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Abstract

Musicians represent a model for examining brain and behavioral plasticity in terms of cogni-

tive and auditory profile, but few studies have investigated whether elderly musicians have

better auditory and cognitive abilities than nonmusicians. The aim of the present study was

to examine whether being a professional musician attenuates the normal age-related

changes in hearing and cognition. Elderly musicians still active in their profession were com-

pared with nonmusicians on auditory performance (absolute threshold, frequency intensity,

duration and spectral shape discrimination, gap and sinusoidal amplitude-modulation detec-

tion), and on simple (short-term memory) and more complex and higher-order (working

memory [WM] and visuospatial abilities) cognitive tasks. The sample consisted of adults at

least 65 years of age. The results showed that older musicians had similar absolute thresh-

olds but better supra-threshold discrimination abilities than nonmusicians in four of the six

auditory tasks administered. They also had a better WM performance, and stronger visuo-

spatial abilities than nonmusicians. No differences were found between the two groups’

short-term memory. Frequency discrimination and gap detection for the auditory measures,

and WM complex span tasks and one of the visuospatial tasks for the cognitive ones proved

to be very good classifiers of the musicians. These findings suggest that life-long music

training may be associated with enhanced auditory and cognitive performance, including

complex cognitive skills, in advanced age. However, whether this music training represents

a protective factor or not needs further investigation.

Introduction

Professional musicians have attracted much attention in recent years (e.g. [1–3]) because they

show sensory, motor, and cognitive abilities, which are often better than in their nonmusician

peers. Some authors suggest that the music training drives functional and structural brain plas-

ticity (see [4, 5]), and for this reason musicians are often regarded as a model for studying plas-

ticity across the lifespan (e.g. [1–3]).

Musicians and nonmusicians: Auditory and cognitive performance

Musicians outperform nonmusicians in many auditory tasks. The former are more proficient

in recognizing melodies that have been transposed [6], or reproduced in a faster or slower
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tempo [7], they are better at detecting mistuned notes [8, 9], and they are also better in several

classic psychoacoustical tasks involving supra-threshold sound processing. For example, musi-

cians outperform nonmusicians in frequency [10], temporal [11] or spectral discrimination

[12]. Notably, the musicians’ superiority extends to speech as well: they are better at recogniz-

ing the prosody of a sentence [13, 14], and understanding speech in noise [15]. Differences

between musicians and nonmusicians also emerge with bio-recording techniques: musicians

have more pronounced event-related potentials associated with the perception of irregularities

in musical syntax [9, 16], and with the processing of pitch and pitch patterns (e.g. [9, 17–21]).

Musicians perform better than nonmusicians in several cognitive domains and in several

cognitive tasks too, such as in memory tasks (e.g. [22–24]). One of the crucial mechanisms of

cognition is working memory (WM), or the ability to simultaneously maintain and process

information, and this has also been found enhanced in musicians (e.g. [23]). Professional

musicians exhibited shorter reaction times than nonmusicians in a non-musical auditory

attention task, indicating a greater ability to focus their attention (e.g. [25]). They proved more

efficient than nonmusicians in other higher-level cognitive processes too, including executive

functions (e.g., inhibiting cognitive control) or processing speed [25–27]. Musicians showed

also enhancement of visual abilities in comparison to nonmusicians, specifically in visuospatial

tasks (e.g. [28–31]). For instance, Pietsch and Jansen [32] found that young music students

(practicing music more than eight hours a week) had stronger visuospatial (rotation) skills

than education science students.

Not all studies have shown that musicians perform better in cognitive tasks, however. Some

found similar WM performance between musicians and nonmusicians (e.g. [33–34]); and it

has been reported that musicians performed no better than nonmusicians in short-term mem-

ory tasks, reasoning, or executive functions [35]. Several authors reported finding of not

enhanced spatial abilities in musicians either (e.g., Children: [36]; Adults: [37, 38]). The above-

mentioned results thus show that auditory performance is enhanced in musicians by compari-

son with nonmusicians, while the picture is less clear as regards the former’s potentially better

cognitive performance.

The above studies nonetheless prompt an important question concerning music and aging.

What happens in older musicians? Do the perceptual and cognitive advantages of musicians

over nonmusicians persist in aging? Since playing a musical instrument requires the multi-

modal integration of sensory, motor, and cognitive information, continuous practice and repe-

tition of such skills over a long period of time might contribute to cognitive functioning and,

as recently suggested, to the reorganization of functioning in several brain areas (e.g. [39]).

Older adult musicians and nonmusicians: Auditory and cognitive

performance

Whether older adults are musicians or not, aging coincides with an elevation of the absolute

hearing threshold, particularly at higher frequencies. This phenomenon is called presbycusis,

i.e., age-related hearing loss (e.g. [40–42]). Supra-threshold sound processing also deteriorates

with age (e.g. [43, 44]). The elderly’s performance in auditory tasks declines, i.e., they have

higher difference limens in frequency, intensity or duration discrimination [43, 45–50]. Older

adults’ performance also deteriorates in the temporal processing of sounds, i.e., in their sinu-

soidal amplitude-modulation detection thresholds (SAM), gap detection thresholds [42, 51–

55], and spectral discrimination (e.g. [43]—but see also [56] who found no evidence of this). A

musician’s supra-threshold sound processing ability deteriorates with age too, but life-span

studies suggest that musicians retain a better auditory performance than nonmusicians in sev-

eral psychoacoustic tasks because they can draw on their greater abilities in the frequency or
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temporal dimensions and in understanding speech in noise [40]; see [57] for an overview.

