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Background: Whilst the ability of AMH to induce the regression of the Müllerian ducts in
the male fetus is well appreciated, AMH has additional biological actions in relation to
steroid biosynthesis and ovarian follicle dynamics. An understanding of the physiology of
AMH illuminates the potential therapeutic utility of AMH to protect the ovarian reserve
during chemotherapy and in the treatment of female malignancies. The translation of the
biological actions of AMH into clinical applications is an emerging focus of research, with
promising preliminary results.

Objective and Rationale: Studies indicate AMH restrains primordial follicle
development, thus administration of AMH during chemotherapy may protect the
ovarian reserve by preventing the mass activation of primordial follicles. As AMH
induces regression of tissues expressing the AMH receptor (AMHRII), administration of
AMH may inhibit growth of malignancies expressing AMHR II. This review evaluates the
biological actions of AMH in females and appraises human clinical applications.

Search Methods: A comprehensive search of the Medline and EMBASE databases
seeking articles related to the physiological functions and therapeutic applications of AMH
was conducted in July 2021. The search was limited to studies published in English.

Outcomes: AMH regulates primordial follicle recruitment and moderates sex steroid
production through the inhibition of transcription of enzymes in the steroid biosynthetic
pathway, primarily aromatase and 17a-hydroxylase/17,20-lyase. Preliminary data
indicates that administration of AMH to mice during chemotherapy conveys a degree of
protection to the ovarian reserve. Administration of AMH at the time of ovarian tissue
grafting has the potential to restrain uncontrolled primordial follicle growth during
revascularization. Numerous studies demonstrate AMH induced regression of AMHR II
expressing malignancies. As this action occurs via a different mechanism to traditional
chemotherapeutic agents, AMH has the capacity to inhibit proliferation of chemo-resistant
ovarian cancer cells and cancer stem cells.

Wider Implications: To date, AMH has not been administered to humans. Data identified
in this review suggests administration of AMH would be safe and well tolerated.
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Administration of AMH during chemotherapy may provide a synchronistic benefit to
women with an AMHR II expressing malignancy, protecting the ovarian reserve whilst the
cancer is treated by dual mechanisms.
Keywords: anti-Müllerian hormone, fertility preservation, steroid biosynthesis, aromatase, ovarian
cancer, chemotherapy
INTRODUCTION

In the late 1940s, a series of studies was conducted by Jost (1, 2)
in which testosterone implants were surgically introduced into
female rabbit fetuses. Whilst these experiments indicated that
testosterone was capable of inducing the development of male
reproductive structures including the penis and scrotum,
testosterone was not shown to cause the regression of
Müllerian structures. On the other hand, grafting of testicular
tissue in close proximity to the ovary in female rabbit fetuses
resulted in the regression of the Müllerian ducts on the ipsilateral
side to the testicular tissue. This led to a proposition by Jost as to
the existence of a Müllerian inhibiting substance produced by the
testis (3). This substance was later identified as a testicular
glycoprotein, anti-Müllerian hormone (AMH, Müllerian
inhibiting substance), for which both the bovine and human
genes have been isolated (1).

The AMH gene is located on chromosome 19p13.3 (4). It has
five exons and four introns (1). Transcription and cleavage of
this gene results in a 535 amino acid AMH protein, comprised of
a 426 amino acid N-terminal prodomain and a 109 amino acid
C-terminal domain that conveys the biological activity of the
molecule. AMH proteins bind together via disulfide bonds to
form homodimers, but do not become active until cleavage of the
prodomain occurs (5–7). A cleavage motif exists at the arginine-
serine site at residues 427-428 (5, 8–10). Mutations that block
cleavage of the AMH protein at this site destroy its biological
activity (10).

The prodomain is essential for correct protein folding and
facilitates the dimerization of the carboxy-terminal growth factor
domains. Even after cleavage of the prodomain, there is
frequently a persistent non-covalent binding between the
prodomain and the active protein. AMH is a member of the
transforming growth factor b (TGF-b) family. This family is
comprised of thirty-three members that include activins,
inhibins, bone morphogenetic proteins (BMPs) and growth
differentiation factors (11). In other TGF-b family members,
the association of the prodomain with the active growth factor
domain may inhibit binding of the active hormone to its receptor
as the prodomain can form a shield over the growth factor
domain (12). However the non-covalent association between the
prodomain and carboxy-terminal growth factor domain of AMH
that persists after cleavage greatly potentiates its activity (13),
with the prodomain disassociating with the carboxy-terminal
domain only after its engagement with the receptor (14).

In line with other members of the TGF-b family, AMH acts
via a heteromeric serine/threonine receptor complex. The gene
for the AMH receptor II (AMHR II) is located on chromosome
n.org 2
12q13 (15). The transcription of this gene results in a protein
consisting of 573 amino acids. The AMHR II conveys the
biological specificity of the receptor complex. It has an
extracellular domain for ligand binding, a transmembrane
domain and an intracellular domain with the capacity for
serine/threonine kinase activity (6). A unique AMH receptor I
(AMHR I) has not been identified. It appears that the function of
AMHR I is conducted by a receptor that is shared with bone
morphogenetic proteins (BMPs). The ALK2, ALK3 (BMPR-1A)
and ALK6 (BMPR-1B) receptors have been proposed as AMHR I
receptors (11, 16–19).
METHODS

The EMBASE and MEDLINE databases have been searched
using search the search terms “Anti-Müllerian hormone” OR
“Müllerian inhibiting substance” OR “Müllerian inhibiting
hormone” OR “Müllerian inhibiting factor” in conjunction
with the following terms: “physiology”, “steroid synthesis”,
“fertility preservation” and “neoplasms” in combination with
additional keywords associated with specific topic areas. Searches
were limited to articles written in English but were not limited by
date. Additional references were obtained through an analysis of
the references in key articles.
THE INCREASING IMPORTANCE OF
FERTILITY PRESERVATION

Globally over 8.5 million women were diagnosed with cancer in
2018. This number is projected to increase by 56.8% by 2040 to
over 13.5 million women (20). Whilst the primary drivers of this
increase are the growing size of the world’s population, extended
life expectancy and the ageing population, even after
standardization for age incidence rates have slowly increased in
the last two decades. In 2017 the worldwide cancer incidence rate
was 306.75 per 100,000 having risen from 296.09 per 100,000 in
1990. This is largely due to the rapid progress in preventing
mortality from diseases that previously killed young people, such
as infectious diseases (21).

