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Abstract
We aimed to assess the feasibility of three-dimensional (3D) segmentation and to investigate whether semi-quantitative 
dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) parameters are associated with traditional prognos-
tic factors for breast cancer. In addition, we evaluated whether both intra-tumoural and peri-tumoural DCE parameters 
can differentiate the breast cancers that are more aggressive from those that are less aggressive. Consecutive patients 
with newly diagnosed invasive breast cancer and structural breast MRI (3.0 T) were included after informed consent. 
Fifty-six patients (mean age, 57 years) with mass lesions of > 7 mm in diameter were included. A semi-automatic image 
post-processing algorithm was developed to measure 3D pharmacokinetic information from the DCE-MRI images. The 
kinetic parameters were extracted from time-signal curves, and the absolute tissue contrast agent concentrations were 
calculated with a reference tissue model. Markedly, higher intra-tumoural and peri-tumoural tissue concentrations of 
contrast agent were found in high-grade tumours (n = 44) compared to low-grade tumours (n = 12) at every time point 
(P = 0.006–0.040), providing positive predictive values of 90.6–92.6% in the classification of high-grade tumours. The 
intra-tumoural and peri-tumoural signal enhancement ratios correlated with tumour grade, size, and Ki67 activity. The 
intra-observer reproducibility was excellent. We developed a model to measure the 3D intensity data of breast cancers. 
Low- and high-grade tumours differed in their intra-tumoural and peri-tumoural enhancement characteristics. We anticipate 
that pharmacokinetic parameters will be increasingly used as imaging biomarkers to model and predict tumour behavior, 
prognoses, and responses to treatment.
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Introduction

Dynamic contrast-enhanced magnetic resonance imaging  
(DCE-MRI) has been used extensively in oncological 
imaging for decades. DCE-MRI allows for malignant and 
benign tumours in the breast to be distinguished based 
on differences in the contrast agent enhancement patterns, 
and thus, the method improves diagnostic accuracy, with 
proven importance in differential diagnostics and pre- 
operative evaluation [1]. To evaluate the enhancement 
characteristics of lesions over time, a time intensity curve 
(TIC) is calculated by defining the region of interest (ROI) 
on the most suspicious region of enhancement within a 
lesion as instructed by the American College of Radiology  
Breast Imaging Reporting and Data System (ACR  
BI-RADS) [2]. The initial phase of the TIC is divided 
into slow, medium, and fast enhancement, and the delayed 
phase is divided into the persistent, plateau, and washout 
curves.

In DCE-MRI, the distribution of gadolinium contrast 
agent is compared between the vasculature and the intra-
cellular and extracellular spaces at different time points. 
Therefore, the vascular density and the permeability of the 
vasculature in these tissues can be assessed, and the shape 
of the TIC can be determined. High permeability is linked 
to vascular leaking, which is attributed to tumour-growth-
related angiogenesis [3]. Therefore, DCE-MRI-based 
parameters may be associated with the histopathologi-
cal properties of tumours and may indicate their relative 
aggressiveness, and DCE-MRI may allow for higher pre-
cision pathophysiological assessment of tumours and the 
monitoring of therapeutic interventions [4].

Early breast cancer DCE-MRI studies detected an  
association between the TIC type, rapid initial enhancement, 
and microvessel density [5]. The link between imaging and 
histopathological characteristics was strong enough to sub-
classify malignant breast tumours based on DCE-MRI [6]. 
Since these early discoveries, many new tools have been 
developed to extract additional information from medical  
images, ranging from hardware to deep learning–based  
image analysis solutions. This has led to the invention of 
radiomics, which uses data characterization algorithms to 
compute image features, called ‘radiomic features’ [7, 8]. 
These quantitative image features can accurately predict the 
subtype and genotypes of breast cancer [9, 10]. Furthermore, 
as cancer treatment becomes more individualized, DCE  
characteristics combined with other imaging parameters may  
provide more extensive prognostic information [11].

Most DCE-MRI studies have focused on measuring 
the intra-tumoural and background parenchymal features 
in individual two-dimensional (2D) slices with manually 
drawn ROIs [12–14]. More recently, it has been suggested 

that features extracted from peri-tumoural tissues could 
offer additional markers by reflecting angiogenic activity 
[15]. However, there is as yet no consensus on the optimal 
method of segmenting the peri-tumoural volume.

In this single-institution observational study, a semi- 
automatic method was developed to segment the intra-
tumoural and peri-tumoural volumes of breast cancers three- 
dimensionally in order to analyze their pharmacokinetic 
properties. Our main objectives were to assess the feasibility  
of three-dimensional (3D) segmentation in a consecutive  
clinical population and to investigate whether semi- 
quantitative DCE parameters are associated with traditional 
prognostic factors. We also hypothesized that both intra-
tumoural and peri-tumoural DCE parameters can be used to 
differentiate the breast cancers that are more aggressive from 
those that are less aggressive.