Older musicians fare better than old nonmusicians in detecting a mistuned harmonic when

listening to a complex tone stimulus [58], for instance, and they are faster at speech sound clas-

sification [59].

However, only few studies have considered the cognitive profile of older musicians and

compared it with that of nonmusicians. Age-related changes in cognitive abilities are well doc-

umented (e.g. [60–62]), but little is known about whether practicing music benefits cognition

in old age, and which (if any) aspects of cognition it may sustain, and to what degree. Some

studies found that older musicians scored higher than older nonmusicians in verbal memory

tests (i.e., immediate recall) and executive processes [63, 64]. A greater efficiency in certain

aspects of cognitive control, such as conflict resolution, and control over irrelevant informa-

tion, has also been reported in elderly musicians compared with their nonmusician peers [65].

As for WM, in three of the four studies that involved complex WM tasks, the authors found

that the elderly musicians performed better in this area too [27, 64, 65]; but see [63]. When

visuospatial short-term memory tasks were used, on the other hand, the differences between

elderly musicians and nonmusicians were not significant [63, 64].

It is therefore worth further investigating the cognitive profile of older musicians and see

whether they have (or not) better cognitive performances than nonmusicians in aging. In addi-

tion, the previously-mentioned studies included individuals who could hardly be defined as

‘older adults’ as some were 45 years of age [27], or under 64 years old ([63–65]; 50–77 years-

old). The studies also considered different levels of musical expertise: some musicians had 10

or more years of experience [63], while others had begun their musical training before age

nine and had played a musical instrument throughout their lives [27].

The present study

For the first time (to our knowledge, at least), the present study investigated both the auditory

and the cognitive performance of professional musicians over 65 years of age, comparing them

with their nonmusicians peers. In terms of hearing, both peripheral auditory processing and

supra-threshold auditory processing were assessed. The functioning and performance of

peripheral auditory processing is thought to coincide with a listener’s absolute threshold, and

are usually assessed by means of pure tone audiometry [40–42]. Supra-threshold processing

was investigated, on the other hand, by assessing participants’ basic auditory abilities (e.g. see

[43, 66–67]), i.e., their ability to discriminate the frequency, intensity, and temporal and spec-

tral dimensions of an acoustic stimulus, which coincide with the main dimensions of human

sound perception [66]. We postulated that the performance of older musicians and nonmusi-

cians would differ not in terms of the peripheral processing of sounds, i.e., in absolute thresh-

old (e.g. [40–42]), but in auditory abilities (e.g. [40]).

To measure cognitive performance, different short-term memory indicators, complex WM

tasks, and a measure of executive functioning (inhibition) were administered. Visuospatial

abilities were investigated too, as according to some studies seem to be enhanced in musicians

(e.g. [32, 31]). Like WM, visuospatial skills are age-sensitive, have a strong impact on older

adults’ quality of life, and have proved to be a core factor when it comes to analyzing the cogni-

tive profile across the adult life-span [68]. We investigated in particular whether any superior-

ity of musicians over nonmusicians is especially evident in tasks that are age-sensitive, and that

weigh on attentional resources, i.e., in the complex and higher-order tasks [61, 69, 70]. In fact,

the advantage of musicians over nonmusicians in short-term and WM tasks has been found

identical in young adults (see [71]). There is also evidence of musicians and nonmusicians dif-

fering very little in short-term memory tasks (e.g. [63, 64]), whereas the former appear to
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perform better than the latter in WM tasks [27, 64, 65]. If WM abilities are intensively involved

in the training to become a musician, in older age we might expect larger group differences in

WM tasks than in short-term memory tasks. This issue is especially important because it has

been well documented in the aging literature that WM tasks requiring higher attentional con-

trol are more severely affected by the age-related decline [72]. Since some memory models (see

[73]) indicate that task content affects performance in tasks demanding more attentional con-

trol/resources, i.e., WM tasks, verbal (presented auditorily) and visuospatial WM tasks were

also administered to our participants in order to explore whether any superiority in the musi-

cians’ WM task performance depended on their content or not. We also assessed the perfor-

mance of musicians and nonmusicians in visuospatial tests and inhibition measures. These are

complex tasks and there are reports in the literature of musicians showing a more developed

visual imagery than nonmusicians [31, 32], and more efficient inhibitory mechanisms [65].

Finally, because sensory (e.g., auditory) performance and cognitive performance deteriorate

with age, a corollary aim of the present study was to examine the relationship between the

auditory and cognitive decline, in both musicians and nonmusicians (see [74] for a recent

overview). Other studies comparing musicians with nonmusicians suggest that enhanced audi-

tory performance might be associated with an enhanced level in certain cognitive skills, sup-

porting the classic hypothesis of a relationship between sensory performance and cognitive

performance (e.g. [43, 75–78]). A study comparing elderly lifelong musicians with age-

matched nonmusicians on auditory and various cognitive tasks might shed some light on the

possible link between these two domains.

