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Abstract: Pueraria lobata leaves contain a variety of phytoestrogens, including flavonoids, isoflavonoids,
and coumestan derivatives. In this study, we aimed to identify the active ingredients of P. lobata leaves
and to elucidate their function in monoamine oxidase (MAO) activation and Aβ self-aggregation
using in vitro and in silico approaches. To the best of our knowledge, this is the first study to eluci-
date coumestrol as a selective and competitive MAO-A inhibitor. We identified that coumestrol, a
coumestan-derivative, exhibited a selective inhibitory effect against MAO-A (IC50 = 1.99 ± 0.68 µM),
a key target protein for depression. In a kinetics analysis with 0.5 µg MAO-A, 40–160 µM substrate,
and 25 ◦C reaction conditions, coumestrol acts as a competitive MAO-A inhibitor with an inhibition
constant of 1.32 µM. During an in silico molecular docking analysis, coumestrol formed hydrogen
bonds with FAD and pi–pi bonds with hydrophobic residues at the active site of the enzyme. More-
over, based on thioflavin-T-based fluorometric assays, we elucidated that coumestrol effectively
prevented self-aggregation of amyloid beta (Aβ), which induces an inflammatory response in the
central nervous system (CNS) and is a major cause of Alzheimer’s disease (AD). Therefore, coume-
strol could be used as a CNS drug to prevent diseases such as depression and AD by the inhibition of
MAO-A and Aβ self-aggregation.

Keywords: Pueraria lobata; coumestrol; monoamine oxidase-A; Aβ aggregation

1. Introduction

Monoamine oxidase (MAO) is a group of flavoenzymes that catalyze the oxidation of
biogenic and xenobiotic amines including primary (dopamine, serotonin, norepinephrine,
etc.), secondary (adrenaline), and tertiary amines, producing H2O2 and aldehyde. Thus,
MAOs play a key role in regulating monoamine levels in the central nervous system (CNS).
Of the two isomers (A and B types) of MAO, MAO-A exhibits substrate selectivity for
serotonin, melatonin, norepinephrine, and epinephrine, and MAO-B exhibits substrate
selectivity for phenylethylamine and benzylamine. However, both isomers are known to
non-selectively catalyze dopamine and tyramine [1]. Therefore, MAO-A is widely used as
a drug target for anxiety disorders such as depression and MAO-B for neurodegenerative
diseases such as Parkinson’s disease (PD) [2]. Unfortunately, MAO inhibitors (MAOIs) are
not popular as a CNS drug candidate due to side effects such as hypertension, which occurs
because of the ‘cheese effect’ caused by irreversible and nonselective MAOIs. However,
selective and reversible MAOIs (moclobemide) have also been developed, which do not
cause the ‘cheese effect,’ and therefore, their administration does not require dietary restric-
tions [3]. In addition, MAO-B levels were found to be increased in the brain of AD patients,
and MAO-B activation increased amyloid beta (Aβ) production through gamma-secretase
activation [4]. Aggregated Aβ is a major component of senile plaques, which is the key
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cause of AD and has been widely studied as a biomarker in the development of therapeutic
drugs for AD [5]. Thus, it is essential to develop a lead compound that affects MAO
activation and Aβ production/aggregation.