Materials and Methods

Study Design and Patients

This study was based on a database of 262 consecutive 
breast cancer patients prospectively included in a trans-
lational breast cancer study in 2011–2014 at our tertiary 
university hospital. Of these patients, the current study 
included those women who met the following criteria: [1] 
newly diagnosed invasive breast cancer; [2] pre-operative 
bilateral 3.0 T breast MRI; [3] mass lesions clearly demar-
cated on DCE-MRI; [4] healthy contralateral breast; [5] 
no previous history of cancer or breast operations; and [6] 
minimal tumour diameter of > 7 mm. This minimal diameter 
was selected as the threshold for inclusion to avoid possible 
partial volume effects in smaller structures. At our institu-
tion, breast MRI is performed according to the guidelines of 
the European Society of Breast Cancer Specialists working 
group [16]. Fifty-six patients fulfilled the inclusion criteria 
and are the study cohort (Table 1). Written informed consent 
was obtained from all the patients before any procedure. 
The study was approved by the Research Ethics Board of 
our tertiary hospital and patients provided written informed 
consent. All clinical investigations were conducted accord-
ing to the relevant guidelines and the principles expressed 
in the Declaration of Helsinki.

Breast MRI

MRI examinations were performed in the prone posi-
tion with a seven-element phased-array coil dedicated 
to breast imaging (Philips Achieva 3.0-T TX, Philips 
N.V., Eindhoven, Netherlands). The clinical structural 
breast MRI protocol consisted of T2-weighted and 
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non-contrast- and contrast-enhanced 3D T1-weighted 
sequences and diffusion-weighted imaging. Dynamic 
contrast-enhanced fat-saturated 3D T1-weighted 
sequences (TR = 4.70 ms; TE = 2.30 ms; flip angle 10°; 
in-plane pixel size 0.96 × 0.96  mm; 180 slices; slice 
thickness 1 mm; scanning time 58.5 s) were used in this 
study, enhanced with an injection (0.1 mL/kg, 3 mL/s) 
of gadoterate meglumine (376.9 mg/mL), followed by 
a saline chaser. An initial pre-contrast and six (total) 
post-contrast sequences were used for segmentation 
and the subsequent assessment of the pharmacokinetic 
parameters.

Assessment of Pharmacokinetic Parameters

A single observer (AN) with 4 years of experience in breast 
MRI analysis performed all DCE analyses, in consultation with 
a breast radiologist (MS) with 25 years of experience in breast 
radiology. For this study, the open-source image-processing 
package Fiji (http:// fiji. sc/ Fiji; in the public domain, [version 
1.52p]) was used for the segmentation and analysis of the intra-
tumoural and peri-tumoural pharmacokinetic properties [17]. 
A script was written to automate every step, except for the 
initial cropping of the tumour and the colour-changing pro-
cedure discussed below. Automating the process allowed a 
dataset of 1260 images to be analyzed in 1 min, excluding the 
time required to import the images from the image database 
because this is heavily dependent on the system used. Every 
patient’s 3D DCE-MRI image stack was analyzed separately. 
The computer used for the analysis had an Intel Core i3-6100 
CPU and 16 GB of RAM. The code used in this study does not 
use graphics card acceleration.

Image Analysis

k‑Means Segmentation

A k-means segmentation technique [18] was used to label all 
voxels separately at every time point after the whole DCE-
MRI image stack was deinterleaved. This method involves 
an unsupervised algorithm that assigns a membership to 
each voxel. Voxels are assigned to a cluster based on their 
proximity to the cluster centroids. Essentially different tissue 
types and backgrounds are defined based on their locations 
and intensity values. The clustering plug-in is based on a 
validated k-means algorithm [19].

Parameter Acquisition

Because the method presented has multiple steps, a script 
was written to increase its effectiveness and to avoid tedi-
ous manual effort. The main pipeline is presented in Fig. 1. 
First, the image stack was imported into Fiji and an ROI 
was selected manually. The ROI selection was based on 
placing a rectangle over the tumour area in the MR slice 
with the largest tumour area and then stretched laterally and 
horizontally to ensure complete selection of the tumour. The 
whole DCE image stack was then deinterleaved into stacks 
that represented individual time points; in this case, seven 
stacks were made. The last post-contrast image stack was 
used to create a 2D maximum intensity projection (MIP), 
which was then segmented with k-means clustering. Initial 
clustering was carried out with two clusters with a cluster 

Table 1  Patient profiles and tumour characteristics

Characteristic N (%)

Patients/lesions 56/56
Age (years) 56.6 ± 11.0
Menopause status

Premenopause 19 (33.9)
Postmenopause 37 (66.1)

Tumour stage
pT1 34 (60.7)
pT2 21 (37.5)
pT3 1 (1.8)
pT4 0 (0)

Axillary node classification
pN0 33 (58.9)
pN1 16 (28.6)
pN2 5 (8.9)
pN3 2 (3.6)

Histological grade
G1 12 (21.4)
G2 27 (48.4)
G3 17 (30.4)

Human epidermal growth factor receptor 2
Positive 45 (80.4)
Negative 11 (19.6)

Oestrogen receptor
Positive 48 (85.7)
Negative 8 (14.3)

Progesterone receptor
Positive 44 (78.6)
Negative 12 (21.4)

Ki67 expression
 < 20% 26 (46.4)
 ≥ 20% 30 (53.6)

Tumour type
Ductal (no special type) 45 (80.4)
Lobular 8 (14.3)
Others 3 (5.4)
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center tolerance of 0.0001, a random seed, and the image 
stack was interpreted as 3D. The clustered MIP was used 
as a mask to approximate the tumour borders coarsely by 
removing all the non-enhanced structures from the original 
3D image stack.

