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Abstract: The hydrolysis of 3-ammoniumpropylbis(catecholato)silicate 1, giving two different silica-
based materials containing different amounts of tris(catecholato)silicate, is reported. The latter species
can be formed through an attack of catechol to the silicon atom in the pentacoordinate complex,
in which the silicon-carbon bond is further activated toward electrophilic proton cleavage. The
Knoevenagel reaction was used as a probe in order to test the availability of functional groups on the
surface of such materials.
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1. Introduction

The chemistry of catechol and silicon is very intriguing. As an example, the structure
of the simple bis(catecholato)silane has been debated since 1951 [1], and only in 2021,
a detailed discussion about its structural features has been reported [2]. Moreover, the
chemistry of hypervalent penta- and hexacoordinated (catecholato)silicates is worthy of
attention, both from a synthetic and biological standpoint, and still needs to be deeply
investigated [3]. Pentacoordinate catecholate silicon complexes [4] have been employed
for useful synthetic applications [5–13], for solid-phase synthesis [14], and for the prepa-
ration of porous pentacoordinate organosilicon frameworks [15] or for self-assembled
macrocycles [16–18].

On the other hand, hexacoordinated catecholate silicon complexes have been used for
reactions with nucleophiles [19,20], for anionic silicate organic frameworks [21], and for
the construction of macrocycles [22–24] or three-dimensional polymeric networks [25], and
in redox chemistry [26].

In addition, it was demonstrated that the existence of an organosilicon complex
containing hexavalent silicon coordinated to at least one nitrogen formed during the
life cycle of the diatom Navicula pelliculosa [27]. Stable, hypervalent silicon catecholate
complexes have been implicated in the biosilicification process [28]. Si-enterobactin, a
hexacoordinated silicon complex possessing a tris-catecholate moiety, was isolated from
an endophytic Streptomyces sp. occurring in Piper guinensis roots. It is believed that such
complex or related complexes may be involved in the transport of silicon in plants, diatoms,
or other silicon-dependent organisms [29].

Recently, we have described a simple one-pot procedure under mild conditions for
the synthesis of a set of hybrid organic-inorganic multifunctional materials by mimicking
polydopamine-like chemistry [30,31]. The synthetic procedure is based on the use of catechol
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and KIO4 as an oxidising agent, followed by the reaction with 3-aminopropyl-trimethoxysilane
(or dimethoxymethyl-) or their corresponding substituted amines (Scheme 1a).
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Among them, material A (Scheme 1b) had no catalytic effect on the reaction between 
ethyl cyanoacetate and 3-methoxybenzaldehyde, used as reaction test. In particular, 
material A had an inhibiting catalytic effect (6% yield ca.); indeed, the uncatalyzed 
reaction gave a higher yield (30%) when the reaction was carried out in ethanol [30]. This 
material was the only one that was synthesised without the use of the oxidant KIO4. 
Moreover, material A showed a higher content of aminopropyl loading, as determined by 
thermogravimetric analysis. The characterization of material A with 29Si CP-MAS NMR 
showed a peculiar aspect: different from the other materials, which exhibited only the 
presence of T signals, A also showed the presence of signals that could be ascribed to the 
Q system and a very small signal at ca. −140 ppm that could be due to hexavalent silicon 
species (Figure 1). 
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Scheme 1. (a) General approach adopted for the synthesis of hybrid organic-inorganic materials with
the use of KIO4 and (b) synthesis of material A without any oxidant.

These materials were characterised by using several techniques, then, Knoevenagel
reactions between ethyl cyanoacetate and several benzaldehydes were used as a probe in
order to test the availability of functional groups on the surface of such materials.