There is a clear correlation between age and cancer incidence,
with almost 80% of the new cases of cancer being diagnosed
occurring in women 50 years of age or older. Despite this, a large
number of pre-pubertal girls and women of reproductive age are
diagnosed with cancer. An estimated 1,358,073 females aged 0-
44 years were diagnosed with cancer in 2018, the most
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commonly diagnosed type being breast cancer, with 417,091
cases of this cancer being reported (20).

Within the 0-44 year age group, the strong correlation
between cancer incidence and age is evident. Data from 2017
demonstrates an exponential rise in the number of women
diagnosed with cancer in each decade of life, increasing from
272,971 cases in women aged 20-29 years, to 683,938 cases in
women aged 30-39 years, and to 1,271,485 cases in women aged
40-49 years. This has important ramifications regarding the
potential demand for fertility preservation as childbearing is
increasingly being deferred to an older maternal age. In Australia
the proportion of women having babies at less than 30 years of
age halved from 80% in 1975 to 40% in 2018, with a concurrent
quadrupling of the number of women aged 35 years or older
giving birth, increasing from 6% in 1975 to 24% in 2018 (22). The
experience of other Western countries is comparable – in
England and Wales, the mean maternal age rose from 26.4
years in 1975 to 30.6 years in 2018 (23); in the United States of
America, the mean maternal age at first birth rose from 21.4
years in 1970 to 26.3 in 2014 (24, 25); in the European Union, the
mean maternal age rose from 29.0 years in 2001 to 30.8 years in
2018 (26).

Concurrent with these changes, cancer death rates have fallen.
The worldwide age-standardized cancer death rate improved by
15% in the period 1990-2017, with a several countries including
the USA, Canada, UK, Germany, France, Italy, Switzerland,
Japan, Singapore and Australia reporting falls in their age-
standardized cancer death rates of over 20% (27). Five-year
survival rates for most cancers have also markedly improved in
recent decades; in the USA for example, the overall five year
survival rate rose from 50.3% in 1970-77 to 67.0% in 2007-2013.

With improving survival rates, there is an increasing focus on
quality of life, of which fertility is of utmost importance.
Qualitative studies consistently reiterate the importance of
fertility for pre-menopausal women diagnosed with cancer
(28–31). The finding that women were willing to alter their
cancer treatment in order to preserve their fertility has repeatedly
been reported. In a European study of 389 women aged 35 years
or less at the time of breast cancer diagnosis, 8.2% of women
stated that they would refuse chemotherapy if it would reduce
their chance of being able to have children in the future (30); an
international study of 657 women aged 40 years or less at the
time of breast cancer diagnosis reported 29% of women stated
that concerns regarding fertility influenced their cancer
management decisions (28); an American study of 620 women
aged 40 years or less at the time of breast cancer diagnosis
reported that 51% of women were concerned about becoming
infertile as a result of their cancer treatment, with concerns
regarding fertility affecting their cancer treatment decisions in
26% of women. In this latter group of women, four women (1%)
refused chemotherapy completely and 12 women (2%) altered
the chemotherapy regime they would accept due to concerns
regarding infertility (29).

The need for specialist involvement does not end with the
instigation of cancer treatment. Fertility issues can become
increasingly important to women after the initial shock of their
Frontiers in Endocrinology | www.frontiersin.org 3
cancer diagnosis dissipates (31). The rising incidence of cancer in
pre-menopausal women and improvements in long-term
survival rates, act together to increase cancer prevalence. It is
estimated that the global prevalence of women aged 15-49 years
with history a cancer diagnosis has increased from 14.02 million
in 1990 to 24.62 million in 2017 (27). Consequently, fertility
preservation strategies prior to the commencement of cancer
treatment, and the ongoing management of women with a
history of cancer, has transpired as a crucial component of
care provided by reproductive endocrinologists. Demand for
specialist care is likely to evolve in conjunction with continued
advances in early cancer detection and improvements in cancer
survival rates.
THE ACTION OF AMH IN THE STEROID
BIOSYNTHETIC PATHWAY

AMH has several actions in the steroid biosynthetic pathway, as
indicated in Figure 1. Whilst AMH does not suppress basal
enzymatic expression, it has the capacity to mitigate hormonally
mediated elevations in transcription thus acting as a regulator of
sex steroid production.

The most extensively documented action of AMH in the
steroid biosynthesis pathway relates to its inhibition of
transcription of CYP19A1. CYP19A1 (aromatase) belongs to
the cytochrome P450 superfamily and is responsible for the
aromatization of androgens (androstenedione and testosterone)
to oestrogens (oestrone and oestradiol respectively). In vitro
studies of murine, porcine and human granulosa cells have
demonstrated that addition of AMH to culture media does not
alter the basal expression of aromatase (32–36) but does inhibit
increases in aromatase mRNA transcription mediated by FSH
(32–34, 36–39), LH (38) and a combination of FSH and LH (36).

FSHR and LHR are G-protein coupled receptors. The binding
of FSH and LH to their respective receptors results in signal
transduction modulation, at least partially through the activation
of adenylyl cyclase and production of 3’5’-cycleic adenosine
monophosphate (cAMP) as a second messenger (40). Thus the
addition of cAMP or forskolin (a direct activator of adenylyl
cyclase capable of inducing a rise in intracellular cAMP levels)
mimics the action of gonadotropin downstream of FSHR and
LHR. AMH has been shown to inhibit cAMP- and forskolin-
mediated increase in aromatase expression (32, 35, 37–39).

As inhibition of aromatase prevents the conversion of androgens
to oestrogens, inhibition of aromatase would logically be expected to
decrease oestrogen and increase androgen concentrations. This has
been demonstrated in one in vitro study in which the ovaries of
sheep fetuses, obtained 29 days post-coitum, were cultured in the
presence or absence of AMH, with androstenedione being used as a
substrate for aromatization. Ovaries cultured in control media
secreted oestradiol with only low concentrations of testosterone
detected. Ovaries cultured in the presence of AMH showed a
reversal of this pattern, with negligible oestradiol secretion and
high testosterone concentrations detected, the latter approximating
September 2021 | Volume 12 | Article 689532
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those detected in testicular culture controls. Assays of aromatase
activity confirmed that the elevated testosterone and low oestradiol
concentrations were secondary to reduced aromatase activity. These
results were replicated by the same authors using 16-28 day post-
coitum rabbit fetal ovaries (41).