After the MIP mask was applied, the k-means clustering 
algorithm was used again with four clusters to further define 
the edges of the tumour. The image stacks were clustered 
as 3D volumes into four clusters. The clusters not includ-
ing tumoural tissue were removed with a colour-changing 
operation. Because the results of k-means clustering were 
unpredictable, this step required observer intervention. After 
these steps, all extra-tumoural structures were removed with 
a plug-in, which removed all but the largest object in the 
3D stack [20]. Finally, a precise tumour volume was left. 
To measure the peri-tumoural volume, four stepwise-dilated 
tumour volumes were created and made hollow so that each 
of the peri-tumoural shells was one voxel thick. The shells 
were identified from the tumour side outwards as shells 1, 
2, 3, and 4.

The intensities of the healthy background fibroglandu-
lar tissues were measured by cropping the healthy breast 
tissue and deinterleaving the DCE-MRI image stack. The 
pre-contrast stack was k-means clustered and the colour val-
ues of the resulting clusters were modified so that only the 
fibroglandular tissue was left. Because the skin and fibrog-
landular tissues have similar intensities, they were assigned 
to the same cluster when k-means clustering was applied. 
However, the skin volume was removed from the selection 
by eroding the clustered volume. The erosion tool works by 
eroding the selected volume from the outside. Because the 
fibroglandular tissue is in the inner part of the breast, a fixed 
amount of erosion could be used to remove the skin with-
out removing FGT in any significant amount. For adipose 
tissue measurements, a similar k-means clustering method 

was used to extract the intensity data. These volumes of the 
different tissues were then used as masks to measure the 
intensities in the unmodified DCE-MRI stacks using a 3D 
intensity measurement tool [21].

Mathematical Models

DCE-MRI data are typically interpreted based on the 
relationship between the intensity change and the contrast 
agent concentration. Although the concentration can be 
calculated using arterial input function methods, for this 
clinical study, a reference tissue method was used [22, 23].

Reference Tissue Method

The MRI signal intensity (S(t)) at time t was compared 
with the initial T1-weighted image intensity (S(0)) to 
obtain the contrast agent concentration (C(t)) in the 
selected tissue. The contrast agent concentration was quan-
tified with Eq. 1 [24]. An approximate value was calcu-
lated by taking measurements from a reference tissue and 
combining the data with baseline T1 relaxation time values 
taken from the literature.

In our study, the adipose tissue of breasts was used as 
the reference tissue and a value of 366 ms (taken from 
the literature) was used for the adipose tissue baseline T1 
relaxation time [25]. The relaxivity coefficient (r1) of the 
contrast agent was assumed to be constant (3.43  mM−1  s−1 
at 3 T) [26]. Differences in the tissue concentrations of the 
contrast agent were measured with area under the curve 
(AUC) values and absolute concentrations (mmol/L).

(1)

C
t
(t) ≈

1

r1

×
1

T1(0)reference tissueS(0)reference tissue
× (S(t) − S(0))

Fig. 1  Illustration of the method. A Original DCE-MRI stack. B 
Cropped tumour from the last time point of post-contrast imaging. C 
Maximum intensity projection (MIP) of cropped stack. D k-means-
clustered MIP. E Small objects removed. F First time point of post-
contrast image stack. G First post-contrast image stack after applica-

tion of the edited MIP mask. H k-means-clustered volume under the 
MIP-mask. I Tumour volume. J Peri-tumoural volume of “shell 1”. 
K Three-dimensional dilated peri-tumoural volume of “shell 2”. L 
Tumour and peri-tumoural shell masks applied to the original DCE-
MRI stack
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Quantitative Kinetic Parameters

In addition to the tissue concentrations over time, the 
quantitative kinetic parameters were also extracted from 
the TICs. The initial percentage enhancement (E1), peak 
percentage enhancement (Epeak), and signal enhancement 
ratio (SER) were calculated as follows [27]:

(2)E1 = 100% ×
(S1 − S0)

S0

(3)Epeak = 100% ×
(Speak − S0)

S0

(4)SER =
(S1 − S0)

(Slast − S0)

where S1 is the signal intensity in the volume of interest 
at the first contrast-enhanced point, Speak is the peak signal 
intensity, S0 is the unenhanced signal intensity in the volume 
of interest, and Slast is the signal intensity in the volume of 
interest at the last contrast enhancement point.

Statistical Analysis

All statistical analyses were performed with IBM SPSS Sta-
tistics for Windows, version 22 (IBM Corp., Armonk, NY, 
USA). Continuous variables are presented as mean ± stand-
ard deviation (SD) and categorical variables as absolute val-
ues and percentages. Two-tailed Student’s t-test was used to 
assess the differences between tumours of different grades. 
Pearson’s correlation coefficient was used to test the asso-
ciations between continuous variables. The reproducibility 
of the method was tested with Cronbach’s α and intra-class 

Table 2  Mean contrast agent 
concentrations (mmol/L) of 
grade 1 (n = 12) and grades 2–3 
(n = 44) tumours at different 
time points and in different 
regions of interest

SD standard deviation

Region Time point Grade 1 Grades 2 and 3 P

Mean SD Mean SD

Intra-tumoural 2 2.47 1.61 4.15 1.86 .006
3 3.05 1.75 4.84 1.99 .006
4 3.40 2.01 4.97 1.96 .017
5 3.51 1.98 4.95 1.89 .024
6 3.46 1.73 4.92 1.83 .016
7 3.54 1.76 4.86 1.81 .029

