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ABSTRACT
Background: The fecal metabolome is affected by diet and includes metabolites generated by human and microbial

metabolism. Advances in -omics technologies and analytic approaches have allowed researchers to identify metabolites

and better utilize large data sets to generate usable information. One promising aspect of these advancements is the

ability to determine objective biomarkers of food intake.

Objectives: We aimed to utilize a multivariate, machine learning approach to identify metabolite biomarkers that

accurately predict food intake.

Methods: Data were aggregated from 5 controlled feeding studies in adults that tested the impact of specific foods

(almonds, avocados, broccoli, walnuts, barley, and oats) on the gastrointestinal microbiota. Fecal samples underwent

GC-MS metabolomic analysis; 344 metabolites were detected in preintervention samples, whereas 307 metabolites

were detected postintervention. After removing metabolites that were only detected in either pre- or postintervention

and those undetectable in ≥80% of samples in all study groups, changes in 96 metabolites relative concentrations

(treatment postintervention minus preintervention) were utilized in random forest models to 1) examine the relation

between food consumption and fecal metabolome changes and 2) rank the fecal metabolites by their predictive power

(i.e., feature importance score).

Results: Using the change in relative concentration of 96 fecal metabolites, 6 single-food random forest models for

almond, avocado, broccoli, walnuts, whole-grain barley, and whole-grain oats revealed prediction accuracies between

47% and 89%. When comparing foods with one another, almond intake was differentiated from walnut intake with 91%

classification accuracy.

Conclusions: Our findings reveal promise in utilizing fecal metabolites as objective complements to certain self-

reported food intake estimates. Future research on other foods at different doses and dietary patterns is needed to

identify biomarkers that can be applied in feeding study compliance and clinical settings. J Nutr 2022;152:2956–2965.

Keywords: gastrointestinal microbiota, metabolomics, fidelity measures, dietary intake biomarker, machine

learning

Introduction

Traditionally, gut microbiome researchers have utilized DNA
sequencing methods to characterize the composition of the gut
microbiota, or “who” is there (1, 2). More recently, focus has
shifted to the functionality of these microbes, leading to the
use of metabolomics to discover and validate molecular by-
products present in biological samples. This approach allows for
the identification of cellular processes in response to stimuli, i.e.,
specific food consumption (3), because fecal samples contain

human- and microbial-recovered metabolites, as well as by-
products of nondigested and absorbed food components (4).
One promising route for these discoveries is to complement self-
reported measures of food intake and compliance with fecal
metabolites as objective biomarkers. Although self-reported
measures are frequently utilized in studies, their reliability
and validity have been criticized owing to errors, including
misreporting (5–9). Therefore, objective biomarkers that can
complement self-reported measures of food intake are of
enormous interest.
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Researchers from multiple government agencies and public
and private organizations have acknowledged the need to
promote the discovery, development, and use of biomarkers
across various applications (10–14). Metabolomic studies in the
nutrition field have focused on specific metabolites associated
with food consumption (15). For example, trimethylamine N-
oxide (TMAO) has been identified as a potentially atherogenic
gut-derived metabolite from dietary nutrients such as choline,
betaine, and l-carnitine in eggs, red meat, and fish (16,
17). Other work has demonstrated that various nutrients
can serve as food-specific biomarkers, including lutein (av-
ocado), tocopherols (almond), proline betaine (citrus fruit),
and methoxyeugenol glucuronide, dopamine sulfate, salsolinol
sulfate, xanthurenic acid, and 6-hydroxy-1-methyl-1,2,3,4-
tetrahydro-β-carboline sulfate (banana) (18–21). However,
most identified biomarkers are from blood or urine samples,
whereas the utility of fecal samples (a noninvasive biological
sample) to generate biomarkers of food intake is under-
explored (21–25). Our previous work demonstrated that fecal
bacteria could be used to identify food intake with up to
85% accuracy (26). Although these exploratory efforts are
not without their limitations, they reveal promise in pursuing
noninvasive objective biomarker development through further
exploration of the functional information available in fecal
samples. One challenge under continued study is analyzing
metabolomics data (3).