Numerous in vitro studies report inhibition of FSH mediated
increases in oestradiol by AMH with unchanged basal production
of oestradiol (32, 34, 35, 38, 42). Supporting these findings is an in
vivo study in which mice administered with 120ng or 300ng AMH
for four weeks demonstrated decreased aromatase activity and
decreased serum oestradiol concentrations (37).

However, the increase in testosterone production that would
be expected with aromatase inhibition has not been consistently
reported; conversely the majority of in vitro studies report
decreased testosterone production in the presence of AMH (39,
43–46), a finding that has been replicated in vivo (44, 46, 47).

A study in which supra-physiological AMH concentrations in
mice were generated through the administration of an adeno-
associated virus serotype 9 (AAV9) vector reported decreased
serum concentrations of both oestradiol and testosterone (48).
Two studies of transgenic male and female mice engineered to
overexpress AMH under the control of a metallothionein promoter
reported significantly reduced serum testosterone concentrations in
adult male transgenic mice compared to controls (47, 49); with one
of these studies reporting an undetectable serum testosterone
concentrations in both transgenic female mice and controls
despite ovarian aromatase activity being significantly reduced in
the transgenic mice, indicating testosterone does not accrue in
Frontiers in Endocrinology | www.frontiersin.org 4
AMH overexpressing female mice (47). A further study of male
mice administered AMH via intra-testicular injection demonstrated
decreased testicular interstitial fluid testosterone concentrations;
Leydig cells obtained four hours post-injection were cultured for
three hours with decreased testosterone production demonstrated
in mice administered AMH (44). A final in vivo study in which rats
were administered rAMH, reported a three-fold reduction in serum
testosterone concentrations 24hrs after administration of
AMH (46).

The repeated finding of decreased serum testosterone
concentrations alludes to an additional inhibitory action of
AMH at an earlier stage of the steroid biosynthesis pathway.
Granulosa cells perform only the final stage (aromatization) of
oestrogen production, the initial stages involving the conversion
of cholesterol to androgens being performed in theca cells, as
illustrated in Figure 1. Therefore in vitro studies of granulosa
cells in which androstenedione is added to the culture media do
not demonstrate a reduction in testosterone synthesis (41) as the
addition of androstenedione effectively bypasses the early stages
of steroid biosynthesis. In vitro studies in which androstenedione
is not provided as a substrate (39, 43–46) and in vivo studies (44,
46–49), show decreased testosterone production.

Consistent with the supposition that AMH must inhibit sex
steroid production at early stages of the biosynthetic pathway are
findings of decreased mRNA expression of CYP17, the gene
encoding 17a-hydroxylase/17,20-lyase, which is responsible for
the conversion of pregnenolone/progesterone to 17OH-
pregnenolone/17OH-progesterone to DHEA/androstenedione
FIGURE 1 | The effect of AMH in the steroid biosynthetic pathway.
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respectively (35, 43–46, 49). In an in vitro study, researchers
cultured MA-10 cells from a Leydig cell tumour line in the
presence of AMH and reported a striking ten-fold reduction in
testosterone secretion after two days of culture, with a modest
40% reduction in progesterone secretion noted. Expression of
CYP17 dropped to undetectable levels in the presence of AMH
(45). An in vivo study in which adult male mice were injected
with either hCG alone or hCG and AMH reported a 9-fold
reduction in serum testosterone concentrations 24 hours after
injection with AMH, with a slight (statistically significant)
decrease in 17OH-progesterone, suggesting strong inhibition of
17,20-lyase with lesser inhibition of 17a-hydroxylase activity.
Serum progesterone concentrations were unchanged (46).

Steroidogenic acute regulatory protein (StAR) delivers
cholesterol from the outer to the inner mitochondrial
membrane, which is the rate-limiting step in steroid biosynthesis
(50). Several studies have investigated the effect of AMH on
expression of StAR, with conflicting results. There are similar
inconsistencies between studies that explore the impact of AMH
on P450scc and 3bHSD. Some studies have reported decreased
P450scc mRNA expression secondary to AMH (36, 45, 46, 49),
whilst other studies report unchanged expression (36, 46). A
species specific effect has been postulated after a study
demonstrated a reduction in P450scc mRNA expression in rats
but not in mice (46).

A final means by which AMH may influence the production
of steroid hormones is by its capacity to alter hormone receptor
expression. Several studies have reported either reduced
expression of LH receptor (LHR) mRNA (37, 44, 49) or a
blunting of an LH mediated increase in LHR expression (35).
Most studies report unchanged expression of FSH receptor
(FSHR) mRNA (32, 33, 37, 38) and the progesterone receptor
(PR) mRNA in the presence of AMH (37). One study in which
AMH was administered to mice reported unchanged androgen
receptor (AR) mRNA in pre-pubertal mice and decreased AR
mRNA expression in pubertal mice (37).

Observational human studies support a role of AMH in human
sex steroid production with an inverse relationship between serum
AMH and testosterone concentrations documented in males (51,
52) Serum AMH concentrations in males are elevated at birth and
remain high until puberty when a precipitous drop occurs (51–
54); serum testosterone concentrations mirror this pattern (51,
52). As AMH diminishes testosterone production due to its
inhibitory action on P450 17a-hydroxylase/C17-20 lyase (39, 43,
45), the precipitous drop in serum AMH concentration occurring
at puberty would release the inhibitory constraint of AMH on
testosterone production. The decrease in AMH concentrations has
been noted to occur prior to the development of clinical signs of
puberty (51); a murine study has showed the pubertal increase in
serum testosterone occurred 15 days after AMH concentrations
decreased to basal levels (55). Also consistent with a negative
correlation with testosterone concentrations, males with delayed
puberty exhibit significantly elevated AMH levels, whilst males
experiencing a precocious puberty have serum AMH
concentrations substantially lower than those of age-matched
peers (53, 56). A recent murine study has reported strong
Frontiers in Endocrinology | www.frontiersin.org 5
inhibitory action of testosterone and DHT on the AMH
promoter (57) raising the possibility of a synergistic relationship
between testosterone and AMH in males.