Among them, material A (Scheme 1b) had no catalytic effect on the reaction between
ethyl cyanoacetate and 3-methoxybenzaldehyde, used as reaction test. In particular, mate-
rial A had an inhibiting catalytic effect (6% yield ca.); indeed, the uncatalyzed reaction gave
a higher yield (30%) when the reaction was carried out in ethanol [30]. This material was
the only one that was synthesised without the use of the oxidant KIO4. Moreover, material
A showed a higher content of aminopropyl loading, as determined by thermogravimetric
analysis. The characterization of material A with 29Si CP-MAS NMR showed a peculiar
aspect: different from the other materials, which exhibited only the presence of T signals,
A also showed the presence of signals that could be ascribed to the Q system and a very
small signal at ca. −140 ppm that could be due to hexavalent silicon species (Figure 1).
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Therefore, in light of the above, the questions that arose were: why is material A not
able to catalyse the Knoevenagel reaction though possessing the higher amine loading
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among the materials prepared? Is the presence of Q system signals in the 29Si CP-MAS
NMR spectrum related to the low catalytic activity? How is the Q system originated? Is the
very small signal at ca. −140 ppm related to hexacoordinated silicon species and, if correct,
how it was formed? Does the understanding of this chemical behaviour shed some light on
the development of new catalytic materials?

The answers to these questions through a deeper investigation of this material consti-
tute the aim of this study.

2. Results and Discussion

As mentioned above, material A was prepared in the absence of KIO4; then, it was
plausible that after the first step (see Scheme 1b) a very large amount of catechol was
still present in the reaction mixture. The addition of 3-aminopropyl-trimethoxysilane may
give a reaction with catechol to form a hypervalent pentacoordinated silicon compound
that can further react to give the final material. With the aim to verify this hypothesis,
we prepared 3-ammoniumpropyl-bis(catecholato) silicate 1 (1H and 13C NMR shown in
Figures S1 and S2, ESI) by reaction of catechol and 3-aminopropyl-trimethoxysilane in
acetonitrile (Scheme 2) [10].
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Scheme 2. Synthesis of 3-ammoniumpropylbis(catecholato)silicate 1.

With compound 1 in our hand, we carried out the reaction under the usual reaction
condition for the preparation of the hybrid materials, i.e., KHCO3/K2CO3 at pH 9, 70 ◦C
for 18 h (Scheme 3). After this time, we obtained a brown solid which was easily recovered
by filtration (material 2, Scheme 3). The filtrate was concentrated under reduced pressure,
affording a sticky residue that was treated with methanol, giving a solid. The new precipi-
tate was again recovered by filtration (material 3, Scheme 3). This synthetic procedure was
repeated another two times with identical results.
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Material 2 was characterised by means of 13C CP-MAS NMR (Figure S3, ESI) and
29Si CP-MAS NMR (Figure 2). The 29Si spectrum strictly resembles the one of material A
(Figure 1). As a matter of the fact, in addition to the expected T signals (T3/T2 system), Q
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signals were present. In this case, the very small peak at ca. −140 ppm in material A was
now clearly visible.
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Material 3 was characterised by means of 13C CP-MAS NMR (Figure S4, ESI) and
29Si CP-MAS NMR (Figure 3). 13C NMR of both materials exhibited signals due to the
catecholate moiety as well as to the presence of the aminopropyl chain; in the case of
material 3, the catecholate moiety gave very sharp signals.
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Figure 3. 29Si CP-MAS NMR spectrum of material 3.

The 29Si CP-MAS NMR spectrum of material 3 (Figure 3) showed a T3/T2 system
and a strong signal due to the presence of hexavalent silicon species. No signals due to
Q systems were present. In Figure 4, the 2D 1H/29Si FSLG/CP/MAS/HETCOR-NMR
spectrum of material 3 is reported. From this spectrum, it is possible to observe a cross-peak
between the propyl chain and the hexavalent silicon atom, which could indicate a close
spatial relationship between them.
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The thermogravimetric analysis of 2 and 3 is shown in Figure S5. The two materials
appear to be thermally stable up to ca. 200 ◦C, whereas above this temperature, a weight
loss due to the decomposition of the organic moieties can be observed. Material 3, which
contains a higher organic fraction, shows a faster decomposition compared to 2, which
is complete at ca. 600 ◦C, while the latter material is completely degraded at ca. 700 ◦C.
Nitrogen physisorption analysis of materials 2 and 3 was carried out. Figures S6 and S7
show the reversible isotherms characterised by a sharp increase in the adsorbed volume at
a relative pressure close to 1. The specific surface area (SSA) of the solids was calculated
using the Brunauer–Emmett–Teller (BET) method (0.05 < P/P0 < 0.3). The solids display a
low SSA (2 11 m2g−1; 3 6 m2g−1).