Pueraria lobata (Willd.) Ohwi belongs to the Leguminosae family and is one of the
climbing plants that have been used as food or traditional medicine in many countries,
including Korea, China, and Japan [6]. Due to the various pharmacological properties
of P. lobata, it has been widely used in folk remedies or herbal medicines since ancient
times; research on its active ingredients and pharmacological activity is in progress. The
representative components of the roots and leaves of P. lobata are puerarin (daidzein-8-
C-glucoside) and robinin (kaempferol 3-O-robinoside-7-O-rhamnoside), respectively. In
addition, P. lobata contains many isoflavones, flavonoids, triterpenoids, and coumestan
derivatives [6,7]. In particular, P. lobata is rich in isoflavones that help relieve female
menopausal symptoms; hence, it is widely used by women. The isoflavone-rich fraction of
P. lobata exerts neuroprotective effects by enhancing the metabolism of neurotransmitters,
and puerarin exerts anti-PD effects by protecting dopaminergic neurons [8,9]. In addition,
the ethanol extract of P. lobata roots exhibited anti-depressant activity in a cerebral ischemia
reperfusion mouse model [10]. However, the systematic studies on the MAO inhibitory
effects of P. lobata leaves and its component are still limited. The discovery of an active
ingredient from P. lobata, which can be easily consumed as food, is of great nutritional and
industrial importance. Therefore, in this study, we aimed to identify the active ingredients
of P. lobata leaves and to elucidate their function in MAO activation and Aβ aggregation
using the analytical technique HPLC–Q-TOF–MS, in vitro enzyme inhibitory and protein
aggregation assays, and in silico computational approaches. In silico studies are useful to
understand the role of the steric hindrance of the functional groups of phytochemicals in
the active site of a target enzyme. In addition, a kinetic assay, which observes changes in
enzyme activity according to the substrate and inhibitor (=active ingredient) concentration,
was conducted to identify the inhibitory type of active ingredient. To further support
their potential as a drug, the pharmacokinetic parameters of the active molecules were
also predicted.

2. Materials and Methods
2.1. Chemicals

Human monoamine oxidase (hMAO) isozymes, robinin, rutin, nicotiflorin, daidzin,
genistin, coumestrol, daidzein, genistein, curcumin, amyloid β peptide 25–35 (Aβ25–35), hex-
afluoroisopropanol (HFIP), and selegiline hydrochloride were purchased from Sigma-Aldrich
(St. Louis, MO, USA). All solvents used for high pressure liquid chromatography coupled to
quadrupole time-of-flight mass spectrometry (HPLC–Q-TOF–MS) were liquid chromatography–
mass spectrometry grade and purchased from Merck (Darmstadt, Germany).

2.2. Plant Source

P. lobata leaves were collected from Geogeum-do islands (Goheung-gun, Jeollanam-do,
Korea) in August 2021. The plant was authenticated by Dr. S. Han of Honam National
Institute of Biological Resource (voucher no. shan2021-142). The 70% ethanol extract of
P. lobata leaves (PL-L-70E) was obtained from the Bank of Bioresources from Island and
Coast (BOBIC), Republic of Korea (registered no. HNIBR NP374).

2.3. HPLC–ESI-Q–TOF–MS Analysis

The PL-L-70E was separated on the Ultimate™ 3000 UHPLC system using the Hy-
persil GOLD™ C18 column (Cat. 25005-254630), equipped with the Chromeleon Software
7.3 (ThermoScientific, Pittsburgh, PA, USA), for component analysis. The mobile phase
consisted of a gradient of 0.1% HCOOH (A) and acetonitrile containing 0.1% HCOOH
(B) as follows: 0–60 min, B 10% to 45%; 60–60.1 min, B 45% to 100%; and 60.1–65 min,
B 100%. The sample injection volume was 2.5 µL, column temperature was 25 ◦C, and
flow rate was 0.5 mL/min. MS analysis was performed using Xevo G2-XS Q-TOF–MS
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with MassLynx v10 (Waters Corporation, Milford, MA, USA). ESI–MSe mode was used to
obtain low- and high-resolution spectral data in the negative mode. MS conditions were as
follows: acquisition mass range, 50 to 1500 Da with a 0.5 s scan time; cone voltage, 40.0 V;
source and desolvation temperatures, 100 ◦C and 350 ◦C, respectively. Mass calibration
was performed using 0.5 mM sodium formate. The mass was corrected during acquisition
using 200 pg/mL leucine enkephaline.