Thus, aligned with our previous effort (26), we aimed to
develop a proof-of-concept machine learning model to identify
fecal metabolites that could be leveraged as biomarkers of
specific food intake. Herein, we describe secondary analyses
conducted on data from fecal samples collected at pre-
and postintervention of 5 feeding trials (almonds, avocados,
broccoli, walnuts, and whole grains). The purpose of the
present investigation was to utilize a computationally intensive,
multivariate, machine learning approach to identify metabolite
biomarkers that accurately predict food intake.

Methods
Experimental design
This study utilized data from 5 separate feeding studies examining
almond (27), avocado (18, 28), broccoli (29), walnut (30), or whole-
grain barley and whole-grain oat (31) consumption in adults (n = 285)
between 21 and 75 y of age, which have been previously described. Table
1 summarizes the study details briefly. Supplemental Table 1 provides
further details of the nutrient compositions of the provided meals.
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Briefly, the almond, broccoli, and walnut trials were complete
feeding studies that utilized randomized, controlled, crossover designs.
The whole-grain study was a 6-wk, complete feeding, randomized,
controlled, parallel-arm design. The avocado trial was a randomized,
controlled trial that provided 1 meal daily for 12 wk. All study proce-
dures were administered in accordance with the Declaration of Helsinki
and were approved by the Institutional Review Board of the MedStar
Health Research Institute (almond, broccoli, walnut, and whole grains)
or the University of Illinois Institutional Review Board (avocado).

Fecal metabolomics
Fecal samples were homogenized, divided into aliquots, and stored at
−80◦C until metabolomic analysis. Fecal extractions were performed
at the Metabolomics Center, Roy J Carver Biotechnology Center,
University of Illinois at Urbana-Champaign, using previously published
protocols (32, 33). Briefly, two 1-mL fractions were taken from each
sample and dried. One fraction was derivatized for 90 min at 500◦C
with 80 μL methoxyamine hydrochloride in pyridine (20 mg/mL),
followed by a 60-min treatment at 500◦C with 80 μL N-Methyl-N-
trimethylsilyl-trifluoroacetamide (MSTFA). A 5-μL aliquot of a C31
fatty acid internal standard was added to each derivatized sample before
trimethylsilylation (32, 33). Sample volumes of 1 mL were injected with
a split ratio of 7:1 into a low-resolution GC-MS system (accuracy of
0.2 atomic mass units) consisting of an Agilent 7890A (Agilent Inc.)
gas chromatograph, an Agilent 5975C mass selective detector, and an
Agilent 7683B autosampler. The spectra of all chromatogram peaks
were compared with electron impact mass spectrum libraries NIST08
[National Institute of Standards and Technology (NIST)], WILEY08
(Palisade Corporation), and a custom library of the University of Illinois
metabolomics center. All data were normalized to the internal standard
in each chromatogram to allow direct comparisons between samples.
The chromatograms and mass spectra were evaluated using the MSD
ChemStation (Agilent) and AMDIS (NIST).

Statistical analysis and validation
The raw preintervention data set included 344 metabolites, and the raw
postintervention data set included 307 metabolites. See Supplemental
Figure 1 for additional details. We removed metabolites from the data
set that were undetectable in ≥80% of samples in all study groups.
We then assessed how the remaining 96 metabolites correlated with
one another using Spearman rank correlation coefficients (34). A set
of correlation coefficients were computed for each pair of metabolites
across each food group’s control arm only, and the weighted mean
was taken to calculate the final correlation coefficient. Computing
the correlations individually across the food groups was necessary to
account for the differences in background diet.

For the following analyses, we then imputed the remaining missing
values to be a random value between 0 and one-half of the minimum
observed value across all observations (35). Furthermore, we considered
the changes in relative concentration (treatment postintervention minus
preintervention) for each fecal metabolite. Using relative concentration
allows for the comparison of compounds across the batch of analyzed
samples. It was measured as compound peak area/internal standard
peak area and normalized to the sample weight. This normalization
reduces deviation and makes the resulting data more uniform. Using
the difference between preintervention and postintervention metabolites
allowed for the determination of the internal differences, or batch
effects (26), related to the performance of these 5 studies and their
respective background diets. We then examined how the preintervention
and postintervention differences in metabolites varied across each food
group. We computed the mean difference for each metabolite within
each food group’s treatment and control and then plotted the log of
the fold change ratio of the treatment group’s mean difference for each
metabolite with respect to the control group.