As previously described, we again used the Knoevenagel reaction as a probe to test the
availability of functional groups on the surface of such materials 2 and 3. In Table 1, the re-
sults obtained in the reaction between ethyl cyanoacetate and 2,4-dimethoxybenzaldehyde
are reported. First, we checked material A. In this case, a 17% conversion was observed
(Table 1, entry 1). Material 2 gave a practically identical conversion (entry 2). On the other
hand, material 3 showed a higher conversion (entry 3). Interestingly, the catalytic activity
was even higher in the following two cycles (entries 4 and 5). However, in the fourth cycle,
a consistent drop in the catalytic activity was observed (entry 6).

In order to have an explanation of such behaviour, the 29Si CP-MAS NMR spectrum
of the reused catalyst was carried out (Figure 5). Very interestingly, the spectrum of reused
3 (r-3) was similar to the spectrum of material 2 (see Figures 2 and 5). As a matter of fact,
signals related to the Q systems appeared, though with lower intensity with respect to
material 2, whereas the intensity of the signal belonging to the hexavalent silicon species
was much lower.

At this point, some considerations can be proposed. Firstly, materials 2 and A possess
similar features: high silica content (41.4% and 49.2%, respectively), very similar 13C and
29Si NMR spectra, and very similar catalytic activity. Then, the starting hypothesis that
compound 1 had a role in the formation of material A seems plausible. Secondly, the
presence of Q signals can be related to lower catalytic activity, whereas the presence of
hexavalent silicon species is related to a higher catalytic activity.



Molecules 2022, 27, 2521 6 of 12

Table 1. Knoevenagel reaction catalysed by materials A, 2, 3 1 and compound 4 2.
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In order to have deeper information about the role of hexavalent silicon species, we
prepared the bis(butylammonium) tris(catecholato)silicate 4 (Scheme 4) [32,33], which
was characterised by means of 1H and 13C NMR (Figures S8 and S9, ESI). Then, we used
compound 4 in the Knoevenagel reaction (Table 1, entries 7 and 8). We found a complete
conversion in the reaction between 2,4-dimethoxybenzaldehyde and ethyl cyanoacetate
when catalyst 4 was used in ethanol in 0.33 mol% loading, whereas a 72% conversion was
obtained when catalyst 4 was used in only 0.09 mol% loading.
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These experiments confirmed the high catalytic activity of the hexavalent silicon species.
On the basis of this data, here we propose a possible mechanistic pathway. 3-

Ammoniumpropylbis(catecholato) silicate 1 may start its hydrolysis process when heated
at 70 ◦C in the buffer medium to give catechol and silane 5 (Scheme 5, pathway a). The
catechol formed may react with unreacted compound 1 (pathway b). The silicon atom in the
pentacoordinate complex 1 is still a Lewis acid, which is able to accept another Lewis base
to form an intermediate hexacoordinate silicon complex 8, in which the silicon–carbon bond
is further activated toward electrophilic proton cleavage [34,35] to give the tris-catecholate
hexavalent silicon species 6. This is the crucial step. The Si–C bond cleavage reaction is a
known reaction [4,36], even if, to the best of our knowledge, the transformation of a penta-
coordinate silicon compound to a hexacoordinated silicon compound with the concomitant
Si–C bond cleavage has not been described. Nevertheless, we should bear in mind that the
reaction is carried out at 70 ◦C, not at room temperature, as for the known Si–C bond cleav-
age process. Then, the tris-catecholate hexavalent silicon 6 may undergo hydrolysis to give
orthosilicic acid and catechol (pathway c) [37,38]. Indeed, silicon catecholate salt [39,40]
has been used as silicic acid precursors to investigate silicification in vitro in the presence
of amino acids or small peptide oligomers. Biomolecules such as polyamines [41,42] are
present when silica is formed within an organism playing an important role in orthosilicic
acid condensation. In our case, the presence of the protonated amine moieties could have
played a role.