2.4. In Vitro hMAO Inhibitory Assay

The inhibitory potential of the P. lobata-derived phytochemicals against MAO was eval-
uated through the luminometric method. Various doses of phytoestrogens in 0.1 M HEPES
buffer (pH 7.5) with 5% 1,2,3-propanetriol for MAO-A and 5% 1,2,3-propanetriol and 10%
dimethyl sulfoxide for MAO-B were mixed with the substrate (160 µM for MAO-A and
16 µM for MAO-B) and 0.5 µg of the enzyme and incubated at 25 ◦C. After 1 h incubation,
reconstituted luciferin-detection reagent was added to the reaction mixture and incubated
at 25 ◦C for 20 min. After that, luminescent signals were monitored using a microplate
reader (Biotek, Winooski, VT, USA). Selegiline hydrochloride (final concentrations: 6.25 to
25 µM) was used as a positive control [11].

2.5. Kinetic Assay for hMAO-A

The type of inhibition exhibited by coumestrol was analyzed based on the changes in
enzyme activity according to various concentrations of the substrate and the inhibitor [12].
The experimental method was the same as that used for the hMAO inhibitory assay; 0.5 µg
of enzyme, 40–160 µM substrate and 0, 2.5, 10, and 20 µM coumestrol were used. A
Lineweaver–Burk plot (LB plot) was generated using SigmaPlot 12.0 based on the results
of the kinetic assay and secondary plots of the LB plot (LB-2nd plot) were generated using
the exploratory EK macro module (Table S1).

The equation for the LB plot is as follows:

1
V

=
Km + [S]
Vmax[S]

(1)

The equations for the LB-2nd plots are as follows:

Km,app

Vmax,app
=

Km

Vmax
(1 +

[I]
Kic

) (2)

1
Vmax,app

=
1

Vmax
(1 +

[I]
Kiu

) (3)

2.6. Self Aβ25–35 Aggregation Assay

The Aβ25–35 self-aggregation assay was performed following the method described
by Naldi et al. [13]. First, peptide was pretreated with HFIP for 1 day at 22 ◦C to obtain
non-amyloidogenic conformation. Various doses of phytoestrogens in 34.5 mM phosphate
buffer (pH 7.4) with 17.5% MeCN were mixed with a 0.1 mM monomeric Aβ25–35 solution
in a 1:29 ratio (v/v) and incubated overnight at 4 ◦C. After incubation, the reaction mixture
was supplemented with 0.025 mM thioflavin-T in 50 mM glycine–NaOH buffer (pH 8.5).
The fluorescence emission was monitored at 490 nm with excitation at 446 nm using
the Gemini XPS (Molecular Devices, Sunnyvale, CA, USA). Curcumin was used as the
standard [13].

2.7. In Silico Docking Simulation

The X-ray crystallographic structure of hMAO-A was obtained from the PDB (ID
2z5x) [14]. Water and co-ligands from the structure were eliminated using the Discovery
Studio (v17.2, Accelrys, San Diego, CA, USA). The 3D structure of coumestrol was generated
using Marvin Sketch (v17.1.30, ChemAxon, Budapest, Hungary). Fifteen docking postures
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were generated with the same parameters using AutoDock 4.2 [15]. The results were
scrutinized using Discovery Studio v17.2.

2.8. Prediction of Pharmacokinetic Parameters

The pharmacokinetic characteristics of coumestrol were calculated using Marvin
Sketch (v17.1.30) and the PreADMET server v1.0 (https://preadmet.bmdrc.kr/, accessed
on 1 June 2022).

2.9. Statistical Analysis

The 50% inhibitory concentration (IC50) calculated from the dose–inhibition curve is
expressed as the mean ± standard deviation (SD) of three independent experiments. The
statistical significance of the group treated with the tested compounds against the control
group for the Aβ25–35 self-aggregation assay was calculated via Student’s t-test (Microsoft
Excel 2019, Microsoft Corporation, Seattle, WA, USA).

3. Results
3.1. Extracted Ion Chromatogram (EIC) of Compounds Present in the PL-L-70E

The chemical constituents of the PL-L-70E were analyzed using HPLC–Q-TOF–MSe

(Figure 1 and Table 1). We determined that various glycosides of quercetin and kaempferol
were present in P. lobata leaves based on the comparison of their retention times (RT)
with those of standard compounds and the analysis of their fragmentation patterns. In
particular, robinin was identified as the most abundant component. In addition, flavan-3-
ols (quercetin-3-O-robinobioside, rutin, kaempferol-3-O-robinobioside, and nicotiflorin),
isoflavones (daidzein, genistein, daidzin, and genistin), and the coumestan-derivative
coumestrol were also present in this extract.
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in PL-L-70E.