Method

Participants

The study involved 40 older adults, comprising 20 professional musicians (six females, 65� age

� 84) and 20 nonmusicians (six females, 65� age� 84). All participants were Italian native

speakers and volunteered for the study. The musicians had between 46 and 80 years of music

training and practice (M = 60.30, SD = 9.96), and they were still actively playing, solo or in an

orchestra. Eight played string instruments (the violin in 7 cases, the cello in 1), eight played key-

board instruments (the piano in 5, the organ in 3), and four played other instruments (harp,

flute, oboe, and trumpet). Participants were screened for cognitive impairments with the short

version of the Italian Checklist for the Multidimensional Assessment (SVAMA) of the elderly

used in the Veneto region [79]. None of them showed any signs of cognitive dysfunction, such

as mild cognitive impairment or Alzheimer’s disease, and they all answered the 10 items on the

SVAMA correctly, indicating a good cognitive functioning. None of them scored below the

age- and education-matched norms in the WAIS-R [80] vocabulary test, which is a measure of

crystallized intelligence (Italian norms [81]). Three one-way ANOVAs revealed that the musi-

cians and nonmusicians did not differ in age (F< 1). The nonmusicians had significantly more

years of formal education than the musicians, however, F(1, 39) = 60.03, p< .001, np2 = .62, and

a higher score in the WAIS-R vocabulary test, F(1, 39) = 16,76, p< .001, np2 = .31 (see Table 1).

Table 1. Demographic variables by group (musicians vs nonmusicians).

Musicians Nonmusicians

M SD M SD

Age 72.25 6.71 72.70 6.71

Years of education 9.40 3.02 15.85 2.18

Vocabulary 46.40 5.49 55.90 8.81

https://doi.org/10.1371/journal.pone.0187881.t001
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Auditory tasks

The tasks were administered using a laptop computer connected to an M-AUDIO FastTrack

Pro sound card. The output from the sound card was presented diotically through Sennheiser

HD 280 headphones. Sounds were synthesized in real time at a sample rate of 44.1 kHz with a

24-bit resolution. The tests were always conducted in quiet rooms (i.e., noise level at the partic-

ipant’s ear below 35 dBA). The sounds used to measure the participants’ auditory abilities were

presented at 70 dB SPL.

The hearing experiments were written in a custom-coded MATLAB program (MathWorks,

Natick, MA) using two free custom MATLAB toolboxes [82, 83]. Pure tone audiometry was

done separately for the left and right ears, and for frequencies of 500, 1500, and 4000 Hz. The

tone duration was 1 sec. The threshold was estimated with one block of trials for each fre-

quency. In each block, the tone intensity was set at a comfortable level for trial 1, then manipu-

lated according to a simple up-down rule [84]. In each trial, participants were asked to report

whether they could hear the tone or not. Threshold tracking was continued up to the fourth

reversal, and the final threshold was calculated by averaging the thresholds at the four reversal

points. After establishing the absolute threshold, participants completed six tests within a sin-

gle listening session. These tests were selected as being representative of the three main non-

speech auditory abilities identified by the factorial analysis conducted by Kidd and colleagues

[66]: “loudness and duration”, represented here by an intensity discrimination test and a dura-

tion discrimination test; “amplitude modulation”, represented here by a sinusoidal amplitude

modulation (SAM) detection test, and by a gap detection test; and “pitch and time”, repre-

sented here by a frequency discrimination test and a spectral shape discrimination test. Partici-

pants completed two blocks of twenty trials for each test. In each trial, they were presented

with three sound intervals separated by a 500 ms silence. Two intervals were identical (the

standards), while one (the variable) differed in one acoustic characteristic (oddball paradigm).

In the frequency discrimination test, for example, the frequency of the variable interval was a

certain amount of delta higher than that of the standards. After each trial, participants were

asked to say which of the three intervals was the variable one. The order of presentation of the

standards and variable intervals was randomized before each trial. For the first trial in each

block, delta was set so as to make the trial easy for participants. Delta was varied according to a

simple up-down rule in trials 1 to 10 [84], then according to a maximum likelihood algorithm

in trials 11 to 20 [85]. In the present study, the maximum likelihood algorithm tracked the

66%-correct point of a participant’s psychometric function. The threshold was calculated by

averaging the thresholds returned by the maximum likelihood algorithm in trial 20 of the two

blocks. Each auditory ability task is described in detail below.

Frequency, intensity and duration discrimination. The standard intervals were two 1

kHz pure tones lasting 500 ms, and gated on and off with two 10 ms raising cosine ramps. The

variable interval was identical to the standard tone except for a higher frequency (or higher

intensity, or longer duration). The frequency, intensity and duration of the variable were

allowed to home in on a participant’s discrimination threshold within a range of 1000.1–1500

Hz, 500.1–900 ms, and 0.01–15 dB, respectively.

Spectral shape discrimination. The standard intervals were two, 500 ms long complex

tones including the first five harmonics of a 333.3 Hz fundamental frequency, and they were

gated on and off with two 10 ms raising cosine ramps. All harmonics were of identical ampli-

tude, and they were added in phase so that the spectral centroid of the complex tone was 1 kHz.

The variable interval was identical to the standards except that the third harmonic was on a

higher level than the others, which made the timbre of the standards and variable different. The

level of the third harmonic of the variable interval was allowed to home in on a participant’s

Elderly musicians: Auditory and cognitive abilities
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discrimination threshold within a range of 0.1 to 30 dB higher than the level of the other

harmonics.

