controllability [19].

Among the various organic materials, bulk heterojunction of P3HT-PCBM as a donor-
acceptor material has gained attention, due to the high conductivity and efficiency of
creating charges from photons in a nonvolatile memory device [20]. Although P3HT is
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a donor semiconducting polymer material, having strong coordination of hetero-sulfur
atoms with metal ions would be beneficial for forming metallic filament [21]. In order to
eliminate the problems regarding environmental stability and RON/ROFF ratio, the structure
of organic and inorganic material has been employed. A native oxide layer on electrode
material could intensify the performance of RRAM with respect to environmental stability,
reliability, and RON/ROFF ratio. Frank et al. showed that the thin oxide layer of Al2O3
improved the device’s switching mechanism and reliability [22]. Zinc oxide (ZnO) has
proven its potential capability in RRAM performance due to its large band gap (3.37 eV) and
high exciton binding energy (B.E) (60 MeV) at absolute temperature. ZnO has been widely
considered for unipolar and bipolar resistive switching, i.e., Al/ZnO/Al, Ti/ZnO/Pt, and
Ti/CeO2/ZnO/Pt to improve the performance of resistive switching behavior [23–25]. We
incorporate ZnO nanoparticles as a capping protective layer of bulk heterojunction, which
further provide better control over the filament formation and rupture and increase the
ON/OFF ratio. In addition to the stable operating device requirement, the device also
needs high-density data storage. Multilevel memory provides a unique opportunity to
store more than two data levels in a single device [26]. However, in P3HT-PCBM bulk
heterojunction, the multilevel data storage has not yet been illustrated. Our report’s main
aim is to improve environmental stability, high ON/OFF ratio, and multilevel resistive
switching by using Ag/ZnO/P3HT-PCBM/ITO structure.

2. Materials and Methods

Indium tin oxide (ITO) coated glass substrates were obtained from AMG, the Republic
of Korea, and the dry powders of P3HT and PCBM were bought from Solaris Chem
Technology, Canada. To make the bulk heterojunction of P3HT-PCBM, it was dissolved
in dichlorobenzene with a mass ratio of 1:0.8 at a total concentration of 27 mg/mL. This
prepared solution was kept for stirring at 65 ◦C, for 12 h. The ZnO stock solution with
20 wt% (Ditto Technology, Republic of Korea) was diluted in methanol solution at 3 wt%
ZnO. The ITO-coated glass substrates were washed with detergent for the device fabrication
and subsequently washed in an ultrasonic cleaner for 10 min with distilled water, acetone,
and isopropyl alcohol. The prepared mixture of P3HT-PCBM was spun coated on the ITO
substrate with PTFE (0.45 µm) filter at 1000 rpm for 120 s. The soft baking of film was
kept in a conventional oven for 10 min at 110 ◦C for drying purpose. After the annealing
of film, the ZnO solution was coated on prepared bulk-heterojunction film at 5000 rpm
for 60 s, and kept in the oven for 5 min at 110 ◦C. The top electrode Ag with 100 nm
thickness was deposited in a vacuum thermal evaporator via a metal shadow mask, with
an annular pattern range between 80 and 200 µm diameter. All the electrical measurements
were taken using an Agilent B1500 semiconductor parameter analyzer in an atmospheric
environment. The top electrode (Ag) was positively biased while the bottom electrode
(ITO) was grounded during measurements.

3. Results and Discussion

Figure 1a describes the schematic layout of the Ag/ZnO/P3HT-PCBM/ITO fabricated
device with measurement system. A cross-sectional SEM image of the sandwiched struc-
ture, in Figure 1b, shows that the film thickness of the organic and inorganic protective
layers are about 170 and 30 nm, respectively. Figure 1c shows the typical I-V structure
of Ag/P3HT-PCBM/ITO in semi-logarithmic scale, which belongs to bipolar resistive
switching behavior. It is interesting to note that the conventional electroforming process
was not applied to the device during I-V measurements. The electroforming free operation
of the resistive memory device scale down the complexity of the memory circuit and the
expense of the memory system. Moreover, the electroforming free process improves power
consumption and device footprint [27]. In the first 0 to 3 V voltage sweep, the current is
gradually increasing, due to the inherent conductivity of the organic layer and, at 1.9 V,
the current shows an abrupt change, indicating the ”SET” process from high resistance
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state (HRS) or OFF state to low resistance state (LRS) or ON state. At positive bias, current
compliance (CC) was added to shield the device from breakdown.
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sandwich structure; (c) Typical I-V curve of Ag/P3HT-PCBM/ITO in semi-logarithmic scale; (d) Retention characteristic in
both high resistance state (HRS) and low resistance state (LRS).