Data currently available based on in vitro cell cultures and in
vivo animal studies indicates a strong inhibitory action of AMH
on aromatase and 17a-hydroxylase/17,20-lyase, signifying that
monitoring of testosterone and oestrogen concentrations would
be indicated in phase I trials if AMH was administered to
humans in supra-physiological amounts.
THE ROLE OF AMH IN OVARIAN
FOLLICLE DYNAMICS

An accelerated rate of primordial follicle recruitment with
premature depletion of the ovarian reserve occurs in mice
engineered to be homozygous or heterozygous for an
inactivating mutation of the AMH gene (58–61). In one study,
it was reported that prior to puberty (25 days of age), primordial
follicle numbers were comparable between AMH deficient and
wild type mice (60). During puberty (four months of age), a more
rapid recruitment of primordial follicles was demonstrated, with
increased numbers of pre-antral and antral follicles in mice
carrying the loss-of-function AMH gene mutation. Towards
the end of the reproductive lifespan (thirteen months of age),
an almost complete depletion of the primordial follicle pool in
mice homozygous for the AMH mutation had occurred, with a
lesser reduction exhibited in heterozygous mice. Consistent with
a premature exhaustion of the ovarian reserve, a subsequent
study reported that 56% of AMH knockout mice had ceased
ovulation by 16-17 months of age, compared to 18% of wild-type
mice (62).

Short-term in vitro cultures of both murine and human
ovarian tissue have documented results consistent with AMH
acting to restrain primordial follicle development. The ovaries of
two-day old mice, when cultured in the presence of AMH were
found to contain 59% less primary and secondary follicles
compared to control ovaries (p≤0.05), consistent with AMH
restraining primordial follicle recruitment; after four days of
culture this difference had widened to 66% (p≤0.05) (58). To
investigate this effect in humans, ovarian tissue obtained from
women aged 26-42 years (mean 33.7+/-3.6 years) and was
cultured in the presence or absence of AMH. In uncultured
control samples, 56% of follicles were observed to be at the
primordial follicle stage; after seven days of culture, the
proportion of follicles at primordial follicle stage had decreased
to 14-26% in specimens cultured with 0-30ng/mL AMH,
(p≤0.05). When cultured in the presence of 100ng/mL, there
was no significant difference in the proportion of primordial
follicles compared to uncultured ovarian tissue specimens (63).

An extended tissue culture (four weeks) of human ovarian
tissue has not replicated this inhibitory action of AMH in
primordial follicle recruitment. In uncultured ovarian tissue,
90.5% of follicles were found to be at the primordial follicle
stage compared to 54%, 46%, 35% and 43% in samples cultured
in control media or media supplemented with testosterone,
September 2021 | Volume 12 | Article 689532
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AMH or both AMH and testosterone respectively (p≤0.05 for all
groups) (64). The divergent findings are possibly explained by
the prolonged period of tissue culture or by the culture media
used in this study containing a-MEM, which has been
demonstrated to result in significantly greater follicle initiation
and growth compared to other culture media (65).

There is a limited amount of data to suggest that AMH may
have a supportive role in later stages of follicular growth. In one
study, pre-antral follicles (140-150mm) were dissected from
ovaries obtained from 12 day old rats and were individually
cultured in wells containing FSH, AMH or both FSH and AMH
(66). After 72 hours, there was no significant growth of follicles
cultured in control media. Follicles increased in size by 10mm
when cultured in the presence of AMH, by 25mm in the presence
of FSH and by 40mm in the presence of both FSH and AMH,
suggesting a facilitatory role of AMH on secondary follicle growth.

In a primate study of adult female macaques, AMH was
determined to promote the formation of an antrum in growing
follicles (67). In this study, secondary follicles (diameter 125-
225mm, 2-4 layers of granulosa cells) were isolated and cultured in
individual wells for five weeks. AMH or a neutralizing anti-AMH
antibody was added to the wells. Follicles developed an antrum
earlier when AMH was added to the culture media in weeks 0-3;
the addition of the anti-AMH antibody delayed antrum formation.
Oestradiol production was markedly low at week 5 in follicles
exposed to AMH compared to control follicles, consistent with an
inhibitory effect of AMH on oestradiol production.

In the second part of this study, intra-ovarian infusions of
either control of 500ng/hour of anti-human AMH antibodies
were administered to adult macaques for day 1-4 of the
menstrual cycle until the mid-cycle oestradiol peak (67). In the
macaques administered anti-AMH antibodies, antrum
formation was delayed. Based on this data, the authors have
submitted that AMH facilitates the pre-antral to antral
development of ovarian follicles in primates.
MECHANISMS OF CHEMOTHERAPEUTIC
DAMAGE TO THE OVARIES

Mechanisms by which chemotherapy may cause depletion of the
ovarian reserve include a detrimental effect to the stroma or
vasculature; direct damage to the oocytes inducing apoptosis;
damage to the granulosa cells that comprise the follicles
containing the oocytes; or unrestrained activation of primordial
follicles with their consequent rapid loss from the ovarian reserve
(68). There is evidence supporting each of these hypotheses.

Vascular damage is an established consequence of many
chemotherapeutic agents as demonstrated in a trial in which
human ovarian tissue was either cultured with doxorubicin for
72 hours, or xenografted into SCID mice that were then treated
with doxorubicin. Reduced vascular density after exposure to
doxorubicin was reported in both the in vitro and in vivo
studies (69). In a human study, ovarian tissue samples were
obtained from 35 women with cancer (mean age 28.7+/- 7.74
years) of whom 17 had been exposed to non-sterilizing
Frontiers in Endocrinology | www.frontiersin.org 6
chemotherapy prior to laparoscopic harvest of ovarian tissue. In
a blinded histopathological examination of specimens, thickening
and hyalinization of large stromal vessels, disordered
neovacularisation and regions of focal fibrosis was identified in
the ovarian cortex specimens obtained from women who had
received chemotherapy (70). Concurring with these findings is a
study of ovarian tissue biopsies obtained from girls who had
successfully completed chemotherapy treatment for acute
lymphoblastic leukaemia; narrowed capillaries with irregular
lumens and pericapillary stromal fibrosis was observed in these
specimens (71). Whilst these studies establish a feasible
mechanism in which chemotherapy causes microvascular
damage to the ovarian cortex, potentially leading to areas of
localized ischaemia and resulting in primordial follicle loss,
causality has not been proven.

The hypothesis that damage to the ovarian reserve is due to
direct cellular damage to the oocyte is well founded (68). A study
in which high dose cyclophosphamide was administered to mice
demonstrated disruption to the morphology of the oocyte with
the nuclear contents becoming clumped and distorted within 24-
72 hours of administration. The surrounding granulosa cells
appeared unaffected upon histological analysis. Complete
destruction of the oocyte followed, leaving an empty ring of
granulosa cells (72). Another study has demonstrated
doxorubicin induces double-strand DNA breaks in both
oocytes and granulosa cells (69).