3.2. Inhibitory Activity of PL-L-70E and Its Constituents against Human MAO Isozymes

The protocol for the MAO assay was verified using selegiline hydrochloride as a positive
control. In addition, since factors such as organic solvents, metal ions (such as Cu2+, Cd2+,
and Al3+), pH, and temperature affect MAO activity [16–18], the assay was conducted in a
well-controlled laboratory environment. The optimal conditions for the enzymatic reaction,
including reaction time, temperature, pH, and the concentrations of the enzyme and substrate,
were established based on the previous study [19]. All the test samples were diluted in
a reaction buffer containing 10% or less DMSO, and the solvent-control group was tested
together for each assay to minimize false-positive/false-negative effects.

https://preadmet.bmdrc.kr/
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Table 1. Identification of phytochemicals present in the PL-L-70E by HPLC–Q-TOF–MSe in negative
ion mode.

Compounds RT (min) Measured Mass Molecular Formula Error (ppm) Fragment Ions (m/z) a

Robinin 21.12 739.2080 [M-H]− C33H40O19 −8.0 593.1519
Quercetin-3-O-
robinobioside 24.38 609.1437 [M-H]− C27H30O16 −3.1 301.0340, 300.0283

Rutin 24.74 609.1437 [M-H]− C27H30O16 −3.1 301.0340, 300.0283
Kaempferol-3-O-

robinobioside 26.94 593.1519 [M-H]− C27H30O15 2.2 285.0408, 284.0315,
269.0437

Nicotiflorin 28.35 593.1519 [M-H]− C27H30O15 2.2 285.0408

Daidzin 21.32 461.1108
[M + HCOOH-H]− C21H20O9 5.2 415.1031 [M-H]−,

253.0523

Genistin 28.30 477.1048
[M + HCOOH-H]− C22H22O12 3.1 431.0973 [M-H]−,

269.0474

Daidzein 39.57 253.0523 [M-H]− C15H10O4 8.7
225.0543, 224.0486,
209.0623, 197.0588,

91.0185

Genistein 49.61 269.0474 [M-H]− C15H10O5 −4.8
241.0490, 225.0543,
224.0486, 201.0550,
159.0453, 133.0300

Coumestrol 49.76 267.0286 [M-H]− C15H8O5 −2.6 167.0480
a Determined by high-energy function of MSe method.

The PL-L-70E exhibited dose-dependent inhibitory activity against MAO isozymes
(Figure 2A), with high selectivity for MAO-A compared to that for MAO-B. Therefore,
the MAO inhibitory efficacy of these constituents was further evaluated. Among the
tested compounds, coumestrol was the most effective MAO-A inhibitor, with an IC50 of
1.99 µM. However, this compound showed moderate inhibition against MAO-B, with an
IC50 of 77.79 (selective index (SI) = 0.02). As shown in Table 2, genistein also showed good
inhibitory activity against both MAO isozymes with IC50 values of 4.77 and 3.42 µM for
MAO-A and -B, respectively. On the other hand, daidzein, which has a structure similar to
that of genistein without a hydroxyl group at the C5 position, showed a weak inhibitory
effect against both MAO isozymes (IC50 values of 304.05 and 356.87 µM for MAO-A and
-B, respectively). Previously, Zarmouh et al. [20] also demonstrated that genistein exhibits
excellent inhibitory activity against MAOs through an enzyme kinetic study and docking
simulations, and these results are consistent with our present results. In addition, rutin
showed weak MAO-A inhibitory activity, but others showed no activity against both MAO
isozymes under the tested concentration.

Table 2. Inhibitory activity of the major constituents of PL-L-70E against hMAOs.