When the negative voltage sweeps biased, the device returns to its original state
HRS, thus, indicating “RESET” process from LRS to HRS. However, in organic bulk
heterojunction, the ON/OFF ratio is maintained at 102–103. Figure 1d shows the device’s
retention characteristics; the device shows the degradation of resistance in LRS and HRS
after 103 s. This designates that the reliability of organic memory has not been effectively
maintained. Thus, the adsorption of water and oxygen from the atmosphere in organic
active layer causes the degradation of organic memory [28]. The main issue that arises in
bulk heterojunction is the atmospheric stability of the device. Therefore, modifying the
memory architecture is the key to modern organic resistive switching devices.

We proposed a new device, i.e., Ag/ZnO/P3HT-PCBM/ITO based on the above
discussion. All the electrical properties were examined under room temperature. Figure 2a
illustrates that bipolar resistive switching is exhibited in the measured I-V curve under a
compliance current of 800 µA. The voltage was applied to the top electrode Ag, and the
bottom electrode ITO was grounded to measure the resistive switching phenomenon of the
device. No forming voltage was necessary for our device; it is good to meet for practical
application. ZnO acts as a protective layer which also prevents the interfacial reactions and
decreases the charge carrier injection at electrode interface [29]. When voltage is applied
to positive polarity, the device shows a gradual increase in current from 0.2 to 1.9 V, due
to intrinsic mobility of materials in the device, and abrupt change varies from 1.9–2.3 V,
which designates the device transit from HRS to LRS. When the reverse voltage is applied,
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the current decreases gradually and, at the RESET, voltages vary from VRESET > 0.7 to 1.2 V
due to the random rupture of filaments [19].
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Figure 2. (a) Typical I-V characteristic of Ag/ZnO/P3HT-PCBM/ITO in semilogarithmic plot. (b) Cumulative probability
of SET/RESET voltages; (c) DC sweep mode endurance cycles at read voltage 0.2 V, respectively; (d) Retention property in
both LRS and HRS at read voltage 0.2 V.

The asymmetry of the current levels in both polarities occurs due to the different
work function of two electrodes and materials [30]. The statistical distribution is one of the
crucial memory parameters in memory devices. Figure 2b shows the cumulative probability
of VSET and VRESET voltages of 100 DC switching cycles for the ZnO layer device. The
coefficient of variation (CV) is defined as the ratio of standard deviation (σ) to the mean (µ).
The CV of VSET and VRESET voltages are 6.3% and 15.4%, respectively. In the SET process,
superior uniformity was obtained while the RESET voltage variance is remarkable, which
could be due to the creation and rupture process of Ag atoms’ conductive filament [31].
Furthermore, in Supplementary Materials Figure S1, we estimate the cumulative probability
based on the resistance level of 20 different devices with their different structures, showing
a wider memory window (105) with ZnO layer than that without ZnO layer (103). The CV
of LRS and HRS with ZnO layer are 10.5% and 17.9%, while the CV without ZnO layer
are 66.2% and 79.5%, respectively. Therefore, clearly, the device with ZnO layer can give
better control on conductive filament. Figure 2c depicts DC endurance cycles in which the
LRS and HRS show stable performance up to 500 switching cycles and a resistance ratio
of about 105. Figure 2d represents the retention, which confirms the device’s stability at
0.2 V read voltage. The resistance in LRS is slightly shifted towards the upper side, but the
overall ON/OFF state is well maintained up to 104 s. During this measurement, the device
exhibits a high ON/OFF ratio 105.
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Furthermore, we also demonstrate the multilevel data storage that stores the data
and enhances the memory capacity, as shown in Figure 3a. We applied the compliance
current at 100, 300, and 800 µA, consecutively. During the multilevel data storage, HRS
was unaffected, but the LRS expanded as the current compliance declined. This outcome
shows that the LRS can be tuned to the SET phase by a different compliance current.
Figure 3b depicts the number of cycles to illustrate the multilevel resistive switching; the
states of resistance were determined during 0.2 V read voltage and CC at 800, 300, and
100 µA, consecutively. The four data levels with the one stable HRS and three levels of LRS
were achieved in multilevel switching. Each multilevel resistive state revealed different
resistance levels for ten cycles.
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Figure 3. (a) I-V characteristics of memory device under different compliance current of 100, 300, and 800 µA, consecutively;
(b) Multilevel resistance states with distinct current compliance of 800, 300, and 100 µA, consecutively; (c) Electrical
characterization of the Ag/ZnO/P3HT-PCBM/ITO device after storage in ambient air; (d) Double logarithmic I-V curve of
Ag/ZnO/P3HT-PCBM/ITO bulk-heterojunction device, illustrating the slope values of linear fitted curve at positive bias.
The plot divided into three different regions represented as segment A, segment B, and segment C, respectively.