One mechanism of action of alkylating agents, such as
cyclophosphamide, is to induce abnormal bonds, or cross-
links, between DNA bases preventing strand separation
required for transcription or translation. Administration of
cyclophosphamide to female rats primed with pregnant mare
serum gonadotrophin reported an increase in DNA cross-linkage
in granulosa cells two hours after administration. Twenty-four
post-administration, granulosa cell numbers were depleted by
51% (73), indicating that damage to the ovarian reserve caused
by chemotherapy is not confined solely to direct damage to
oocytes. Consistent with this finding was a study of female mice
administered with cyclophosphamide that used TUNEL
(terminal deoxynucleotidyl transferase dUTP nick end
labelling) to detect DNA fragmentation and apoptosis which
demonstrated a dose dependent increase in apoptosis of the
granulosa cells of preantral and antral follicles. This effect did not
extend to the granulosa cells of primordial or primary follicles.
This finding is likely explained by the higher mitotic index of the
granulosa cells of larger follicles, rendering them more sensitive
to cyclophosphamide (74).

Another hypothesis regarding the mechanism of
chemotherapeutic damage is that a sharp drop in serum
oestradiol concentrations occurs upon the commencement of
chemotherapy, with the consequent decrease in the negative
inhibitory action on the anterior pituitary causing an elevation in
serum FSH concentrations. The FSH elevation would be expected to
cause an upsurge in the rate of granulosa cell proliferation,
increasing the susceptibility of these cells to the anti-proliferative
and cytotoxic effects of chemotherapy. With continued follicular
destruction and further FSH elevation, more follicles are recruited
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and destroyed, eventually resulting in primordial follicle depletion
(75). If this theory is correct, medications that inhibit the release of
FSH, namely GnRH agonists, administered during chemotherapy
should be protective, however studies in this area have shown
divergent results (76–79). Additionally, a study of the hormonal
sequalae of chemotherapy has not shown a dramatic drop in
serum oestradiol concentrations immediately upon the
commencement of CMF (cyclophosphamide, methotrexate, 5-
fluorouracil) treatment (80). Further arguing against this theory,
is that the finding that granulosa cells of primordial follicles do not
express FSH receptor mRNA (81), indicating that primordial
follicle recruitment must take place independently of FSH.

Despite these flaws, this hypothesis has merit in suggesting that
‘burn out’ of the primordial follicle reserve may be an important
mechanism by which chemotherapy provokes destruction of the
ovarian reserve. In a murine study, increasing doses of
cyclophosphamide have been shown to cause an upsurge in the
ratio of early growing follicles compared to dormant follicles (82).
Should a means of restraining primordial follicle activation
become available, its use during chemotherapy may be
protective to the ovarian reserve.
ABILITY OF AMH TO PROTECT THE
OVARIES DURING CHEMOTHERAPY

If AMH is able to restrain primordial follicle activation, it may be
able to offer a degree of protection to the ovarian reserve during
chemotherapy. To evaluate this hypothesis, carboplatin (80mg/
kg IP) or doxorubicin (3mg/kg IP) was administered weekly to
tumour (ovarian cancer) bearing Nu/Nu mice. AMH
concentrations were maintained through the use of an AAV9-
AMH viral vector which had previously been demonstrated to
convey a sustained elevation in serum AMH concentrations.
Mice were euthanized when tumour-related end points were
met. In the presence of the AMH viral vector, primordial follicle
counts were reported as being 2.2-fold higher in mice receiving
carboplatin and 1.8-fold higher in mice receiving doxorubicin,
compared to controls receiving chemotherapy alone. In a
subsequent experiment, osmotic pumps containing an rAMH
solution were implanted in mice. Weekly chemotherapy with
carboplatin, doxorubicin or cyclophosphamide was then
instituted, with the euthanized after two weeks of chemotherapy.
Primordial follicle counts were higher in the mice implanted with
the rAMH osmotic pumps (1.4-fold higher for carboplatin-treated
mice, p<0.0001; 2.9-fold higher in doxorubicin-treated mice,
p<0.001; 1.2-fold higher in cyclophosphamide-treated mice,
p<0.05) compared to mice implanted with saline pumps (48).

Another study involved the administration of a single
intraperitoneal injection of either vehicle, 150mg/kg
cyclophosphamide, 5mg/kg rAMH or both cyclophosphamide
and rAMH to female mice before being euthanized either 17
hours or 8 days later. The primordial follicle count was reduced
in the cyclophosphamide treated mice compared to the control
mice (448.2+/-55.0 versus 1197+/-138.2 follicles, p<0.01),
whereas the number of primordial follicles in the ovaries of
Frontiers in Endocrinology | www.frontiersin.org 7
mice receiving both cyclophosphamide and rAMHwas similar to
that of controls (813.4+/-68.7 versus 875.5+/-83.9, p=NS) (83).

The protective effect of AMH on the ovarian reserve during
chemotherapy has been demonstrated to translate into an
improved fertility outcome in one of two studies. The authors
of the study demonstrating a protective effect of AMH (84)
administered two doses of cyclophosphamide (150mg/kg) to
mice either in isolation or in conjunction with rAMH (four
doses of rAMH administered six hourly following each dose of
cyclophosphamide). Mice were then mated with males of proven
fertility six successive times commencing five weeks after the
final dose of chemotherapy. Mice exposed to cyclophosphamide
alone demonstrated a reduced pregnancy rate and a smaller
mean litter size compared to controls (pregnancy rate:
0.26+/-0.07 versus 0.50+/-0.06, p<0.05; mean litter size 1.2
+/-0.3 versus 3.0+/-0.6). Mice exposed to chemotherapy plus
AMH had a similar pregnancy rate to controls (0.54+/-0.06
versus 0.50+/-0.06), with a higher mean litter size compared to
mice that received cyclophosphamide alone (2.3+/-0.4 versus
1.2+/-0.3).

The second study (83) involved the weekly intraperitoneal
administration of either vehicle or a non-sterilizing dose (75mg/kg)
of cyclophosphamide for four weeks, either in isolation or in
combination with rAMH. Four weeks after the final injection,
mating with males of proven fertility took place. The authors
reported a non-significant reduction in the cumulative number of
mice born in the group receiving cyclophosphamide alone compared
to control mice and mice receiving both cyclophosphamide and
rAMH (47.3+/-5.9 versus 53.2+/-8.2 versus 53.5+/-10.5). The lack of
statistical effect demonstrated may be due to the lower dose of
cyclophosphamide (75mg/kg) used in this study, compared to dose
(150mg/kg) used in the study that demonstrated a protective effect on
litter size with AMH administration.