Gap detection and SAM detection. The standard intervals were two identical Gaussian

noises lasting 500 ms, gated on and off with two 10 ms raising cosine ramps. For gap detection,

the variable interval was identical to the standards except that its temporal center was cleared

to create the gap. The gap was gated on and off with two 0.5 ms raising cosine ramps. The

duration of the gap was allowed to home in on a participant’s detection threshold within a

range of 0.1–64 ms. For SAM detection, the variable interval was identical to the standards

except that the amplitude was modulated by a 10 Hz sinusoidal modulator. The modulation

depth was allowed to home in on a participant’s threshold within a range of -60 to 0 dB (no

modulation).

Cognitive tasks

Short-term memory tasks. Forward and backward Corsi tasks (adapted from Corsi [86]).

These tests consist of a set of nine blocks randomly placed on a wooden tablet. The cubes are

numbered on the experimenter’s side of the board to facilitate the administration of the test.

The experimenter taps the blocks in a random sequence, and participants are asked to repro-

duce the sequence in the same (forward Corsi) or in reverse order (backward Corsi). The diffi-

culty of the task is manipulated by increasing the number of blocks tapped by the experimenter.

The sequences are presented at a rate of one cube per second. The tests started with 3 and

increased to 8 cubes in each sequence in the forward version, and from 2 to 7 in the backward

version. Each level of difficulty included 2 sequences of the same length. After two consecutive

recall errors, the task was discontinued. A practice trial with two sequences was administered

for each type of task before the test started. One point was awarded for each correctly recalled

sequence. The final score corresponded to the total number of correctly-recalled sequences

(maximum score 12, for both tasks).

Complex (visuospatial and verbal) working memory tasks. Visual Pattern Test Active
(VPTA; adapted from [87]; see [70]). In this task, participants were presented with a matrix in

which half the cells were filled; these matrices increased in size from the smallest (4 squares

with 2 cells filled) to the largest (20 squares with 10 cells filled). Then participants were given a

blank matrix and asked to fill in the cells to reproduce the same pattern as on the matrix they

had seen, but one row lower down. For example, if the second cell in the first row of the pre-

sentation matrix had been filled, participants had to fill in the second cell in the second row.

For scoring purposes, each pattern was attributed a value according to its complexity. The final

score was obtained from the sum of the values for the three most complex patterns correctly

completed.

Listening Span Test (LST; see [60], adapted from [88]). This verbal task consists of an

increasing number (2, 3, 4, 5, 6) of simple sentences. The task consisted of 20 sentences in all

in which each sentence was separated from the next by an interval of 1.5 sec. Each sentence

can contain from 6 to 12 words. The last word of each sentence can be composed of 2, 3, 4, or

5 syllables. Participants were asked to listen to each sentence, judge its plausibility (say whether

it was true or false) and remember the last word. At the end of each set, participants were

asked to recall all the last words, in their order of presentation. Two training trials preceded

the task. The total number of last words correctly recalled in the right order during the whole

test was considered as the measure of a participant’s WM capacity. The number of intrusion

errors (words recalled that had been heard during the task but were not the last words of a sen-

tence) was also computed. This procedure was used to measure a participant’s ability to con-

trol the permanence of information in their WM (e.g. [89]).

Elderly musicians: Auditory and cognitive abilities
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Visuospatial abilities. The short Embedded Figures Test (sEFT, adapted from [90]; see also

[91]) consists of 10 items, each comprising a complex overall figure in which participants were

asked to identify an embedded simple shape shown separately in a list of simple figures. The

short Mental Rotations Test (sMRT, adapted from [92]; see also [91]) consists of 10 items, each

involving a 3D target figure (assembled cubes) presented with four possible matches alongside.

Participants were asked to find the two figures that were identical to the target but rotated in

space (time limit for the task 5 min). Participants’ accuracy was calculated from the scores

obtained in the two tasks (sEFT and sMRT; 1 point for each correct answer, max 10 points for

each task.

Procedure. Participants were tested individually in two separate sessions lasting about 90

minutes each, with a one-week interval between the two sessions to avoid familiarity effects on

tasks measuring the same construct. In the first session, participants completed a health and

demographic questionnaire followed by the SVAMA, the sMRT, and the auditory tasks, pre-

sented in the following order: pure tone audiometry, SAM detection, duration discrimination,

frequency discrimination, gap detection, intensity discrimination and spectral shape discrimi-

nation. In the second session, the task order was: VPTA, sEFT, Forward and Backward Corsi

tasks, and LST. The LST was presented verbally, while all the other tasks (sMRT, sEFT, VPTA)

were administered as “paper and pencil” tests. For the latter, the experimenter ascertained that

participants could read the instructions and stimuli with ease, then provided examples, and

ensured that the requirements of the task were understood, before proceeding with the actual

task. The current research was approved by the Ethic committee of the University of Padova

for psychological research (protocol n. 1966). All participants gave their informed written con-

sent to participate in the study.

Results

Auditory tasks

Musicians and nonmusicians were compared in terms of their performance on auditory mea-

sures with a series of analyses of variance (ANOVA). Individual participants’ pure-tone audi-

ometry results were averaged across frequency and ears. Musicians and nonmusicians did not

differ in terms of absolute thresholds, F(1,38) = .04, p = .84, η2p< .01 (see Fig 1). Musicians

performed better than nonmusicians in: the frequency discrimination task, F(1,38) = 6.61, p =

.01, η2p = .15; the duration discrimination task, F(1,38) = 5.05, p = .03, η2p = .12; gap detection,

F(1,38) = 19.57, p< .001, η2p = .34; and SAM detection, F(1,38) = 5.89, p = .02, η2p = .13. The

two groups’ performance was similar in: the intensity discrimination task, F(1,38)< .01, p =

.96, η2p< .01; and spectral shape discrimination, F(1,38) = 1.18, p = .28, η2p = .03. The results

of the psychoacoustic tests are represented in Fig 2.