Materials need to be durable to illustrate the practical applications of electronic devices.
Most organic bulk heterojunctions are stable under ambient conditions and prepared, stored
under an N2 atmosphere [32–34]. According to a previous study, to achieve high stability
and reliability of the device, a thin metal oxide layer may be used as a protective layer [35].
To assess the prolonged stability, we stored the device in a surrounding atmosphere at
28–30 ◦C, with 70% humidity. We measured the device in the pristine state, and after
several weeks, the resistive switching properties did not show any prominent degradation
of the device, as shown in Figure 3c. These results specify that in practical applications,
bulk heterojunction with inorganic protective layer can be used.
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The conduction mechanism of bulk heterojunction and oxide layer resistive memory
device Ag/ZnO/P3HT-PCBM/ITO was analyzed by ln of I-V curve and with the aid of
the minimal space charge limited current (SCLC) mechanism [36], as shown in Figure 3d.
Segment C demonstrates the LRS state, i.e., the SET process and follows the current’s linear
action against voltage I α V; m ~ 1, showing the metallic existence of the conduction filament.
Whereas in HRS, segment A presents a low positive region that confirms the Ohmic
conduction I α V with slope value 1; due to the thermally produced free charge carriers
and low current flow amounts, this conduction occurs. When the applied voltage increases,
the square law dependence of current I α V2, with the slope value of m = 2 is demonstrated.
This shows that the device in its HRS demonstrates SCLC conduction mechanism. In
contrast, the LRS is associated with the formation of metallic filament. The ZnO and
P3HT-PCBM can be shown in the form of the highest occupied molecular orbit (HOMO)
and the lowest unoccupied molecular orbit (LUMO), as presented in Figure 4a [37]. When
DC voltages are applied to the top electrode, electrons can move easily from the LUMO
level of the ZnO to the LUMO level of the P3HT-PCBM, and therefore, due to the different
energy levels in materials and electrodes, it has asymmetry behavior in current levels of
both polarities.
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mechanism in HRS and LRS, respectively.

On the basis of the above discussion, we propose a probable resistive switching
phenomenon in resultant devices with a scientifically acceptable circumstances of formation
and creation of conductive filament in localized region. As shown in Figure 4b, (i) an active
Ag electrochemical electrode is oxidized into Ag+ ions when a positive voltage is applied
to the top electrode, and under the high electric field, these ions start migrating towards the
bottom electrode. Thus, electrons generated from the bottom electrode move up towards
the top electrode. In this procedure, down-transferring Ag+ ions are reduced by up moving
injected electrons to Ag atoms. Eventually, Ag atoms start to form a conductive filament
path from the bottom to the top electrode, due to the reduction of Ag+ ions. The conductive
filament formation results in the saltation of current and the device transforms from HRS
to LRS, called “SET” process. However, the presence of ZnO will also initiate some oxygen
vacancies, which can also aid in conductive filament formation. However, the possibility of
Ag filament formation is higher [33,38,39]. In order to back, a negative voltage is applied
device back to HRS is known as the “ERASE” process. A conductive filament breakdown
aided by joule heating was observed; this is due to the excess amount of current flow
through the tiny conductive filament. Moreover, the Ag+ ions pile up to the top electrode
and again they reduced into Ag, as shown in Figure 4b (ii).
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4. Conclusions

In summary, we fabricated low cost and solution-processed organic bulk heterojunc-
tion with inorganic capping material for a resistive switching device. The cross-sectional
SEM confirms the prepared layered structure of the device. The fabricated device exhibited
reliable and reproducible bipolar resistive switching with excellent ION/IOFF ratio of 105,
retention of 104 s, and DC endurance of 500 cycles. The multilevel resistive switching to
level four data storage efficiency is demonstrated by the application of various compliance
current to memory devices, demonstrating the high data density memory application. A
thin metal oxide layer acts as a capping layer, which further promotes better memory
application efficiency. The conduction mechanism of the fabricated device is based on
the filament creation and rupture of Ag metal. According to the above findings, the pro-
posed device has potential as a candidate for high performance RRAM with air-stable and
multilevel data storage.
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