The administration of AMH during chemotherapy must be
conducted with care, avoiding the abrupt withdrawal of
exogenous AMH. In a normally functioning ovary, follicles at
all stages (primordial, primary, secondary, antral) coexist at the
same time. When high levels of exogenous AMH are
administered, there is a marked reduction in the number of
primary, secondary and antral follicles (48). As the granulosa
cells of the secondary, pre-antral and early antral follicles secrete
AMH (85), a drop in these follicle numbers would be expected to
make the ovary unable to continue to secrete AMH should the
administration of exogenous AMH be abruptly ceased. This
notion is supported by an observation that immediately post
AMH cessation, there is a large and rapid loss of primordial
follicles (48).
ROLE IN OVARIAN TISSUE
TRANSPLANTATION

The potential use of AMH in respect to fertility preservation is
not limited to its administration during chemotherapy. In pre-
pubertal girls, or women for whom oocyte cryopreservation is
not an option prior to the instigation of gonadotoxic treatment,
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ovarian tissue may be cryopreserved prior to the instigation of
treatment, with regrafting of the ovarian tissue after successful
cancer therapy. Whilst over 130 live births have occurred as a
result of this technology (86), there is a massive follicular loss
immediately post-transplantation secondary to ischaemia and
rapid primordial follicle activation (87–89). This has resulted in a
high denominator of transplantation attempts to achieve the
reported number of live births. One case series of 111 women
undergoing transplantation of cryopreserved ovarian cortex
reported that 32 women (29%) conceived and 23 women (21%)
had a live birth (a total of 33 live births, with five women delivering
more than once and two twin deliveries) (90). Another case series
of 95 orthotopic transplantations in 74 women, reported that 16
women conceived (17%) of these women, 15 continued to a live
birth (16%) (a total of 17 live births with two women delivering
twice) (91).

The transplantation of ovarian cortical tissue into women
who have undergone sterilizing cancer treatment (and thus have
no ovarian function) introduces the ovarian tissue into an
environment devoid of AMH. Parallels can be drawn to the
culture of ovarian cortical tissue in media that does not contain
AMH; in vitro studies consistently demonstrate rapid primordial
follicle activation in this situation. One study that utilized
ovarian cortex sourced from cattle and baboons demonstrated
that the majority or primordial follicles were activated within 12-
24 hours of culture in AMH-free media (92). In a study of bovine
ovarian cortex, 72% of follicles in freshly harvested tissue were at
the primordial stage of development, within two days of culture
only 10% remained at the primordial follicle stage (93). In a
quantitative analysis of ovarian tissue specimens obtained from
women aged 25-42 years (mean age 35 years) who underwent
oophorectomy, 88% of follicles were reported to be at the
primordial stage, with 8% at the primary stage when examined
immediately post-oophorectomy; after 4-11 days of culture, only
20% of follicles were reported to be at the primordial follicle
stage, with 65% at the primary stage after 4-11 days (94).

The results of an in vivo studies in which human ovarian tissue
was grafted into ovarectomized (SCID) mice are consistent with
the in vitro studies. The proportion of primordial follicles present
in the ovarian tissue fell from 72.88+/-5.93% in pre-graft control
specimens to 38.95+/-3.94% four weeks after grafting (p<0.001)
and 37.42+/-5.83% (p=0.009) twelve weeks after grafting. There
was a concomitant rise in the percentage of primary follicles from
13.48+/-2.92% in pre-graft control specimens, to 29.29+/-2.60%
four weeks after grafting (p=0.009), but twelve weeks after grafting
the elevation in primary follicle percentages was not sustained,
with 9.74+/-2.22% of follicles found to be at the primary follicle
stage. This latter result is likely due to a substantial number of the
primary follicles progressing to the secondary stage [pre-graft
versus four week graft 13.37+/-6.09% versus 27.60+/-4.16%
(p=0.018); pre-graft versus twelve week graft 13.37+/-6.09%
versus 49.40+/-6.14 (p=0.001)] (95). These results concur with a
similar study that reported 71% of follicles were at the primordial
stage in fresh human ovarian cortex; one week after grafting into
nude mice, this proportion had decreased to 39% (p<0.001); a
concurrent rise in the proportion of primary follicles from 11% in
Frontiers in Endocrinology | www.frontiersin.org 8
fresh tissue to 24% stage one week after grafting was observed
(p=0.05) (87).

The mass activation of primordial follicles that occurs in the
absence of AMH is in contrast to the orderly activation of
primordial follicles that occurs in the ovaries of healthy
women. A key difference between these two situations is that
AMH is present in the circulation of the healthy women. The
pivotal role that AMH has in controlling primordial follicle
activation was demonstrated in a study in which human
ovarian cortex was cultured in the presence or absence of
AMH. Rapid depletion of the primordial follicle pool occurred
in AMH-free media, however when 100ng/mL AMH was added
to the media, the proportion of follicles maintained at the
primordial stage was comparable to that of uncultured tissue
(63). Another study using bovine ovarian cortex demonstrated
that when this tissue was cultured in serum-free media, a seven-
fold decrease in primordial follicles occurred. When bovine
ovarian cortex was cultured on the edge of the chorioallantoic
membrane (CAM) of chick embryos, primordial follicle numbers
were unchanged from day 0, indicating a component in the
environment of the ovarian tissue was able to restrain the
activation of primordial follicles (92).

The clinical experience of human auto-transplantation of
cryopreserved ovarian cortex is consistent with unrestrained
primordial follicle activation. In a longitudinal analysis of
eleven young menopausal recipients of fresh ovarian cortex
transplants (donated by an identical twin, n=9, or a non-
identical sibling, n=2) AMH concentrations initially remained
low before sharply rising to supra-physiological levels (at
approximately 170 days post grafting), consistent with a rapid
progression of primordial follicles to the secondary stage
whereupon AMH secretion is commenced. Shortly thereafter, a
sustained fall to below to sub-physiological concentrations was
observed (approximately 240 days post grafting), consistent with
a decrease in secondary follicles secondary to depletion of the
primordial follicle pool (96).