Next, we utilized random forest models to examine the relation
between food consumption and change in fecal metabolome. For each
group, a scikit-learn (36) random forest model with 5000 trees was
trained using the difference in metabolites for that food group as the
covariate and the participant’s group (control or treatment) as the
outcome. Because this effort focused on secondary analysis of data sets
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TABLE 1 Study design of 5 studies in metabolically healthy adult participants aggregated for secondary analyses

Population Trial design

Study Age,1 y BMI,1 kg/m2 Design Controlled diet composition Intervention food

Almond (n = 18) (27) 57.0 ± 2.3 (25–75) 30.0 ± 1.0
(21.9–36.1)

Five 3-wk period randomized,
controlled, crossover with
1-wk washouts

Complete feeding (55%
carbohydrate, 15% protein,
30% fat)

1.5 servings (42 g) per day of
roasted, chopped almonds
(base diet scaled down for
isocaloric inclusion)

Avocado (n = 163)
(28)

35.0 ± 0.5 (25–45) 32.8 ± 0.5
(23.9–58.8)

12-wk randomized, controlled,
parallel-arm

One daily meal (45%
carbohydrate, 15% protein,
40% fat)

175 g (males) or 140 g (females)
avocado (once-daily isocaloric
meal)

Broccoli (n = 18) (29) 55.0 ± 1.7 (21–70) 28.0 ± 1.2
(19.0–36.6)

Two 18-d period randomized,
controlled, crossover with
24-d washout period

Complete feeding (54%
carbohydrate, 16% protein,
30% fat)

200 g cooked broccoli with 20 g
raw daikon radish per day
(added to controlled diet)

Walnut (n = 18) (30) 53.1 ± 2.2 (25–75) 28.8 ± 0.9
(20.2–34.9)

Two 3-wk period randomized,
controlled, crossover with
1-wk washouts

Complete feeding (54%
carbohydrate, 17% protein,
29% fat)

1.5 servings (42 g) per day of
walnuts (base diet scaled
down for isocaloric inclusion)

Whole grains
(n = 68) (31)

52.8 ± 1.3 (25–70) 28.2 ± 0.5
(18.9–38.3)

6-wk randomized, controlled,
parallel-arm

Complete feeding with 0.7
servings (11.2 g) of whole
grains per 1800 kcal (53%
carbohydrate, 15% protein,
32% fat)

4 servings (64 g) of whole-grain
1) barley or 2) oats per 1800
kcal

1Values are mean ± SE (range).

from 5 different studies, we needed to consider that the foods were from
5 sample populations. To address this, the contrast between the pre-
and postintervention of each study population was used to distinguish
different food effects. Leave-one-out cross-validation was the most
appropriate computational method to address this change, and the lack
of a separate validation data set (37). Thus, the optimal random forest
classifier parameters were found via a leave-one-out grid search using
each model’s out-of-bag score as the search metric. The variable training
parameters in the search included max_features, the number of features
to consider when looking for the best split, and min_samples_leaf, the
minimum number of samples required to be at a leaf node. All other
training parameters were fixed at their default values. After the optimal
parameters were found, each model was trained and evaluated in a
leave-one-out cross-validated fashion.

Finally, we used random forests to model the relation between food
consumption and change in fecal metabolome across multiple food
groups. Food groups were only included in the multifood models if
the random forest model built for that single food in the previous
step could accurately separate the treatment and control arms for
that specific study. The baseline score (i.e., randomly guessing) for
a binary classification problem is 50%; thus, only food groups that
achieved significantly higher performance than this baseline score would
be included. The treatment metabolite data set (consisting only of
samples in which the study participant consumed the food intervention)
was used as the covariate, and the food consumed was used as the
outcome for a scikit-learn random forest classifier with 5000 trees. The
model was trained and evaluated in the same fashion as previously
described.