Cognitive tasks

A series of ANOVAs were also run to assess the effect of Group (i.e., musicians vs. nonmusi-

cians) on the cognitive variables tested. Given the significant difference between the two

groups in terms of years of education and vocabulary score (which might affect cognitive mea-

sures), these variables were entered in the analyses as covariates. Descriptive statistics and

scores’ distributions are presented in Table 2 and Fig 3.

Short-term memory tasks. The main effect of Group was not significant for the Forward

Corsi task, F(1,36) = 2.24, p = .14, η2p = .06 (the adjusted means for musicians and nonmusi-

cians were, respectively,Madj = 6.25 andMadj = 4.95, SE = 0.51, after correcting for the covari-

ates), nor were the main effects of the covariates (Fs< 1). The main effect of Group was not

significant for the Backward Corsi task either, F(1,36) = 1.72, p = .20, η2p = .05 (Madj = 5.01 vs
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edges of the box are the 25th and 75th percentiles. The whiskers are the interquartile range (i.e., Q3-Q1) augmented by 50%, and the symbols are outliers.

https://doi.org/10.1371/journal.pone.0187881.g002
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Madj = 6.19, SE = 0.53, for musicians and nonmusicians respectively, after correcting for the

covariates), nor were the main effects of the covariates (Fs< 1.48, ps> .23).

Complex working memory tasks. A significant main effect of Group emerged for the

visuospatial WM task, the VPTA, F(1,36) = 18.85, p = .001, η2p = .34), with musicians scoring

higher than nonmusicians (Madj = 8.16 vs.Madj = 4.89, SE = 0.44, respectively, after correcting

for the covariates). The main effects of the covariates were not significant (F(1,36) = 1.59, p =

.22, η2p = .04, for years of education; and F(1,36) = 2.08, p = .16 η2p = .06 for vocabulary).

A significant main effect of Group was also found for the verbal WM task, the LST, F(1,36) =

50.36, p = .001, η2p = .58, with musicians scoring higher than nonmusicians (Madj = 18.34 vs

Madj = 10.01, SE = 0.69, respectively, after correcting for the covariates). As for the covariates,

Table 2. Descriptive statistics (M and SD) for the cognitive measures of interest by group (musicians

vs nonmusicians).

Musicians Nonmusicians

Measure M SD M SD

Corsi Forward 6.10 0.97 5.10 2.17

Corsi Backward 4.55 0.83 6.65 2.39

VPTA 7.50 1.15 5.55 1.88

LST 17.30 1.49 11.05 3.36

Intrusion LST 0.06 0.06 0.18 0.23

sMRT 4.40 1.39 2.20 2.19

sEFT 7.85 1.39 5.90 3.09

Note: VPTA: Visual Pattern Test Active; LST: Listening Span Test; sMRT: short Mental Rotations Test;

sEFT: short Embedded Figures Test.

https://doi.org/10.1371/journal.pone.0187881.t002
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Fig 3. Boxplots representing the cognitive performance of participants in the cognitive tests. In each box, the central mark is the median. The

edges of the box are the 25th and 75th percentiles. The whiskers are the interquartile range (i.e., Q3-Q1) augmented by 50%, and the symbols are

outliers.

https://doi.org/10.1371/journal.pone.0187881.g003
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the main effect of years of education was not significant, F< 1, but a significant main effect of

vocabulary emerged, F(1,36) = 8.71, p = .006, η2p = .20.

A significant main effect of Group was found for intrusion errors (a measure of inhibition)

in the LST, F(1,36) = 13.12, p = .001, η2p = .27, with musicians making fewer intrusion errors

than nonmusicians (Madj = -0.03 vsMadj = 0.26, SE = 0.05, respectively, after correcting for the

covariates). The main effects of the covariates were not significant (F(1,36) = 2.62, p = .11, η2p =

.07 for years of education, and F(1,36) = 2.36, p = .13, η2p = .06 for vocabulary).

Visuospatial tasks. A significant main effect of Group emerged for the sEFT, F(1,36) =

24.18, p< .001, η2p = .40: musicians had higher scores than nonmusicians (Madj = 9.25 vsMadj =

4.98, SE = 0.57, respectively, after correcting for the covariates). As for the main effects of the

covariates, years of education was not significant, F(1,36) = 1.97, p = .170, η2p = .05, while vocabu-

lary was significant, F(1,36) = 13.73, p = .001 η2p = .28.

For the sMRT too, the main effect of Group was significant, F(1,36) = 10.22, p = .003, η2p =

.22: musicians had higher scores than nonmusicians (Madj = 4.72 vsMadj = 1.88, SE = 0.52,

respectively, after correcting for the covariates). As for the covariates, here again, the main

effect of years of education was not significant, F<1, but the main effect of vocabulary was sig-

nificant, F(1,36) = 5.86, p = .02, η2p = .14.