It is conceivable that the administration of exogeneous AMH
could temper the rapid initial recruitment and subsequent loss of
primordial follicles until reperfusion of the graft has taken place
and intrinsic AMH production commenced. To elucidate the
effect of AMH on ovarian tissue, researchers cryopreserved
murine ovarian tissue in vitrification media containing
different concentrations of human AMH (0, 5, 15 or 45mg/mL)
before warming the tissue in media using the same
concentrations of AMH. No difference was detected in the
proportion of primordial, growing or grade 1 follicles between
the different dose groups of AMH, although there was a
reduction in the proportion of apoptotic follicles from 21.0%
in the control group compared to 8.1% in the 5mg/mL AMH
group and 1.7% in the 15mg/mL and 45mg/mL AMH groups (97).
The lack of difference in the proportion of follicles at different
stages may be explained by short duration (total 35 minutes) of
exposure of the ovarian tissue to AMH.

The same researchers then vitrified fresh ovarian cortex in
media devoid of AMH, before warming and auto-transplanting
the tissue back into the mice one week later. The mice were
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divided into groups and received either 0, 50, 250 or 1,250mg/mL
human AMH doses every two days for a total of four doses prior
to ovariectomy, immediately post ovariectomy or both pre- and
post-ovariectomy. Mice were euthanized either 7 or 28 days after
auto-transplantation. No statistical difference in the proportion
of primordial or growing follicles was identified in any of the
treatment groups (97). The absence of effect in the second study
may be explained by an insufficient frequency of AMH. The
decision of the authors to administer AMH every two days was
based on a report estimating the half-life of bovine AMH to be
approximately 48 hours (98), however a study of human AMH
has estimated the half-life as 27.6 hours (99).

Further in vivo research using human ovarian cortex is
required to clarify whether AMH has the capacity to curtail
uncontrolled mass activation of primordial follicles in the
immediate post-transplantation period. The prolonged
timeframe between fresh ovarian tissue grafting in young
menopausal women and rise in AMH (96), suggests an
extended duration of AMH administration may be necessary.
ROLE OF AMH IN THE TREATMENT
OF CANCER

As its name suggests, the renowned physiological function of
AMH is to induce the regression of the Müllerian ducts in the
male fetus. It has been hypothesized, and successfully
demonstrated, that this inhibitory action can be utilized to
induce the regression of malignancies expressing AMHRII
(100). Studies have demonstrated that AMH is capable of
inhibiting the proliferation of cancers arising from Mullerian
structures such as the cervix (101, 102) and endometrium (103,
104), as well as some cancers arising from non-Mullerian
structures that express AMHR II such as breast (105–107),
vulva (108) and prostate (106). The main focus of investigation
however has been in regard to ovarian cancer. Despite the ovaries
not being Mullerian structures, there is increasing concurrence
that many ovarian neoplasms are of Mullerian origin (109–111),
explaining why AMHR II receptors are expressed by many
ovarian cancer cells (112, 113).

Initial studies used partially purified bovine AMH to
demonstrate that AMH was capable of inhibiting growth in
vitro of human papillary serous cystadenocarcinoma cells (100).
In vivo, pretreatment of ovarian cancer cells (HOC-21 cell line)
with bovine AMH delayed the appearance of tumour and
increased disease free survival when these cells were
subcutaneously injected into the middorsal flank of Balb/C
nude mice (114). Fresh tumour suspensions were obtained
from twenty-eight women undergoing surgery for gynaecological
cancer (ovarian, endometrial or fallopian tube origin) and were
tested in soft agar colony inhibition assays. Significant colony
inhibition was demonstrated in 25 of 28 assays following
incubation with bovine AMH (115).

After the human AMH gene was isolated, it was transfected
into Chinese hamster ovary cells to provide a more purified
form of AMH (recombinant AMH, rAMH). In vitro studies
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confirmed that rAMH could inhibit both human and murine
ovarian cancer cell lines (112, 113, 116, 117). In one study, six
human ovarian cancer cell lines expressing AMHR II were
incubated in the presence of 15ug/mL rAMH (113). rAMH
caused almost complete inhibition of growth in two cell lines,
and significant inhibition of growth in three other lines. In the
final cell line colony growth was not inhibited, possibly
secondary to impaired downstream signaling due to an
absence of functional p16. Ascites was then obtained from 27
women with ovarian cancer of which 15 (56%) contained
malignant cells that bound biotinylated AMH, suggesting
expression of AMHR II. Out of the eleven cell lines that
bound biotin and grew in soft agarose, 9 of 11 (82%) were
significantly inhibited (29-94% inhibition) when rAMH was
added to the culture medium.

In vivo studies using murine (MOVCAR7, MOVCAR8) and
human (OVCAR3, OVCAR8, IGROV-1) cancer cell lines
injected into immunodeficient mice have also demonstrated an
inhibitory effect of rAMH (108, 117, 118). Additionally, rAMH
may have anti-metastatic action, having been shown to decrease
invasiveness in an in vitro study using the epithelial ovarian
cancer cell line IGROV-1, and inhibit migration in an in vivo
study using a chick chorioallantoic membrane migration
assay (119).

Epithelial ovarian cancer is a highly lethal cancer due to an
advanced disease stage at the time of diagnosis in the majority of
cases and chemo-resistance that may be intrinsic or develop with
disease progression (120). High grade ovarian cancers exhibit
biological features, including molecular heterogeneity, the
capacity to metastasize and an ability to develop chemo-
resistance, that support the proposal that it is a cancer stem
cell driven disease. Cancer stem cells are capable of unlimited
self-renewal and have an ability to differentiate through
asymmetric cell division. As they are pluripotent, they can give
rise to daughter cells with different phenotypes, permitting
tumour heterogeneity and chemo-resistance (121). Their
relatively quiescent state and expression of proteins capable of
acting as molecular pumps, effluxing lipophilic medications out
of the cell, permit these cells to evade destruction by
chemotherapeutic and radiation treatments (121, 122).

As AMH acts by binding to the extracellular AMHR II rather
than by diffusing into cells, it has the capacity to act on chemo-
resistant cancer stem cells. An in vitro study demonstrated that
whilst treatment of cells from the OVCAR-5 ovarian cancer cell
line with doxorubicin, cisplatin and paclitaxel resulted in a
decrease in the total number of viable cells, there was an
expansion in the proportion of cells exhibiting stem cell
characteristics. Treatment with AMH caused a significant
decrease in both the total number of cells and in the stem cell
population (123). An additional study that isolated stem cell
enriched populations of ovarian cancer cell lines concurred that
doxorubicin treatment stimulated the growth of these cells, whilst
AMH inhibited proliferation by inducing G1 arrest through the
induction of cyclin-independent kinase inhibitors (124).