We quantified the batch effect to verify that the random forest
model was learning relations based on the food consumed rather
than participation in a specific study. We consider the shift in the
fecal metabolites before (pre-) and after (post-) the intervention in
the treatment groups (i.e., the treatment signal) to be driven by 2
distinct effects, as previously described (26). The first is the effect of
the food (e.g., almond) or treatment effect. The second is the effect of
the background diet (the batch effect), which indicates all the foods
each participant consumed aside from the study-specific food of interest.
We considered any metabolomic signatures present in both control
and treatment participants as a batch effect because their presence
could be learned by the random forest, thereby artificially inflating
the model classification performance. After training and evaluating
the multifood model on the treatment metabolite data set, the same
model was evaluated on the control metabolite data set to quantify the

batch effect. High classification performance on the control metabolite
data set would indicate that the model was exploiting metabolomic
signatures present in both control and treatment participants, i.e., the
model was predictive of study participation, not food intake. For the
models evaluating the food compared with their control only (i.e., the
single-food models), the random forest models trained on each study’s
treatment and control data are not susceptible to the batch effect,
because the models are not comparing treatment groups across different
study settings. Thus, we did not quantify the batch effect for the single-
food models.

In addition to investigating whether food intake could be predicted
by changes in fecal metabolome composition, a second primary aim
of the study was to identify a compact set of metabolites that could
be used as food intake biomarkers. Thus, we examined the feature
importance scores produced by the random forest models to rank the
fecal metabolites according to their predictive power. Highly ranked
features from the single-food random forest models would indicate
metabolites that show promise in acting as biomarkers for specific food
intake. Highly ranked features from the multifood random forest could
further reveal potential biomarkers unique to specific foods.

Results

The raw metabolomic data set contained 372 observations for
the preintervention and postintervention samples for all study
participants across the 5 feeding studies (Supplemental Figure
1). The preintervention data set included 344 metabolites, and
the postintervention data set included 307 metabolites. After
participants that were missing either pre- or post- data were
removed, 362 observations remained. Metabolites that were
only detected in either the pre- or post- data were excluded.
Metabolites that were undetectable in ≥80% of samples in
all study groups were removed, with the remaining values
imputed between 0 and one-half of the minimum observed value
across all observations. A total of 96 metabolites remained
after data preprocessing. Supplemental Figure 2 shows a heat
map of Spearman correlations between relative concentra-
tions of these 96 metabolites across treatment and control
groups in almond, avocado, broccoli, walnuts, and whole
grains. Finally, the differences between pre- and post- relative
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FIGURE 1 Heat maps of log-fold change between mean differences of relative concentrations of fecal metabolites in metabolically healthy
adult participants consuming almond, avocado, broccoli, walnuts, and whole grains. (A) Lipids and lipid-like molecules, (B) organoheterocyclic
compounds, (C) other organic acids and derivatives, (D) organic oxygen compounds, (E) amino acids, and (F) other metabolites. Postintervention
metabolites were subtracted from the preintervention data to compute the net effect of the control and treatment interventions for each
participant (n = 181). Log-fold change ratios were then computed for each metabolite’s mean difference in each treatment group with respect
to the corresponding control group. Orange boxes indicate an increased fold change from pre- to postintervention, whereas blue boxes indicate
a decreased fold change. The darker the color, the higher the magnitude of change is for that metabolite. The dendrogram (black bars) was
generated using a Euclidean distance metric for both study groups and the individual metabolites. Bars across the top and y axis show how
variables cluster together. Items that are in the same cluster are more similar (i.e., across the top, hierarchical clusters show which foods have
similar patterns of fold change across the metabolite; across the y axis, the clusters show which metabolites have similar patterns of fold change
across the food groups).
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metabolite concentrations for those 362 observations were
calculated to generate 181 observations for subsequent analysis
using leave-one-out cross-validation. These 181 observations
made up the treatment data set (n = 103), i.e., the study
periods where study diets included the specific foods, and
the control data set (n = 78). Figure 1 is a heat map of
fold changes in metabolites between treatment and control
groups.