Composite measures

To examine briefly in a synthetic way how musicians and nonmusicians differed in terms of

their auditory and cognitive aspects, we computed two composite measures: one for the audi-

tory and the other for the cognitive tasks. Principal component analyses were run for this pur-

pose, extracting the first component of all auditory variables and the first component of all

cognitive variables (i.e., Forward Corsi task, Backward Corsi task, VPTA, LST, intrusion errors

in LST, sEFT, and sMRT). The first component of auditory performance had an eigen-

value = 1.77, and accounted for 29% of the variance. The first component of cognitive perfor-

mance had an eigenvalue = 3.57, and accounted for 51% of the variance. The results of

ANCOVA (entering vocabulary and years of education as covariates) confirmed that the two

groups differed in cognitive performance, which was better in musicians than in nonmusicians,

F(1,36) = 34.11, p< .001, η2p = .49. Among the covariates, vocabulary had a significant (and

positive) main effect, F(1,36) = 7.81, p = .008, η2p = .18, while years of education did not, F(1,36)

= 1.66, p = .206, η2p = .04. The two groups also differed in auditory performance, which was

again superior in musicians, F(1,38) = 17.53, p< .001, η2p = .32 (consistently with the previous

analysis, vocabulary and years of education were not entered as covariates in this case).

Discriminating power of the variables. We also examined how the variables observed–as

well as the composite measures–could help discriminate between musicians and nonmusi-

cians. This analysis was limited to the variables for which significant differences had emerged

between the two groups. Taking this approach, variables are treated as a group “discrimination

test”. This analysis provides a direct measure of how a given variable can help to discriminate

between participants belonging to different groups, without making any assumptions on the

variables’ distribution. For each variable, a receiver operating characteristic (ROC) analysis

was conducted, and the area under the curve (AUC) was calculated as its performance as a

classifier of group. The true-positive rate was calculated with regard to “musicians” (whereas

the false positive rate concerned “nonmusicians”).

Following the accuracy classification proposed by Zhu and colleagues [93], we considered

an AUC> .80 as good, and an AUC > .90 as excellent. Fig 4 shows the ROC curves (with the

AUCs) for the variables measured with a good classification power (i.e., AUC> .80). The vari-

ables reported on an “inverted scale” indicate that musicians could be discriminated from
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nonmusicians using a lower value as the criterion. Among the auditory variables, frequency

discrimination and gap detection emerged as excellent classifiers (with an AUC = .92 and .91,

respectively). As for the cognitive, in particular the memory variables, the VPTA emerged as a

good classifier for identifying musicians (AUC = .83), and the LST emerged as an excellent

classifier (AUC = .98). Always among the cognitive, visuospatial variables, the sMRT emerged

as a good classifier (AUC = .82). Finally, as regards the composite measures, both cognitive

and auditory performance emerged as good group classifiers (both AUCs = .88).

Correlation between the cognitive and auditory domains. Correlations were tested con-

sidering the composite measures, but no significant correlations emerged: auditory perfor-

mance did not correlate with cognitive performance in either musicians (r = -.06, p = .81) or

nonmusicians (r = -.23, p = .36). Finally, the correlations partialized for vocabulary and years

of education did not vary within each group.

Discussion

The aim of the present study was to investigate the auditory and cognitive profiles of elderly

(> 65 years old) but still active professional musicians, with a lifelong music training,

Fig 4. ROC curve (and AUCs) for variables used as group classifiers. The true positive rate refers to

the proportion of musicians correctly identified. Variables given on an “inverted scale” indicate that they

increasingly differentiate musicians from nonmusicians as their value decreases (i.e., musicians have

lower values than nonmusicians). Note that, in the auditory domain, lower scores correspond to a better

performance.

https://doi.org/10.1371/journal.pone.0187881.g004
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comparing them with those of nonmusicians of similar age. To the best of our knowledge, this

is the first study to have investigated auditory skills and cognition together in older musicians,

using a multivariate design, and numerous indicators for the construct examined.

The results of the auditory tasks revealed a similar performance in musicians and nonmusi-

cians on pure-tone audiometry. This test is often regarded as a measure of the peripheral audi-

tory system’s integrity, and consequently of the efficiency of peripheral auditory processing.

Our two groups obtained comparable results, as seen in previous studies (e.g. [40]). None of

our participants showed evident signs of hearing loss, but they all had the typical audiometric

pattern of older age, characterized by presbycusis [41]. On the other hand, the musicians per-

formed better than the nonmusicians in terms of auditory abilities. This was true of four of the

six abilities investigated in the present study. The musicians did better in frequency and dura-

tion discrimination tasks, but not in intensity discrimination and profile analysis. The musi-

cians’ advantage in the frequency and duration discrimination domains is well documented in

the literature (e.g. [10, 11, 40]). Unfortunately, as far as we are aware, nobody has investigated

the intensity discrimination and profile analysis in musicians and nonmusicians. A possible

explanation for our failure to find a difference in this dimension may come from the percep-

tual learning literature. In perceptual learning, participants’ discriminatory abilities are

improved by means of dedicated laboratory training sessions, during which they are asked to

perform a psychophysical task repeatedly. Such training usually improves participants’ perfor-

mance in the trained task. It seems from the literature, however, that performance can be

improved in frequency and duration discrimination tasks, but not in intensity discrimination

tasks [94].