Compounds
hMAO-A hMAO-B

SI a

IC50 (Mean ± SD, µM)

Robinin >400 >400 -
Quercetin-3-O-
robinobioside >400 >400 -

Rutin 387.12 ± 4.63 >400 -
Kaempferol-3-O-

robinobioside >400 >400 -

Nicotiflorine >400 >400 -
Daidzin >400 >400 -
Genistin >400 >400 -
Daidzein 304.05 ± 4.72 356.86 ± 1.05 0.85
Genistein 4.77 ± 0.51 3.42 ± 0.39 1.39

Coumestrol 1.99 ± 0.68 77.79 ± 2.10 0.02
Selegiline

hydrochloride b 12.57 ± 0.51 0.38 ± 0.001 33.08

a The selective index (SI) = hMAO-A IC50/hMAO-B IC50.
b Positive control.
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Figure 2. Dose-dependent inhibition of MAO-A by PL-L-70E (A). Lineweaver-Burk plots (B) and
secondary plots (C,D) of coumestrol for hMAO-A inhibition. Data are presented as mean ± SD
(n = 3). Comparative binding orientation (E) and 2D interaction (F) of coumestrol (pink stick) at
the catalytic site of hMAO-A. FAD and residues of the enzyme are represented as blue and gray
sticks, respectively.

3.3. Competitive Inhibition of hMAO-A by Coumestrol

To the best of our knowledge, for the first time, the potent and selective inhibitory
activity of coumestrol against MAO-A was elucidated. Therefore, an enzyme kinetic
analysis was performed to elucidate the mode of inhibition of MAO-A by coumestrol. As
in the previous studies, it was confirmed that the lower the concentration of the substrate,
the lower the enzyme reaction rate of the control group (treated with only buffer) [19].

As shown in Figure 2B,D, the y-intercept of each linear regression did not change even
when the substrate and coumestrol concentrations were changed, and this kinetic pattern
is that of a typical competitive inhibitor. According to the secondary plots (Figure 2C,D),
the inhibition constant of coumestrol for MAO-A was calculated as 1.32 µM (Table 3).
Furthermore, in silico docking simulations were performed to predict the binding sites of
coumestrol to MAO-A and key residues that affect its binding. As shown in Figure 2E,F,
coumestrol was stably docked to a site known as the major active site of MAO-A [14]. The
ketone moiety of coumestrol interacted with nitrogen at position 5 of the isoalloxazine ring
of FAD via a hydrogen bond (2.16 Å), and the hydroxyl moiety of the B-ring of coumestrol
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and the Tyr444 residue of MAO-A formed a hydrogen bond (1.85 Å). Coumestrol also
formed a pi–pi bond with Phe352 and Tyr407. Thus, these strong hydrogen bonds and
pi–pi interactions may have affected the binding ability of coumestrol to MAO-A.

Table 3. Enzyme kinetic property and binding mode of coumestrol on MAO-A.

Compounds Inhibition
Mode

Inhibition
Constant
(Ki, µM)

Binding
Energy

(kcal/mol) a

H-Bond
Interaction
Residues b

Other Interaction Residues b

Coumestrol Competitive 1.32 −9.36 FAD, Tyr444

FAD and Phe352 (π–π T
shaped), Tyr407 and Tyr444
(π–π stacking), Ile335, and

Leu337 (π–alkyl)

Harmine c ND ND −8.43 ND

Tyr407 (π-π stacking, π-Alkyl),
FAD (Van der Waals), Cys323

(π –sulfur), Ile335 (π–σ,
π–alkyl), Tyr444, Ile180, and

Leu337 (π–alkyl)
a Determined by Autodock 4.2. b Determined by Discovery studio v17.2. c Co-ligand of human MAO-A (2z5x)
obtained from Protein Data Bank. ND Not detected.