Single-food models

Using the change in relative concentration of the 96 metabolites,
the 6 single-food random forest models for almond, avocado,
broccoli, walnuts, whole-grain barley, and whole-grain oats had
prediction accuracies of 82%, 59%, 47%, 89%, 57%, and
55%, respectively (Table 2). The avocado, broccoli, whole-
grain barley, and whole-grain oats prediction models performed
poorly, with prediction scores near a baseline of 50%. Thus,
these foods were not included in our multifood random
forest. Supplemental Table 2 reports the metabolites with
the top 10 feature importance scores extracted from each
single-food random forest model. The distribution of feature
importance scores varied across the random forest models.
The almond, avocado, whole-grain barley, and whole-grain
oats models’ feature importance scores were largely dominated
by their top feature. For example, in the almond model, 10-
hydroxystearic acid had an importance of 0.51 compared
with linoleic acid (importance = 0.084), the next feature
selected by the model. Supplemental Figure 3 compares the
control and almond groups’ changes in relative concentra-
tions of 10-hydroxylstearic acid (Supplemental Figure 3A)
and linoleic acid (Supplemental Figure 3B). On the other
hand, the broccoli and walnut models did not demonstrate
similar steep drop-offs in variable importance. For example,
in the walnut data, uric acid and 5-hydroxyindole-3-acetic
acid had feature importance scores of 0.101 and 0.097,
respectively. Supplemental Figure 4 compares the control
and walnut groups’ change in relative concentrations of 5-
hydroxyindole-3-acetic acid (Supplemental Figure 4A) and
uric acid (Supplemental Figure 4B). It is important to note
that the variable importance scores assigned by the random
forest model are numerically unstable and may change slightly
each time the model is refit. This shift occurs because of
nondeterminism intrinsic to the random forest algorithm
(38).

Mixed-food model

Owing to the poor performance of the other single-food
random forest models, only the almond and walnut groups were
included in the mixed-food random forest model, differentiating
almond from walnut intake. The overall mixed-food random
forest model classification accuracy was 91% (Table 3). As
an additional validation step for the model, we examined
respective control data independently to ensure we were truly
measuring the differential impacts of the foods consumed
rather than participation in a specific study. Thus, we used the
mixed-food random forest to classify the control data set to
ensure the model’s training had not been influenced by batch
effects (26). When the control data set was evaluated, the
almond and walnut control mixed-food model appropriately
had poor predictive accuracy (47% accuracy), indicating that
the model was capable of distinguishing between almond
and walnut consumption and not merely learning to separate
participation in the almond or the walnut study. Their top

feature largely dominated the mixed-food (almond and walnut)
model’s feature importance scores. The most important feature,
5-hydroxyindole-3-acetic acid (importance = 0.77), was almost
20 times more important than the second most important
feature, α-tocopherol (importance = 0.042). Supplemental
Figure 5 compares the almond and walnut groups’ change
in relative concentrations of 5-hydroxyindole-3-acetic acid
(Supplemental Figure 5A) and α-tocopherol (Supplemental
Figure 5B). Supplemental Table 3 reports the top 10 feature
importance scores extracted from the almond and walnut
mixed-food model.

Random forest classification

In practice, random forests tend not to assign groups of
correlated features high feature importance scores. Although
α-tocopherol received a low variable importance score from
the single-food almond model, its mean difference was well-
correlated with 10-hydroxystearic acid (r2 = 0.42) and
weakly correlated with linoleic acid (r2 = −0.20), the top
2 important metabolites for the single-food almond model
(Supplemental Figure 3). The difference in the relative con-
centrations of these 2 single-food almond model metabolites
may be just as effective a differentiator, or a more effective
differentiator, for almond consumption when compared with
the difference in the relative concentration of α-tocopherol,
therefore warranting a lower feature importance score for
the latter. Supplemental Table 4 provides Pearson correla-
tion coefficients between the highly ranked metabolites in
the almond single-food, walnut single-food, and mixed-food
models.

Pooling treatment group data from all 6 food groups for
classification via random forest demonstrated high performance
[overall accuracy = 78%, receiver operating characteristic
ROC, AUC = 0.95]; however, these results were likely due
to batch effects. Specifically, we observed that whereas the
single-food random forest models for avocado, broccoli, whole-
grain barley, and whole-grain oats could not differentiate
between participants in their respective treatment and control
arms, the mixed-food random forest could differentiate these
foods. Furthermore, when the mixed-food random forest model
was used to classify the control participants across each
study, it achieved 51% accuracy overall and high accuracy
within the avocado (76%) and broccoli (87%) control groups.
These results indicate that the mixed-food random forest’s
performance was derived largely from identifying relations
between the metabolite changes and the study (i.e., the batch
effect) rather than the food each study participant consumed.
In other words, without the batch effect, the mixed-food model
would have had lower performance when classifying control
participants. Methods to remove the batch effect have been
described previously (26); however, these methods may also
remove additional non–batch effect signals from the data set,
which would only further reduce classification performance.
Because we observed low classification accuracy in the single-
food models for avocado, broccoli, whole-grain barley, and
whole-grain oats, removing the batch effect from these data
and rebuilding the random forest models would only serve
to decrease the accuracy of these single-food models and, as
such, they would still not warrant inclusion in the multifood
model. Thus, removing the batch effect would only be a viable
strategy if we observed high performance of the single-food
models and desired to verify that this high performance was
truly derived from whole food consumption. For this analysis,
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TABLE 2 Prediction of specific food intake in metabolically healthy adult participants using random forest compared with respective
control groups