Peri-tumoural shell 1 2 0.83 0.47 1.37 0.68 .013
3 1.28 0.63 1.93 0.85 .016
4 1.54 0.68 2.23 0.94 .021
5 1.73 0.74 2.43 1.00 .029
6 1.84 0.78 2.56 1.06 .032
7 1.97 0.80 2.68 1.09 .040

Peri-tumoural shell 2 2 0.39 0.21 0.60 0.34 .056
3 0.65 0.31 0.92 0.43 .053
4 0.79 0.30 1.08 0.51 .068
5 0.92 0.33 1.22 0.56 .078
6 1.02 0.37 1.31 0.60 .108
7 1.09 0.36 1.41 0.63 .106

Peri-tumoural shell 3 2 0.34 0.19 0.51 0.32 .074
3 0.54 0.26 0.78 0.40 .054
4 0.66 0.27 0.91 0.46 .083
5 0.77 0.28 1.02 0.50 .102
6 0.83 0.29 1.08 0.52 .105
7 0.89 0.31 1.15 0.54 .116

Peri-tumoural shell 4 2 0.31 0.19 0.46 0.29 .089
3 0.49 0.26 0.70 0.37 .059
4 0.60 0.27 0.85 0.42 .082
5 0.70 0.29 0.92 0.45 .112
6 0.73 0.28 0.87 0.47 .092
7 0.80 0.31 1.03 0.49 .115
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correlation coefficients. Statistical significance was set at 
P < 0.05 for all tests. Given the exploratory nature of this 
study, we did not use the Bonferroni correction for multiple 
comparisons.

Results

A total of 56 patients (mean age, 56.6 ± 11.0 years) with 
56 invasive breast cancers were included in the study. The 
patient profiles and tumour characteristics are described in 
Table 1. Histopathologically, 12 patients had a low-grade 
(grade 1) tumour and 44 patients had a high-grade (grades 
2–3) tumour.

In the intra-tumoural area, the AUC value for the con-
centration of contrast agent was significantly higher in the 
high-grade tumours (mean 27.5 mmol/L × min) than in the 
low-grade tumours (mean 18.3 mmol/L × min; P = 0.011). 
The mean difference was 9.14 mmol/L × min (95% confi-
dence interval [CI] 16.1–2.20]). In the peri-tumoural area 
measured from the shell located closest to the tumour bor-
der (shell 1), the AUC value for the concentration of con-
trast agent was also significantly higher in the high-grade 
tumours (mean 12.3 mmol/L × min) than in the low-grade 
tumours (mean 8.4 mmol/L × min; P = 0.021). The mean 
difference was 3.82 mmol/L × min (95% CI 7.05–0.61).

The absolute concentrations of contrast material in 
both the intra-tumoural and peri-tumoural tissues were 
significantly higher in the high-grade tumours than in the 
low-grade tumours (Table 2 and Fig. 2). The high-grade 

tumours showed increased tissue concentrations of con-
trast agent at every time point examined. At the first 
post-contrast time point, the intra-tumoural concentration 
was 68.0% higher in the high-grade tumours than in the 
low-grade tumours. The absolute differences in the peri-
tumoural concentrations gradually diminished in the shells 
situated further from the tumour border, with values of 
65.0%, 53.8%, 50.0%, and 48.4% in shells 1, 2, 3, and 4, 
respectively.

The parameters derived from the TICs correlated with 
the histopathological parameters (Table 3 and Fig. 3). 
Larger tumour size correlated with higher SER for the 
intra-tumoural (r = 0.348, P = 0.009) and peri-tumoural 
volumes (r = 0.280, P = 0.037). Higher tumour grade cor-
related with higher SER in the intra-tumoural (r = 0.470, 
P < 0.001) and peri-tumoural volumes (r = 0.343–0.356, 
P < 0.01). Ki67 activity correlated with the intra-tumoural 
(r = 0.414, P = 0.002) and peri-tumoural SER values 
(r = 0.344–0.385, P < 0.05). In addition, Ki67 activity cor-
related weakly with the initial percentage enhancement 
measured in the peri-tumoural region (r = 0.277–0.287, 
P < 0.05). Positive oestrogen receptor status of the tumours 
correlated negatively with the SER values in the fibroglan-
dular tissue of the healthy breast (r =  −0.440, P = 0.001). 
Neither the peak percentage enhancement nor the adipose 
tissue measurements correlated with the clinical or histo-
pathological markers.

Higher intra-tumoural contrast agent concentrations 
(> 3.5 mmol/L at time point 2; > 4.0 mmol/L at time point 
3) achieved a positive predictive value (PPV) of over 90% 

Fig. 2  Mean contrast agent concentrations (mmol/L) in breast cancers of grade 1 vs grades 2–3. Clustered error bars at all time points. Time 
point 1 is in the pre-contrast phase and was not included in the measurements
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Table 3  Associations between histopathological markers and mean signal enhancement ratio (SER) measured in different regions

N SER tumour P SER shell 1 P SER shell 2 P SER shell 3 P SER shell 4 P

Tumour size
Large (≥ T2) 22 0.91 ± 0.23 .009 0.53 ± 0.14 .037 0.45 ± 0.18 .056 0.46 ± 0.18 .071 0.47 ± 0.16 .054
Small (≤ T1c) 34 0.74 ± 0.22 0.45 ± 0.16 0.37 ± 0.12 0.39 ± 0.12 0.39 ± 0.12