3.4. Inhibitory Activity of Phytoestrogens against Aβ25–35 Self-Aggregation

Four phytoestrogens that exhibited inhibitory activity against MAO and curcumin
(a well-known inhibitor of Aβ25–35/1–42 self-aggregation) were investigated to evaluate
their inhibitory potential against Aβ25–35 self-aggregation based on the fluorescence of
thioflavin-T (Table S2). The optimal conditions for the Aβ25–35 aggregation, including
the ratio of Aβ25–35 and inhibitor, temperature, reaction time, and pH, were established
based on the previous study [13]. Figure 3A shows the inhibitory activity (%) of the four
phytoestrogens and curcumin against self Aβ25–35 aggregation after 24 h of incubation.
The extent of Aβ25–35 self-aggregation decreased by 76.14% when co-treated with 100 µM
coumestrol compared to that of the control group. Furthermore, 100 µM rutin, daidzein,
and genistein reduced Aβ25–35 self-aggregation by 49.31, 35.54, and 34.90%, respectively.
As shown in Figure 3B, coumestrol inhibited Aβ25–35 aggregation in a dose-dependent
manner with an IC50 value of 37.40 ± 1.70 µM, whereas the curcumin had an IC50 value of
10.57 ± 1.31 µM.
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Figure 3. Extent of Aβ25–35 self-aggregation in the presence and absence of phytoestrogens (100 µM)
along with positive control (20 µM curcumin) based on a quantitative thioflavin-T binding assay
(A). Data are shown as mean ± SD (n = 3). # p < 0.0001 denotes a substantial difference from the
non-aggregated group (blank). * p < 0.001 and ** p < 0.0001 denote substantial differences from the
aggregated Aβ25-35 (100 µM) group (control). Dose-dependent inhibition of Aβ25–35 self-aggregation
by coumestrol (B).
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3.5. Pharmacokinetic Parameters of Coumestrol

Based on the chemical structure of coumestrol, the pharmacokinetic parameters were
predicted. The pharmacokinetic analysis of coumestrol revealed that its blood–brain barrier
(BBB) permeability score was 0.76, which indicated that coumestrol could pass across
the BBB with moderate absorption by the CNS. In addition, coumestrol showed 93.51%
human intestinal absorption (HIA), which implies that it can be easily absorbed by the
human intestine and is suitable for oral delivery. According to the CMC-like rule [21], the
lipophilicity index of drugs, the log P for neuronal drugs should be between 1.3 and 4.1. As
shown in Table 4, the log Po/w value of coumestrol was 2.94. Coumestrol was also predicted
to be a non-inhibitor of p-glycoprotein. Based on the analysis of its mutagenic properties,
coumestrol was predicted to be non-carcinogenic to rats and mice. The predicted CNS
MPO score suggested that coumestrol has suitable CNS-drug-like properties based on
several physicochemical properties (partition coefficients, the number of hydrogen bond
donors, pKa, molecular size, and topological polar surface area values) [22]. Therefore,
these predicted pharmacokinetic properties project coumestrol as an attractive CNS drug
candidate for the inhibition of MAO and the self-assembly of the Aβ peptide.

Table 4. Pharmacokinetic properties of coumestrol.

Model Name Predicted Values

Log Po/w
a 2.94

BBB penetration b 0.76
HIA c 93.51

P-glycoprotein Non-inhibition
Carcino-rat/mouse Negative
CNS MPO score d 5.24

a The ratio of 1-octanol to water in the log of the solvent partitioning coefficient. b Absorption levels below 0.1 are
considered low, 0.1 to 2.0 are considered moderate, and above 2.0 are considered good. c Absorption levels of
0 to 20% are considered low, 20 to 70% are considered moderate, and 70 to 100% are considered good. d CNS
multiparameter optimization (MPO), >4.0: desirability score.

4. Discussion

In this study, we investigated the inhibition of MAO by the PL-L-70E and its con-
stituents. We determined that coumestrol showed the best inhibitory effect against MAO-A,
followed by genistein, daidzein, and rutin. In the case of MAO-B, genistein exhibited
the strongest inhibition, followed by coumestrol and daidzein. However, the remaining
compounds did not exhibit a significant inhibitory effect against either isozyme. More-
over, for the first time, we discovered that coumestrol acts as a selective and competitive
MAO-A inhibitor.