Predicted label

True label Treatment, n Control, n Accuracy, %

Almond, n Control, n
Almond, n 10 4 71
Control, n 1 13 93
Overall accuracy, % 82

Avocado, n Control, n
Avocado, n 21 6 78
Control, n 12 5 29
Overall accuracy, % 59

Barley, n Control, n
Barley, n 8 6 57
Control, n 6 8 57
Overall accuracy, % 57

Broccoli, n Control, n
Broccoli, n 6 9 40
Control, n 7 8 53
Overall accuracy, % 47

Oats, n Control, n
Oats, n 8 7 53
Control, n 6 8 57
Overall accuracy, % 55

Walnut, n Control, n
Walnut, n 17 1 94
Control, n 3 15 83
Overall accuracy, % 89

larger sample sizes and fixed background diets across study
groups would be needed to best address the presence of batch
effects.

Discussion

Herein, we report fecal metabolites associated with individual
food intake (i.e., almond, avocado, broccoli, whole-grain oat,
whole-grain barley, and walnut). This effort, which utilized
random forest to identify food intake biomarkers, revealed
high predictive accuracy of almond and walnut intake, both
in a single- (compared with respective controls) and in a
mixed-food model (almond compared with walnut). These
findings establish the potential role of fecal metabolites to
objectively complement self-reported food measures and study
compliance.

Random forest models can effectively classify and select
biomarkers in metabolomics data (38). For example, Asnicar
et al. (39) examined links between habitual diet and the
microbiome using random forest models, after training on
quantitative microbiome features, to predict dietary variables
from FFQs. Although larger data sets are generally used in

machine learning models, random forest models have effectively
classified data sets with smaller sample sizes (40,41). Unlike
some other supervised machine learning models (such as
logistic regression and support vector machines), random
forests easily generalize from binary to multiclass problems.
Also, random forests have fewer risks of overfitting than
support vector machines models and can handle highly
collinear metabolomics data, unlike linear methods such
as orthogonal projection to latent structure/partial linear
regression (42). Further, random forests can intrinsically
inform biomarker discovery by assigning importance scores
to input features without relying on external feature selection
tools. Because a high score indicates the metabolite was
useful in classifying the food, metabolites with high feature
importance scores could be promising biomarker candidates.
Finally, because of the exploratory nature of this work,
we utilized leave-one-out cross-validation on our 2 time
point data set to statistically mimic the validation error
(37).

Our mixed-model results revealed that only the almond and
walnut groups demonstrated high classification performance
when compared with their respective control groups and against
one another. Of interest, participants in both the almond and

TABLE 3 Prediction of almond compared with walnut intake in metabolically healthy adult participants using random forest

Predicted label

True label Almond, n Walnut, n Accuracy, %

Almond, n 13 1 93
Walnut, n 2 16 89
Overall accuracy, % 91

Fecal metabolites as biomarkers of food intake 2961



walnut controlled-feeding, randomized, crossover trials were
provided with identical background diets, with the exception of
almond or walnut supplementation (27, 30). This alludes to the
importance of well-designed randomized clinical trials to study
the impact of diet on the fecal microbiome.

For almond, 10-hydroxystearic acid (18:0) and linoleic acid
(18:2n–6, cis-9,12) were identified as important features for
differentiating treatment from control by our model. Of note,
extracts from 8 Californian almond cultivars had a fatty
acid profile ranging from 57% to 74% oleic acid (18:1n–
9), and from 19% to 35% linoleic acid, with small amounts
of α-linolenic acid (18:3n–3) (43). The appearance of 10-
hydroxystearic acid in our samples is likely due to bacterial
metabolism because some bacterial proteins possess oleate
hydratases that catalyze the hydration or isomerization of
double bonds in unsaturated fatty acids (44, 45).