Histological grade
High [2, 3] 44 0.85 ± 0.23 .005 0.50 ± 0.15 .029 0.42 ± 0.15 .101 0.44 ± 0.16 .108 0.44 ± 0.15 .126
Low [1] 12 0.64 ± 0.21 0.40 ± 0.13 0.34 ± 0.10 0.36 ± 0.11 0.36 ± 0.11

ER
Positive 48 0.80 ± 0.25 .347 0.47 ± 0.16 .533 0.39 ± 0.15 .299 0.41 ± 0.16 .214 0.41 ± 0.15 .247
Negative 8 0.88 ± 0.15 0.51 ± 0.07 0.46 ± 0.07 0.48 ± 0.09 0.48 ± 0.10

PR
Positive 44 0.79 ± 0.23 .400 0.48 ± 0.16 .965 0.41 ± 0.16 .834 0.41 ± 0.16 .510 0.41 ± 0.15 .496
Negative 12 0.86 ± 0.29 0.48 ± 0.13 0.40 ± 0.11 0.44 ± 0.12 0.45 ± 0.13

HER2
Positive 45 0.87 ± 0.25 .322 0.51 ± 0.21 .539 0.42 ± 0.14 .705 0.44 ± 0.14 .565 0.44 ± 0.15 .677
Negative 11 0.79 ± 0.24 0.47 ± 0.14 0.40 ± 0.15 0.41 ± 0.15 0.42 ± 0.14

Ki67
High (≥ 20%) 30 0.90 ± 0.22 .002 0.53 ± 0.16 .003 0.45 ± 0.15 .009 0.47 ± 0.16 .005 0.47 ± 0.15 .004
Low (< 20%) 26 0.70 ± 0.22 0.42 ± 0.13 0.35 ± 0.12 0.36 ± 0.12 0.36 ± 0.11

LNM
Positive 23 0.88 ± 0.23 .073 0.53 ± 0.16 .049 0.44 ± 0.19 .143 0.46 ± 0.19 .087 0.46 ± 0.18 .109
Negative 33 0.76 ± 0.23 0.45 ± 0.14 0.38 ± 0.10 0.39 ± 0.10 0.40 ± 0.11

Fig. 3  Mean SER values in 
breast cancers of grade 1 vs 
grades 2–3. Clustered error bars 
from each tissue type measured 
in the first post-contrast phase
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for the detection of high-grade tumours. A similar PPV 
was also observed using the contrast agent concentrations 
in the peri-tumoural shell 1 (Table 4).

The intra-observer reproducibility of the method was 
high. For the intra-tumoural intensity measures, a mean 
Cronbach’s α value of 0.995 was achieved between all 
time points. For the peri-tumoural intensity measures, 
mean Cronbach’s α values of 0.974, 0.995, 0.998, and 
0.998 were achieved for shell 1, shell 2, shell 3, and shell 
4, respectively. The Cronbach α values for the intra- and 
peri-tumoural contrast agent concentrations (0.969–0.993) 
were similar to those for the intensity measures. The Cron-
bach α values for the adipose and fibroglandular tissue 
intensities were 0.905 and 0.999, respectively. The intra-
class correlation coefficients for intra-rater consistency are 
shown in Table 5.

Discussion

DCE-MRI is widely used in clinical breast cancer imaging. The 
tumour enhancement patterns have been studied extensively  
and many mathematical models have been developed to  
represent the dynamic flow and accumulation of contrast 
agent. However, there are still few studies of the enhancement  
patterns in the peri-tumoural region. In this study, we developed  

a method to measure the 3D intensity data in both the intra- and 
peri-tumoural regions, quantified as absolute concentrations. 
The kinetic parameters were also extracted from the time- 
signal curves. Our results show that not only did the low- and 
high-grade tumours differ in their intra-tumoural enhancement 
characteristics, but that the differences in the peri-tumoural 
region were also significant. Both the intra-tumoural and peri-
tumoural contrast agent concentrations proved to have a high 
positive predictive value in the classification of tumours with a 
higher histopathological grade. These findings suggest that peri-
tumoural pharmacokinetic parameters can be used as additional 
surrogate markers in future multi-parametric statistical analyses 
to model and predict tumour aggressiveness and prognoses, and 
to measure their responses to neoadjuvant treatments.

We analyzed several parameters (time intensity curves 
(TIC), the initial percentage enhancement (E1), peak per-
centage enhancement (Epeak), and signal enhancement 
ratio (SER)) that represent the dynamic flow and accumu-
lation of contrast agent in breast tumours and found that 
high tumoural and peri-tumoural contrast agent concen-
trations and high SER values are associated with tumour 
aggressiveness. High-grade tumours showed markedly 
higher tissue concentrations of contrast agent than low-
grade tumours at every time point. The SER values of 
the intra-tumoural and peri-tumoural volumes correlated 
with tumour grade, size, and Ki67 activity, which are all 
markers for poor prognosis. Both the SER value and the 
absolute contrast agent concentration in the tumoural and 
peri-tumoural tissues may be useful as imaging indices in 
the characterization of tumour aggressiveness.