As concerns cognitive abilities, although the musicians in our sample had fewer years of for-

mal education than the nonmusicians and scored worse in a vocabulary test, they performed

better in the complex WM and visuospatial tasks, while the two groups did not differ in the

two short-term memory measures. In other words, consistently with previous studies, and

with our expectations, the musicians’ and nonmusicians’ performance was similar in the less

complex (short-term recall) tasks, which demand fewer resources than WM tasks, and have

been found less age-sensitive (e.g. [69]). In contrast, musicians showed a clearly enhanced

WM performance, irrespective of (verbal or visuospatial) task content. Taken together with

the lack of any significant difference between musicians and nonmusicians on short-term

memory tasks, this pattern of findings suggests that the difference in the memory profile of

older musicians vis-à-vis other older people concerns memory tasks requiring a high level of

control, and this aspect would have a role whatever the task content. The fact that task content

was not crucial in the case of WM tasks is indirectly in line with the similar age-related decline

seen in both verbal and visuospatial WM tasks [60]. Musicians’ better performance in complex

WM tasks supports the findings of previous studies, which identified this mechanism as a

prime candidate for musicians’ broader underlying cognitive advantages in young adult age

[95], with the novelty that our results extend these findings to older musicians too. The larger

education of nonmusicians in comparison to nonmusicians needs to be explained. Such a dif-

ference can be regarded as normal among Italian older adults. The old Italian conservatory

could be started at any age after age 13 (i.e. immediately after completing the first cycle of sec-

ondary school). The conservatory lasted ten years. Many conservatory students did not attend

the second cycle of secondary school simultaneously with the conservatory. In addition, tal-

ented musicians who started playing in childhood were not inclined to take any other types of

school after beginning the conservatory. In other words, fewer years of formal education in

older musicians are not surprising.

Musicians also revealed a more efficient inhibition than nonmusicians, as emerged from

their fewer intrusion errors in the LST. This might be because music playing involves the need
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to ignore some misinformation such as, for example, when performing in a music ensemble

where each musician plays a different melody. The repeated practice in this peculiar condition

might enhance the attentional control ability of musicians. This hypothesis is supported by

studies showing activation of the frontal executive areas when people listen to music [96–98].

This stronger cognitive control of our older musicians is consistent with other reports [64, 65],

and may also account for their enhanced WM performance. Efficient inhibitory mechanisms

correlate with efficient WM functioning because the latter is of limited capacity, and the for-

mer would only allow relevant information to occupy WM capacity (e.g. [99]).

Musicians also performed better than nonmusicians in higher-order cognitive tasks that

involved multi-step image manipulation (in the sEFT) and mental rotations (in the sMRT).

Our findings are in line, for the sMRT at least, with [32], and newly extend this knowledge to

older adult musicians. The musicians’ greater accuracy in these two visuospatial tasks might be

due to their having better visualization and sensorimotor skills than other older adults thanks

to years of daily practice with their musical instrument, and/or to their greater experience and

proficiency with sight-reading (they need to maintain longer visual sequences in their WM

while performing). For example, rapid score-reading while playing a musical instrument is a

task that involves visualization and sensorimotor abilities. This type of training may enhance

the ability of the musician to manage complex visuospatial patterns and to memorize them. In

other words, the training of playing an instrument while reading a score, may improve perfor-

mance in visuospatial tasks requiring spatial manipulation of stimuli. This supports the notion

that musicians’ retention of their musical and sight-reading skills throughout their adult lives

would be associated with better performance in higher-order visuospatial tasks. Music training

thus seems related to enhanced skills in higher-order cognitive processes, not in the more sim-

ple ones.

The between-group differences seen in both the auditory and the cognitive domains were

further confirmed when the discriminatory power of the variables was examined in relation to

the group. In particular, both the composite measures obtained with our principal component

analysis emerged as good group classifiers, with an identical discriminatory power (AUC =

.88). Examining the specific variables, frequency discrimination and gap detection for hearing,

and WM and mental rotations for cognitive measures, proved good-to-excellent in pinpoint-

ing our (elderly) musicians, as shown by the analyses on the ROC curves. As for the cognitive

measures, the distributions of the WM and mental rotation variables overlapped very little

between the musicians and the nonmusicians. This means that even the musicians with the

poorest cognitive profiles (within their own group) performed as well as, or better than the

best-performing nonmusicians. This pattern of results confirms the different profile character-

izing older musicians, in terms of their auditory and higher-order cognitive abilities.

Finally, concerning the possible relationship between auditory processing and cognitive

processing, the present study revealed no significant link, neither in absolute threshold, i.e.,

peripheral processing (e.g. [76, 77, 100–102]), nor in supra-threshold, i.e., central processing

(e.g. [43, 44, 54]). The musicians performed better in the higher-order cognitive tasks than the

nonmusicians, irrespective of their performance in the auditory tasks. This lack of a relation-

ship (often reported in the literature) can be interpreted as follows: in many studies, the

strength of the relationship between sensation (including hearing) and cognition was boosted

by statistical artefacts, particularly when it was calculated on the performance of participants

of very different ages, e.g., young adults vs old adults (see [43, 103] for detailed explanations).

After controlling for statistical artefacts, the strength of the relationship is small [43]. Assum-

ing that the strength of the relationship is distributed around a small value, the published

results may be biased because studies that found a relationship were more likely to be pub-

lished than those that did not [104, 105].
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Altogether, the present findings show that musicians have better performance than nonmu-

sicians in auditory and cognitive tasks (in particular the complex ones). Here, older musicians

retained the advantage over nonmusicians found in previous studies [63–65, 106]. In the pres-

ent study, moreover, musicians performed better than nonmusicians irrespective of the sen-

sory system tapped by the cognitive test (i.e., regardless of whether the test was presented

auditorily or visually).