For walnut, hydroxyindole-3-acetic acid (5-HIAA) and uric
acid were important features for differentiating treatment from
control samples. A previous review completed as part of the
Food Biomarkers Alliance (FoodBAll) consortium identified 5-
HIAA, a tryptophan and serotonin pathway metabolite, as a
promising biomarker for walnut intake (25) because previous
studies have associated walnut consumption with increased 5-
HIAA in the urine (46–50) and serum (51). Therefore, our novel
finding extends this work by reporting that 5-HIAA is a useful
fecal biomarker for walnut intake.

Two metabolites, 5-HIAA (almond decreased compared with
walnut) and α-tocopherol (walnut decreased compared with al-
mond), differentiated almond from walnut consumption in our
study (Supplemental Figure 5). (All changes in metabolite levels
are reported as mean relative concentrations per 100 mg fecal
weight.) 5-HIAA is a microbially derived fecal fermentation
end product (52–54), and α-tocopherol has been established
as a compliance measure for almond intake using blood
samples (19, 56–58). Almonds and walnuts provide 89 mg
and 71 mg tryptophan per 42-g serving, respectively; almonds
provide 19 mg α-tocopherol/100 g almonds, whereas walnuts
provide 0.9 mg α-tocopherol/100 g walnuts (59). Although α-
tocopherol did not appear as a top feature in our single-food
almond model using the optimal random forest parameters, the
difference between α-tocopherol in the almond treatment and in
the control was 1000% higher. Conversely, the mean difference
in relative concentration from pre- to postintervention of α-
tocopherol for the walnut treatment in our study was 100%
lower. This may be due in part to maldigestion of nutrients
contained in the plant cell walls (27, 30). Tocopherols have been
shown to be only 11%–51% bioaccessible in peanuts and tree
nuts when assessed using an in vitro digestion method (60).

In our previous work (26), collapsing whole-grain oats
and whole-grain barley into a single “whole grains” category
improved classification performance. However, herein, the
combined whole grains random forest model did not improve
accuracy over the single-food whole-grain barley (57%) and
oats (55%) models, possibly owing to a weak signal or
the parallel-arm design. This result highlights the ability of
complete-feeding, randomized, crossover trials to control for
confounding. This is further supported by the poor classification
of the avocado group (59%), the other parallel-arm design
trial in this study sample (18, 28). Interestingly, although the
broccoli study was a controlled, complete-feeding, randomized,
crossover study, our classification performance was low (47%).
Our previous work utilizing microbiota (16S) data to identify
fecal microbes as food intake biomarkers also had the worst
performance with broccoli (26). The small sample size (n = 15

participants; n = 30 samples) available for metabolomics
analysis or the similar nutrient composition to other foods
under investigation may have contributed to the metabolic
signature being inadequate to classify broccoli intake in the
multifood model.

Although the current effort is not without limitations, it
does provide important insights into the potential of modeling
metabolomic data sets to determine food intake biomarkers.
Further, it highlights the need for future research of rigorous
design with metabolomic endpoints as a primary outcome.
Of note, the 5 nutrition studies utilized herein were powered
for their respective primary outcomes (none of which were
fecal metabolomic analyses). One could expect that adequately
powered future work that includes metabolomic endpoints
as primary outcomes will further validate fecal metabolite
biomarkers of food intake but will likely necessitate larger
sample sizes, a factor that will come with increased cost. Our
results also highlight important study design considerations. For
example, the avocado and whole grain studies were conducted
using parallel-arm designs, which may have contributed to the
lack of signal in those single-food models. The intervention
approach (i.e., single meal compared with complete feeding)
is another important consideration—the low accuracy of the
avocado single-food model was likely also affected by the
feeding intervention being less controlled. The importance of
controlling the background diet to detect fecal metabolite
biomarkers is best illustrated by the predictive accuracy
of the multifood model (almond compared with walnut)—
although almonds and walnuts have the most similar nutrient
compositions of the 5 foods, the use of identical background
diets in both studies allowed these foods to be correctly
differentiated from one another using fecal metabolites with
91% accuracy. Thus, one can hypothesize that if all 5 studies
had been complete feeding, crossover trials with identical
control and background diets (outside of the treatment foods),
we would expect to have seen a stronger signal for the other
foods. In an ideal trial, the same participants would have
served as their own control and gone through each of the
intervention arms (almond, avocado, broccoli, walnut, whole-
grain barley, and whole-grain oats) with appropriate washout
periods between each condition; however, trade-offs for that
robust design would include increased participant fatigue and
costs due to the extended study duration. That is not to say
that with appropriate primary endpoints and large enough
sample sizes, parallel-arm studies could not be used to identify
fecal metabolite biomarkers. In fact, parallel-arm studies can
prevent carryover effects between conditions that can affect
causal inferences (61, 62). In summary, the current effort reveals
promise in using fecal metabolites as biomarkers of food intake.
Still, future work should examine these outcomes as primary
endpoints using an appropriate study design.