Currently, there is no consensus on the optimal imaging 
biomarkers with which to quantify the aggressiveness or 
prognostic characteristics of breast cancers. Earlier stud-
ies showed that even the most basic qualitative parameters 
(e.g. the shape of the TIC) correlate significantly with the 
more sophisticated quantitative perfusion parameters (e.g. 
KTrans, Kep, and Ve) [28], More research on the predictive 
value of the existing imaging parameters, with the inclu-
sion of new markers, is required to establish an optimal 
multi-parametric MRI prognostication tool.

Table 4  Performance of the 
intra- and peri-tumoural tissue 
contrast agent concentration as 
a marker to classify tumours as 
low- or high-grade tumours

PPV positive predictive value, NPV negative predictive value, Threshold the tissue contrast agent concen-
tration used to divide tumours into low- and high-grade tumours

Tissue (time point) Sensitivity (%) Specificity (%) Accuracy (%) PPV (%) NPV (%) Threshold 
(mmol/L)

Tumour, 2 65.9 75 67.9 90.6 37.5 3.5
Tumour, 3 68.2 75 69.6 90.9 39.1 4.0
Shell 1, 2 65.9 75 67.9 90.6 37.5 1.2
Shell 1, 3 56.8 83.3 62.5 92.6 34.5 1.8

Table 5  Intra-observer reproducibility of measurements assessed 
with intra-class correlation coefficients. Single measures and two-
tailed analysis of consistency

ICC Lower Upper Sig

Tumour .986 .949 .996  < .001
Shell 1 .968 .886 .991  < .001
Shell 2 .990 .965 .997  < .001
Shell 3 .994 .978 .998  < .001
Shell 4 .996 .984 .999  < .001
Adipose .826 .477 .950  < .001
FGT .998 .994 1.000  < .001
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The peri-tumoural region has recently received increasing 
attention in the field of cancer imaging. The peri-tumoural area 
supports the wound response-like process, the inflammatory 
response, the increased vascular density, and the permeability 
of the vessels of the tumour, and consists of an extracellular 
matrix and various cell types [29]. Peri-tumoural markers are 
associated with the response to neoadjuvant chemotherapy [12, 
30, 31], hyaluronan accumulation, and lymph node metastasis 
[13, 14, 32, 33], pathological biomarkers [34], prognosis [35, 
36], and the molecular subtype of the tumour [37]. However, 
the methods used to measure and extract data from the peri-
tumoural region vary widely.

Manual segmentation has been used in many ways  
of even the most recent publications. Several studies 
have used a hand-drawn ROI placed on a single 2D slice 
for manual tumour delineation [12–14], whereas other 
studies have included multiple slices [30, 31] or even the 
whole tumour [33–35]. However, manual segmentation is 
time-consuming and highly operator-dependent, and thus 
leads to great variability between operators. Therefore,  
an automatic and user-independent method is required 
to generate more reproducible, reliable, and comparable  
results and to save time. Automated segmentation has been 
used in several studies to minimize operator error [37, 38].  
The present method uses standardized 3D measurements 
with minimal user input, which minimizes intra- and 
inter-observer measurement bias, and results in excellent 
internal consistency. The method is also computationally  
undemanding, and can even be run on low-end computers.

The study limitations included the low number of patients 
analyzed, and the lack of access to a T1-mapping or arterial 
input function. However, variability is reported to be low when 
reference tissue models are used [22, 23, 39]. Despite these limi-
tations, we detected significant differences between low- and 
high-grade tumours, highlighting the relevance of quantifying 
the pharmacokinetic parameters of breast tumours. Specifically, 
assessing the quantitative parameters in the peri-tumoural region 
as an adjunct to intra-tumoural assessments is a useful compo-
nent of the DCE analysis.

In conclusion, characterizing breast cancer and its bio-
markers as precisely as possible is important in the era of 
personalized medicine because treatment modalities are 
tailored to individuals. Our results demonstrate that the 
3D segmentation model is feasible and offers an easy and 
standardized method of evaluating dynamic pharmacoki-
netic parameters, not only for tumoural areas but also for 
peri-tumoural areas. Low- and high-grade tumours differ sig-
nificantly in their intra-tumoural and peri-tumoural enhance-
ment characteristics. These findings should encourage the 
use of pharmacokinetic parameters as surrogate markers in 
future statistical analyses to model and predict the aggres-
siveness and prognosis of tumours, and to measure their 
responses to neoadjuvant treatments.

Funding Open access funding provided by University of Eastern 
Finland (UEF) including Kuopio University Hospital. This study 
received grants from The Cancer Society of Finland and the North 
Savo Regional Fund of the Finnish Cultural Foundation.

Declarations 

Ethics Approval Written informed consent was obtained from all the 
patients before any procedure. The study was approved by the Research 
Ethics Board of our tertiary hospital and patients provided written 
informed consent. All clinical investigations were conducted according 
to the relevant guidelines and the principles expressed in the Declara-
tion of Helsinki.

Conflict of Interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Kuhl CK, Mielcareck P, Klaschik S. Dynamic breast MR imag-
ing: are signal intensity time course data useful for differential 
diagnosis of enhancing lesions? Radiology. 1999;211:101-10.

 2. Morris EA, Comstock CE, Lee CH. ACR BI-RADS® Magnetic 
Resonance Imaging. In: ACR BI-RADS® Atlas, Breast Imaging 
Reporting and Data System. Reston, VA, American College of 
Radiology. 2013.