Condensation reaction first afforded material 2, which is rich in aminopropyl moieties
(T3/T2 systems) and poor in Q4/Q3 system (blue) and hexavalent silicon (red). Water
removal under reduced pressure of the filtrate caused a further condensation reaction of
the more polar fractions giving, after treatment of the sticky residue, material 3, which
is rich in aminopropyl moieties and hexavalent silicon. The large presence of the tris-
catecholate silicon moiety in 3 is in agreement with the higher organic content observed
in the TGA. Although there is a high content of aminopropyl moieties in material 2 (and
in material A), the catalysis of the Knoevenagel reaction was modest, probably because
the pure silica fraction was formed later in the condensation process, then covering the
aminopropyl-based silica and causing partial unavailability of these functional groups. On
the other hand, the high catalytic activity of 3 is due to the presence of the ammonium
tris(catecholato)silicate moieties. The drop in the catalytic activity of material 3 after reuse
could be due to the same reason: that it is the hydrolysis of the hexavalent silicon species
to give silica that covered the aminopropyl functional groups. From these data, it is also
deduced that material A has a similar structure to material 2.
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3. Materials and Methods
3.1. Spectroscopic and Analytical Methods

Chemicals and solvents were purchased from commercial suppliers to be used without
further purification. Catechol (99%), 3-aminopropyl-trimethoxysilane (97%), tetraethyl or-
thosilicate (99%), and ethyl cyanoacetate (99%) were purchased from Fluorochem, whereas
butylamine (99.5%), 2,4-dimethoxybenzaldehyde (98%), KHCO3 and K2CO3 were pur-
chased from Sigma-Aldrich. All solvents (ACS grade) were purchased from VWR. Thermo-
gravimetric analysis (TGA) measurements were carried out under oxygen flow from 100 to
1000 ◦C with a heating rate of 10 ◦C min−1 in a Mettler Toledo TGA STAR. Combustion
chemical analysis was performed on a PerkinElmer (Waltham, MA, US) 2400 Series II
Elemental Analyzer System. Nitrogen adsorption–desorption analysis was performed at
77 K by using a volumetric adsorption analyzer (Micromeritics (Norcross, GA, US) ASAP
2420). Before the analysis, the sample was pre-treated at 150 ◦C for 16 h under reduced
pressure (0.1 mbar). The BET method was applied in the p/p0 = 0.05–0.30 range to calculate
the specific surface area. 1H-29Si CP MAS spectra were obtained at room temperature by
means of a Bruker (Billerica, MA, US) Avance II 400 MHz (9.4 T) spectrometer operating at
79.4 MHz for the 29Si nucleus with a MAS rate of 6kHz, 2048 scans, a delay time of 8s, and
a contact time of 8 ms.

1H-13C CP MAS spectra were obtained at room temperature operating at 100.6 MHz
for the 13C nucleus with a MAS rate of 6 kHz, 1000scans, a delay time of 4 s, and a contact
time of 1.5 ms. 1H-29Si HETCOR experiments with Lee–Goldburg (LG) 1H homonuclear
decoupling were performed by applying the FSLG decoupling during the t1 evolution
period. An FSLG homonuclear decoupling field strength of 73.5 kHz, a contact time of
500 µs and a MAS rate of 10 kHz were used together with 1024 points for 128 experiments.

3.2. Synthesis of 3-Ammoniumpropylbis(catecholato)silicate 1

In a 50 mL round bottom flask was placed 1.101 g (9.9 mmol) of catechol in CH3CN
(25 mL). Then, 3-aminopropyl-trimethoxysilane (0.89 mL, 4.96 mmol) was added. The
reaction mixture was allowed to stand for 18 h. After this time, the precipitate was filtered
under reduced pressure and washed with CH3CN (ca. 200 mL). The solid was dried in an
oven at 60 ◦C. Isolated yield 99%. 1H NMR (300 MHz, DMSO-d6, δ): 6.66–6.36 (m, 8H), 2.61
(t, J = 7.5 Hz, 2H), 1.61–1.36 (m, 2H), 0.64–0.40 (m, 2H) ppm. 13C NMR (75 MHz, DMSO-d6,
δ): 150.82, 117.78, 110.16, 42.42, 23.38, 15.38 ppm.