Fecal microbial signatures associated with specific foods
and nutrients have recently appeared in the literature (26,
39, 63, 64). Similar to recent work, the metabolites identified
by our analyses are dominated by lipids and amino acids
(65, 66). Although most efforts have utilized the blood or
urine metabolome, a recent meta-analysis identified 273 fecal
metabolites in 9 healthy data sets containing 779 samples from
629 individuals (65). Other large-scale studies also demonstrate
the feasibility of collecting fecal samples in human studies. For
example, the American Gut Project (66) and Twins UK (67) have
amassed >15,000 and >5000 samples for microbiome analysis,
respectively. However, there are limitations related to collecting
fecal samples that should be acknowledged. For one, the cost
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of metabolomic analyses is a barrier. However, as researchers
continue to unveil the utility of metabolomics, the costs may
drastically decrease, as seen with genome sequencing over the
past quarter-century (68). Also, requesting study participants
collect their fecal samples for research may contribute to
selection bias. Therefore, the underrepresentation of specific
communities should be addressed with targeted and population-
based studies in the future (67).

Although the current effort focuses on the fecal metabolome,
there is also a need for continued elucidation of the food
metabolome to better delineate how dietary intake affects the
fecal metabolome. With >25,000 known food compounds, the
food metabolome presents an important source of novel dietary
biomarkers. Most current dietary biomarkers are based on
known food compositions and hypothesis-driven approaches,
but metabolomics has facilitated the identification of novel
biomarkers in various foods (69). These discoveries have
led to databases such as FooDB (70), Phenol-Explorer (71),
PhytoHub (72), and KNApSAcK (73), which harbor important
information on endogenous, microbial, biotransformed, and
exogenous/xenobiotic compounds in foods. Understanding the
impact of the food metabolome on microbial metabolism and
the endogenous human metabolome (or host metabolites), and
subsequent fecal metabolites is essential for understanding
the biotransformations from ingestion to excretion. Continued
validation of food biomarkers, new metabolite identifications,
and multiomics integration will move current black-box
approaches toward understanding underlying mechanisms to
advance nutritional epidemiology (74).

Future works should also continue to advance the field of
molecular nutrition. In other words, there is an understanding
of nutrient metabolism, and efforts such as the current study
provide insight into the end products of this metabolism, i.e.,
fecal metabolome. However, as researchers continue to study
nutritional end products, understanding the metabolome of
the food products entering the digestive tract must also be
captured. Consequently, comparisons from the start to the end
of digestion can be made to further understand the bacterial
biotransformations occurring throughout the digestive process.
Reflecting on our lack of signal from our avocado, broccoli,
and whole grains trials, the importance of future research
using robust study designs with metabolomic analyses as a
primary aim is clear. Future randomized, controlled, complete
feeding trials should also examine the dose-response of specific
foods and expand into other foods and dietary patterns. Dose-
response studies are crucial because we must consider varying
amounts of foods consumed to utilize the identified biomarkers
in future observational studies. Furthermore, the reproducibility
and cross-comparison of these works can be enhanced by devel-
oping reference materials (14). Once strongly designed research
and continued development of databases support biomarkers
of food intake, these measures can be studied in observational
trials and later utilized in clinical and research settings as
compliance measures to complement self-reported measures of
intake.

In summary, using metabolomics data and machine learning,
we have revealed promise in the feasibility of fecal metabolites
as objective biomarkers of food intake by healthy adults.
These findings provide groundwork for uncovering additional
biomarkers of food intake. With future work and expansion
to other foods and dietary patterns, biomarkers like the
ones identified in this effort can be applied in feeding study
compliance and clinical settings.
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