 3. Prager GW, Poettler M. Angiogenesis in cancer. Hämostaseologie. 
2012;32(2):105-14.

 4. Knopp MV, Giesel FL, Marcos H, von Tengg-Kobligk H, 
Choyke P. Dynamic contrast-enhanced magnetic resonance 
imaging in oncology. Topics in Magnetic Resonance Imaging. 
2001;12(4):301-8.

 5. Buadu LD, Murakami J, Murayama S, Hashiguchi N, Sakai S, 
Masuda K, et al. Breast lesions: correlation of contrast medium 
enhancement patterns on MR images with histopathologic find-
ings and tumor angiogenesis. Radiology. 1996;200(3):639-49.

 6. Knopp MV, Weiss E, Sinn HP, Mattern J, Junkermann H, 
Radeleff J, et al. Pathophysiologic basis of contrast enhance-
ment in breast tumors. Journal of Magnetic Resonance Imaging. 
1999;10(3):260-6.

 7. Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More 
than Pictures, They Are Data. Radiology. 2016;278(2):563–77.

 8. Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, van 
Stiphout, Ruud G. P. M., Granton P, et al. Radiomics: Extracting 
more information from medical images using advanced feature 
analysis. European Journal of Cancer. 2011;48(4):441–6.

 9. Leithner D, Horvat JV, Marino MA, Bernard-Davila B, Jochelson  
MS, Ochoa-Albiztegui RE, et  al. Radiomic signatures with  
contrast-enhanced magnetic resonance imaging for the assessment 

1118 Journal of Digital Imaging  (2021) 34:1110–1119

1 3

http://creativecommons.org/licenses/by/4.0/


of breast cancer receptor status and molecular subtypes: initial 
results. Breast cancer research : BCR. 2019;21(1):106–11.

 10. Li H, Zhu Y, Burnside ES, Drukker K, Hoadley KA, Fan C, 
et al. MR Imaging Radiomics Signatures for Predicting the Risk 
of Breast Cancer Recurrence as Given by Research Versions of 
MammaPrint, Oncotype DX, and PAM50 Gene Assays. Radiol-
ogy. 2016;281(2):382-91.

 11. Pickles MD, Manton DJ, Lowry M, Turnbull LW. Prognostic 
value of pre-treatment DCE-MRI parameters in predicting dis-
ease free and overall survival for breast cancer patients undergo-
ing neoadjuvant chemotherapy. European Journal of Radiology. 
2008;71(3):498-505.

 12. Hattangadi J, Park C, Rembert J, Klifa C, Hwang J, Gibbs J, 
et al. Breast Stromal Enhancement on MRI Is Associated with 
Response to Neoadjuvant Chemotherapy. American Journal of 
Roentgenology. 2008;190(6):1630–6.

 13. Kettunen T, Okuma H, Auvinen P, Sudah M, Tiainen S, Sutela A, 
et al. Peritumoral ADC values in breast cancer: region of interest 
selection, associations with hyaluronan intensity, and prognostic 
significance. European Radiology. 2020;30(1):38-46.

 14. Choi EJ, Youk JH, Choi H, Song JS. Dynamic contrast-enhanced 
and diffusion-weighted MRI of invasive breast cancer for the pre-
diction of sentinel lymph node status. Journal of Magnetic Reso-
nance Imaging. 2020;51(2):615-26.

 15. Nathaniel M Braman, Maryam Etesami, Prateek Prasanna, Christina 
Dubchuk, Hannah Gilmore, Pallavi Tiwari, et al. Intratumoral and 
peritumoral radiomics for the pretreatment prediction of pathologi-
cal complete response to neoadjuvant chemotherapy based on breast 
DCE-MRI. Breast Cancer Research. 2017;19(1):57.

 16. Sardanelli F, Boetes C, Borisch B, Decker T, Federico M, Gilbert 
FJ, et al. Magnetic resonance imaging of the breast: Recommen-
dations from the EUSOMA working group. European Journal of 
Cancer. 2010;46(8):1296-316.

 17. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, 
Pietzsch T, et al. Fiji: an open-source platform for biological-
image analysis. Nature Methods. 2012;9(7):676–82.

 18. Hinkle DE, Wiersma W, Jurs SG. Applied Statistics for the Behav-
ioral Sciences. 5th ed. Boston: Houghton Mifflin; 2003.

 19. Jain A, Murty M, Flynn P. Data clustering. ACM Computing Sur-
veys (CSUR). 1999;31(3):264–323.

 20. Legland D, Arganda-Carreras I, Andrey P. MorphoLibJ: integrated 
library and plugins for mathematical morphology with ImageJ. 
Bioinformatics (Oxford, England). 2016;32(22):3532–4.

 21. Ollion J, Cochennec J, Loll F, Escudé C, Boudier T. TANGO: 
a generic tool for high-throughput 3D image analysis for study-
ing nuclear organization. Bioinformatics (Oxford, England). 
2013;29(14):1840–1.

 22. Yankeelov TE, Luci JJ, Lepage M, Li R, Debusk L, Lin PC, et al. 
Quantitative pharmacokinetic analysis of DCE-MRI data without 
an arterial input function: a reference region model. Magnetic 
Resonance Imaging. 2005;23(4):519-29.

 23. Medved M, Karczmar G, Yang C, Dignam J, Gajewski TF, 
Kindler H, et al. Semiquantitative analysis of dynamic contrast 
enhanced MRI in cancer patients: Variability and changes in 
tumor tissue over time. Journal of Magnetic Resonance Imaging. 
2004;20(1):122-8.