These results raise the following question: why old musicians should have better auditory

and cognitive performances than old nonmusicians? The advantage in auditory tasks is easily

explained in the light of the literature on experts’ performance: experts (musicians in the case

in point) perform better than non-experts (i.e., nonmusicians) with stimuli they are familiar

with, i.e., sounds. What remains to be seen is why musicians here performed better than non-

musicians in cognitive tasks. The literature on this issue is quite controversial especially

because of the different criteria used to define and include older musicians (e.g., age of the

musicians, years of music training) in the various literature studies. We can hypothesize differ-

ent types of explanations. On the one hand, there may be some uncontrolled variable typical of

quasi experiments such as the current that is responsible for the differences in the cognitive

tasks (e.g., related to a different motivation, interest in the tasks executed etc.). Another possi-

bility is that individuals with high cognitive abilities are more likely to become musicians, and

that is why musicians perform better than nonmusicians in cognitive tasks. Any of these possi-

ble explanations would, presumably, give musicians an advantage over nonmusicians in all

tasks, but this was not the case.

The alternative explanation is that a better cognitive performance might be a consequence

of having trained to become a musician. According to this hypothesis music training, espe-

cially for people like the musicians in our sample, who were still active in their profession, and

with a lifetime of music training behind them, may act as a protective factor (contributing to

the cognitive reserve [107]) against age-related changes in cognition [108]–and also in some

auditory skills [57]–better enabling musicians to retain complex cognitive skills in old age than

their nonmusical peers. Their cognitive reserve may help to compensate for the age-related

decline in cognition because long-term music training would favor neuroplasticity, which

modifies synaptic connections or neural growth processes. Learning a skill may help preserve

the gray and white matter structures during the normal process of aging, when the brain gen-

erally undergoes substance loss (e.g. [39, 109]).

A possible and alternative aspect behind the benefit of music training could be the notion

of mismatch. According to this idea [110], training activities are effective when they induce a

“supply-demand” mismatch, i.e., they are sufficiently difficult to exceed the available capacity,

but not so difficult to induce disengagement from the task. Being active in music may well be

seen as a constant source of supply-demand mismatch: musicians need frequently to learn

new musical pieces, or to work in different orchestras. In other words, the superiority of musi-

cians over nonmusicians could be due by being continuously challenged by novel requests.

These speculations need to be confirmed by further studies, which should make an effort to

examine and support not only the behavioral plasticity, but also the brain plasticity of older

musicians. Our results are in line with studies showing that older adults who engage in cogni-

tively stimulating activities–even in later life–have slower rates of cognitive decline, whatever

their early education levels [111]. It remains unclear, however, whether the present findings

were driven by our participants’ music training, or by their being individuals more likely to

engage in activities generally. The quasi-experimental nature of the present study can shed no

light on this issue. Future research, for example, should recruit nonmusicians that, as well as

musicians, are still actively engaged in cognitively demanding activities (i.e. related to their

previous work or to social activities). It may be the case that an active individual in any domain
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that requires effortful and different cognitive processes would look like a musician. Such a

comparison group would disentangle the role of life-long training from the role of the music

training. Nonetheless, the few available experimental studies suggest that even a short-term

music training (e.g., singing and listening to music) suffices to improve not only mood but

also several cognitive abilities in elderly people suffering from dementia [112].

We would like to acknowledge some of the limitations of the present study. First, there is

the small sample size–though it is not easy to find professional musicians still active beyond 65

years of age. The design of our study prevents us from establishing any causal relationships,

such as whether it was participants’ music training that enhanced their cognition, or whether

other variables were responsible for the differences between the musicians and nonmusicians.

By the same token, it is also hard to say whether the effects observed in our sample were due to

the participants’ musical experience or to a predisposition to succeed in music as well as in

cognitive tasks generally. Even if it was established that music training directly enhances cogni-

tion, it would remain unclear whether it may represent a true protective mechanism against

cognitive decline in advanced age. Under this hypothesis, the difference in cognitive tasks per-

formance between musicians and nonmusicians should be larger in older than in younger

adults (previous studies, however, failed to report an age by music training interaction on per-

formance in specific tasks; see e.g. [113]; c.f. also [114] for conceptually similar results in air-

craft pilots). From an applicative point of view, this hypothesis would suggest that even music

training provided for the first time in advanced age may be have a beneficial effect on cognitive

skills. Only longitudinal research (e.g. [115, 116]), and studies on neural compensation mecha-

nisms, however, may be able to address all these questions. Lastly, we were unable to differentiate

between musicians with different types of music training, or who played different instruments.

The type of musical instrument is known, for example, to modulate a musician’s ability in certain

perceptual tasks [117]; and orchestra conductors have greater spatial tuning skills than pianists

or nonmusicians [4]. Whether the instrument played also modulates musicians’ cognitive per-

formance remains to be seen.

In conclusion, the present study suggests that music training is associated with

enhanced auditory and cognitive abilities at any age, and it might be a driver of experi-

ence-dependent plasticity in aging–suggesting the importance of providing music train-

ing for older adults.
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