3.3. Synthesis of Materials 2 and 3

In a 250 mL round bottom flask was placed 1.5 g (5 mmol) of 3-ammoniumpropylbis
(catecholato) silicate 1. Then, 150 mL of buffer solution (KHCO3/K2CO3 10 mM, pH 9)
was added. The reaction mixture was vigorously stirred at 70 ◦C. After the dissolution of
compound 1, the solution turned dark red, and a precipitate started to form. After 18 h,
the reaction mixture was filtered under reduced pressure and the solid was washed with
distilled water, ethanol, ethyl acetate and diethyl ether. The obtained red material 2 was
dried in an oven at 60 ◦C (330 mg). The filtrate (water and ethanol) was evaporated under
reduced pressure to give a brown sticky residue that was treated with methanol (150 mL).
The mixture was stirred at room temperature to give a slightly red precipitate, which was
filtered under reduced pressure. The solid was washed with methanol and diethyl ether,
then dried in an oven at 60 ◦C to give material 3 (290 mg).

3.4. Synthesis of Dibutylammonium Tris(catecholato)silicate 4

In a 100 mL round bottom flask was placed 3 g (27 mmol) of catechol in CH3CN
(25 mL). Then, butylamine (1.8 mL, 18 mmol) is added dropwise. A slightly turbid-pale
red solution was obtained. To this solution, tetraethyl orthosilicate (2.03 mL, 9 mmol) was
added dropwise for 30 min. At the end of the addition, a white suspension was formed,
and the reaction mixture was left to stir at room temperature for 4 h. After this time,
the reaction mixture was filtered under reduced pressure and the solid was washed with
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CH3CN (ca. 300 mL). The solid was dried in an oven at 60 ◦C. Isolated yield 82%. 1H NMR
(300 MHz, DMSO-d6, δ) 6.59–5.90 (m, 12H), 3.13–2.61 (m, 4H), 1.52 (m, 4H), 1.40–1.05 (m,
4H), 0.85 (t, J = 7.3 Hz, 6H) ppm. 13C NMR (75 MHz, DMSO-d6, δ): 152.32, 115.77, 109.43,
29.60, 19.69, 13.98 ppm.

3.5. General Procedure for the Knoevenagel Reaction

In a vial, we placed 2,4-dimethoxybenzaldehyde (2 mmol), ethyl cyanoacetate (2 mmol)
EtOH (1 mL), and catalyst (20 mg), and the reaction mixture was stirred at 50 ◦C for
2 h. To recover the catalytic material, the following procedure was applied: a mixture of
CH2Cl2/Et2O 4:1 was added to the vial and the mixture was sonicated for a few seconds.
Then, the mixture was centrifuged for 10 min. The supernatant liquid was removed, leaving
the catalyst at the bottom of the vial. This procedure was repeated another five times. The
catalyst was dried in the vial at 60 ◦C and was used for the next run. In the case of catalyst
4, two reactions were carried out by using, respectively, 0.33 mol% and 0.09 mol% at 50 ◦C
for 0.5 h.

4. Conclusions

In conclusion, we have described the hydrolysis of 3-ammoniumpropylbis
(catecholato)silicate 1, giving two different silica-based materials containing different
amounts of the tris(catecholato)silicate moiety. The latter moiety is formed via the transfor-
mation of the pentacoordinated silicon compound to hexacoordinated silicon compound
with the concomitant Si-C bond cleavage. As far as we know, this transformation has not
been described before and, given the importance of silica-based organic–inorganic hybrid
materials, it could add further knowledge to silicon chemistry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules27082521/s1, Structure of compounds and materials 1–4.
Figure S1: 1H NMR (300 MHz, DMSO-d6) of compound 1; Figure S2: 13C NMR (75 MHz, DMSO-d6)
of compound 1; Figure S3: 13C CP-MAS NMR of material 2; Figure S4: 13C CP-MAS NMR of material
3; Figure S5: TGA graph of materials 2 and 3; Figure S6: N2-adsorption/desorption isotherms
of material 2; Figure S7: N2-adsorption/desorption isotherms of material 3; Figure S8: 1H NMR
(300 MHz, DMSO-d6) of compound 4; Figure S9: 13C NMR (75 MHz, DMSO-d6) of compound 4.
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