 24. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 
Mapping: Basic Techniques and Clinical Applications. JACC. 
Cardiovascular imaging. 2016;9(1):67-81.

 25. Rakow-Penner R, Daniel B, Yu H, Sawyer-Glover A, Glover 
GH. Relaxation times of breast tissue at 1.5T and 3T meas-
ured using IDEAL. Journal of Magnetic Resonance Imaging. 
2006;23(1):87–91.

 26. Shen Y, Goerner F, Snyder C, Morelli J, Hao D, Hu D, et al. T1 
Relaxivities of Gadolinium-Based Magnetic Resonance Contrast 

Agents in Human Whole Blood at 1.5, 3, and 7 T. Investigative 
Radiology. 2015;50(5):330–8.

 27. Choi EJ, Youk JH, Choi H, Song JS. Dynamic contrast-enhanced 
and diffusion-weighted MRI of invasive breast cancer for the pre-
diction of sentinel lymph node status. Journal of Magnetic Reso-
nance Imaging. 2019.

 28. Yi B, Kang D, Yoon D, Jung Y, Kim K, Yim H, et al. Is there 
any correlation between model-based perfusion parameters and 
model-free parameters of time-signal intensity curve on dynamic 
contrast enhanced MRI in breast cancer patients? Eur Radiol. 
2014;24(5):1089-96.

 29. Polyak K, Kalluri R. The Role of the Microenvironment in Mam-
mary Gland Development and Cancer. Cold Spring Harbor per-
spectives in biology. 2010;2(11):a003244.

 30. Braman N, Prasanna P, Whitney J, Singh S, Beig N, Etesami M, 
et al. Association of Peritumoral Radiomics With Tumor Biology 
and Pathologic Response to Preoperative Targeted Therapy for 
HER2 (ERBB2)-Positive Breast Cancer. JAMA network open. 
2019;2(4):e192561.

 31. Braman NM, Etesami M, Prasanna P, Dubchuk C, Gilmore H, 
Tiwari P, et al. Intratumoral and peritumoral radiomics for the 
pretreatment prediction of pathological complete response to neo-
adjuvant chemotherapy based on breast DCE-MRI. Breast cancer 
research : BCR. 2017;19(1):57.

 32. Zhang S, Yi S, Zhang D, Gong M, Cai Y, Zou L. Intratumoral 
and peritumoral lymphatic vessel density both correlate with 
lymph node metastasis in breast cancer. Scientific reports. 
2017;7(1):40364.

 33. Liu C, Ding J, Spuhler K, Gao Y, Serrano Sosa M, Moriarty M, 
et al. Preoperative prediction of sentinel lymph node metastasis  
in breast cancer by radiomic signatures from dynamic contrast- 
enhanced MRI. Journal of Magnetic Resonance Imaging. 
2019;49(1):131-40.

 34. Shin HJ, Park JY, Shin KC, Kim HH, Cha JH, Chae EY, et al. 
Characterization of tumor and adjacent peritumoral stroma in 
patients with breast cancer using high-resolution diffusion-
weighted imaging: Correlation with pathologic biomarkers. Euro-
pean Journal of Radiology. 2016;85(5):1004-11.

 35. Wu J, Li B, Sun X, Cao G, Rubin DL, Napel S, et al. Hetero-
geneous Enhancement Patterns of Tumor-adjacent Parenchyma 
at MR Imaging Are Associated with Dysregulated Signal-
ing Pathways and Poor Survival in Breast Cancer. Radiology. 
2017;285(2):401-13.

 36. Cheon H, Kim HJ, Kim TH, Ryeom H, Lee J, Kim GC, et al. Inva-
sive Breast Cancer: Prognostic Value of Peritumoral Edema Iden-
tified at Preoperative MR Imaging. Radiology. 2018;287(1):68-75.

 37. Chen J, Zhang Y, Chan S, Chang R, Su M. Quantitative analysis 
of peri-tumor fat in different molecular subtypes of breast cancer. 
Magnetic Resonance Imaging. 2018;53:34-9.

 38. Zhou J, Zhang Y, Chang K, Lee KE, Wang O, Li J, et al. Diagnosis 
of Benign and Malignant Breast Lesions on DCE-MRI by Using 
Radiomics and Deep Learning With Consideration of Peritumor 
Tissue. Journal of magnetic resonance imaging : JMRI. 2019.

 39. Yang C, Karczmar GS, Medved M, Aytekin O, Zamora M, Stadler 
WM. Reproducibility Assessment of a Multiple Reference Tissue 
Method for Quantitative DCE-MRI Analysis. Magnetic resonance 
in medicine: official journal of the Society of Magnetic Reso-
nance in Medicine/Society of Magnetic Resonance in Medicine. 
2009;61(4):851–9.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1119Journal of Digital Imaging  (2021) 34:1110–1119

1 3


	Quantitative Three-Dimensional Assessment of the Pharmacokinetic Parameters of Intra- and Peri-tumoural Tissues on Breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging
	Abstract
	Introduction
	Materials and Methods
	Study Design and Patients
	Breast MRI
	Assessment of Pharmacokinetic Parameters
	Image Analysis
	k-Means Segmentation
	Parameter Acquisition

	Mathematical Models
	Reference Tissue Method
	Quantitative Kinetic Parameters

	Statistical Analysis

	Results
	Discussion
	References