The potential clinical utility of AMH to inhibit the proliferation
of chemo-resistant ovarian cancer cells was demonstrated in a
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study in which malignant cells were obtained from the ascites of
women with highly resistant ovarian cancer. In vitro, four of six
cell lines were inhibited when cultured in media containing AMH.
To investigate in vivo action, five patient-derived lethal chemo-
resistant serous adenocarcinoma lines were xenografted into mice.
AMH administration inhibited the proliferation of three of the five
tumours (125).

AMH also has potential utility in immunotherapy-based
approaches to cancers expressing AMHR II. A mouse antibody
(12G4) has been developed to bind to the human AMHR II. When
administered to nude mice xenografted with human granulosa cell
(COV434) or epithelial ovarian cancer (OVOCAR-3) cell lines,
tumour growth was inhibited via antibody-dependent cell-
mediated cytotoxicity (possible as nude mice have functional
macrophages and natural killer cells) and, to a lesser extent, due
to the activation of signaling pathways after receptor/ligand
complex internalization (126).

Murlentamab (GM102 or 3C23K) is a human monoclonal
antibody designed to bind to the AMHRII expressed by malignant
cells. The Fc portion of the antibody has been glycol-engineered to
have low fucosylation, enabling high affinity binding to CD16 and
thus enhancing natural killer cell activity as well optimizing
antibody-dependent cell-mediated cytotoxicity (ADCC) and
antibody-dependent cellular phagocytosis (ADCP) (127, 128). A
phase I trial of murlentamab of 68 women with metastatic
AMHRII-expressing ovarian, cervical or endometrial cancer who
had previously been treated with at least one chemotherapy regime
reported that the antibody was well tolerated with no dose limiting
toxicity; the most common adverse effect was G 1-2 asthenia
(29%); a lesser number of patents (12%) reported more severe
asthenia, nausea or vomiting (129). Approximately 80% of
colorectal adenocarcinomas express the AMHRII, consequently
a phase II study of the efficacy of murlentamab in patients with
advanced colorectal adenocarcinoma has been conducted (130).
Thirty nine patients received either murlentamab alone (n=14) or
in conjunction with trifluridine and tipiracil (n=15), with the study
reporting a 1.7-fold and a 3.6-fold reduction in the tumour growth
rate in these groups respectively. Of fourteen patients treated with
murlentamab alone, those with greater than 20% AMHRII
positive tumour cells, showed superior rates of progression-
free survival.

Antibodies specific for AMHR II have been radiolabelled with
213Bi to effect destruction of AMHR II expressing intra-
peritoneal tumours in mice (131) and can be used as a means
of targeted drug delivery whereby cytotoxic drugs are covalently
attached to AMH. Upon internalization, the bonds between
AMH and the cytotoxic molecule are cleaved by proteases,
freeing the drug to accomplish its cytotoxic function (9, 121).
The use of radiolabelled diabodies (constructed from fragments
of antibodies capable of binding to AMHR II), has been proposed
as a new immunoimaging diagnostic and monitoring approach
to gynaecologic malignancies (132).

AMH in the treatment of cancer has a number of potential
advantages over traditional chemotherapeutic agents. Firstly,
increased concentrations of AMH do not convey the severe
toxicity associated with many chemotherapeutic medications.
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AMH concentrations of up to 480ng/mL in women with PCOS
(133) and 1,200ng/mL in women with granulosa cell tumours
(134) have been reported without evidence of adverse effects.
Secondly, AMH acts via a different mechanism to traditional
chemotherapeutic agents and therefore may be effective in the
treatment of cancer stem cells and chemo-resistant cancers.
Finally, in contrast to many chemotherapy medications
currently used in clinical practice that damage the ovaries and
thus reduce the likelihood of future fertility, AMH would not be
expected to cause a depletion of the ovarian reserve provided its
administration is not abruptly ceased. If AMH was co-
administered during chemotherapy, it may have a synchronous
action to the chemotherapy, and may also offer a degree of
protection to the ovaries.
CONCLUSIONS AND FUTURE
DIRECTIONS

Preliminary animal data indicates that AMHhas clinical application
in protecting the ovarian reserve during chemotherapy, suppressing
primordial follicle recruitment whilst vascularization of ovarian
tissue grafts is re-established and in the treatment of malignancies
expressing AMHR II.

To date, AMH has not been administered to humans. A
comprehensive review of the biological actions of AMH suggests
that its administration would be safe and well tolerated, although a
decrease in sex steroid production would be expected due to its
inhibitory of aromatase and 17a-hydroxylase/17,20-lyase. Depending
on the degree of suppression, oestradiol supplementation may be
required to avoid menopausal symptoms or if AMH administration
was prolonged. Administration of an AMHRII antibody
(murlentamab) has been well tolerated in a small number of cancer
patients (129, 130).

Epithelial ovarian cancer accounts for approximately 90% of
ovarian cancer diagnoses, of which the majority have serous
tumour cell histology. 80% of serous epithelial ovarian cancers
are diagnosed at an advanced (III-IV) stage. The overall five year
life expectancy of epithelial ovarian cancer in the USA in 2007-13
was 41% for women diagnosed at stage III and 20% for women
diagnosed at stage IV (135) as chemo-resistance inevitable occurs
leaving few treatment options aside from palliation. In light of
these grim statistics, human trials of AMH administration in
women with advanced ovarian cancer would be appropriate,
especially data suggests that AMH can be effective in inducing
the regression of chemo-resistant tumour cells.

Additional animal studies are required to confirm and detail
the value of AMH in fertility preservation agent, both in its
capacity to protect the ovarian reserve during chemotherapy and
in the context of ovarian tissue grafting after successful cancer
treatment. If data consistently confirms the beneficial denoted in
preliminary studies, a trial of adjuvant AMH during
chemotherapy in women of reproductive age would be pertinent.

As the administration of AMH would be expected to suppress
primordial follicle recruitment and development, extended
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administration of AMH is likely to decrease the number of pre-
antral follicles present in the ovaries, with a consequent decrease
in intrinsic AMH secretion. Abrupt cessation of AMH
administration would therefore be expected to result in a
transient period of sub-physiological AMH serum
concentrations and uncontrolled primordial follicle recruitment
could occur. This mandates caution with use of AMH for the
purpose of preserving the ovarian reserve during chemotherapy;
graduated dose reduction prior to cessation is warranted.
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