Coumestrol is a coumestan-derivative and is found in P. lobata, soybean, alfalfa
(Medicago sativa), and Trifolium sp. [23,24]. Coumestrol is a phytoestrogen with antioxidant,
anti-inflammatory, and estrogenic activities [25,26]; it is biosynthesized from daidzein, a
representative isoflavone that is abundant in the Leguminosae family [24]. Zarmouh et al.
reported that psoralidin derived from Psoralea corylifolia seeds, which has an additional
prenyl moiety at the C2 position of coumestrol, did not show a significant inhibitory ef-
fect against either MAO-A or -B [27]. In another study, it was confirmed that glycyrol
derived from Glycyrrhiza uralensis roots, which has an additional prenyl group at the C2
position and a methoxyl group at the C3 position of coumestrol, had an IC50 value of
29.5 µM against MAO-B (no activity below 40 µM for MAO-A) [28]. Unlike psoralidin
and glycyrol, in the present study, coumestrol exhibited potent and selective inhibitory
effect against MAO-A at low concentrations (SI = 0.02). Presumably, the functional groups
attached to C2 and C3 of psoralidin and glycerol form unnecessary interactions with other
amino acid residues of MAO-A, preventing the ligand from docking to the active site
of the enzyme, thereby lowering the inhibitory activity of the enzyme. However, an in
silico docking simulation analysis demonstrated that coumestrol was stably docked to the
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substrate-binding site by forming hydrophobic or hydrogen bonds with the active-site
residues (Tyr444, Tyr407, and Phe352) of MAO-A and its co-factor FAD. In addition, it
was confirmed that coumestrol interacts with Ile335, which represents the major structural
difference between MAO isoforms and affects the selectivity for MAO-A through a hy-
drophobic bond (pi–alkyl) [29,30]. Furthermore, the enzyme kinetics analysis according
to different coumestrol and substrate concentrations revealed that coumestrol acts as a
competitive inhibitor. The Lineweaver–Burk plot and its secondary plots revealed that
Vmax remained constant despite changes in substrate or coumestrol concentrations, which
corresponds to a typical competitive inhibition pattern. Therefore, when coumestrol is
consumed, there could be no side effects (ex. hypertension) linked to the ‘cheese effect’
caused by the consumption of nonselective MAOIs. However, an additional reversibility
assay is needed to confirm whether coumestrol is a reversible inhibitor. In addition, it is
needed to check the thermodynamic effect of the inhibitor on the enzyme through a scan of
the changes in thermal stability in the free enzyme and inhibitor–enzyme complex.

The thioflavin-T assay for inhibitory compounds (rutin, daidzein, genistein, and
coumestrol) against MAO was used to investigate their inhibitory effect against the self-
aggregation of Aβ, which is known to cause neuroinflammation and AD. Coumestrol
exhibited the most potent inhibitory effects with an IC50 of 37.40 µM. In a previous study,
it was reported that a nanomolar concentration of coumestrol exhibited neuroprotective
effects in mouse astrocytes by significantly reducing Aβ-induced cytotoxicity and inflam-
matory cytokine levels [31]. In addition, coumestrol also exhibited an in vitro inhibitory
effect against β-secretase, which affects the formation of Aβ [32]. Thus, the inhibitory
action of coumestrol against Aβ self-aggregation and β-secretase may cause the Aβ peptide
to remain in the soluble monomer state, thereby facilitating the clearance of the peptide
from the brain through normal physiologic mechanisms [33].

In this study, the potential of coumestrol as a CNS drug for the treatment of AD and
depression was confirmed via in vitro and in silico approaches, and its pharmacokinetic
properties were also predicted to support its potential. Coumestrol was predicted to
possess suitable lipophilicity as a neuronal drug and to have normal BBB permeability [21].
Moreover, we proved that the structure of coumestrol is suitable for its development into a
CNS drug based on the CNS MPO score, considering various common physicochemical
properties [22]. In several studies, Aβ1–40/1–42 reduced the expression of p-glycoprotein
in the BBB, thereby interrupting the clearance of Aβ in the brain [34,35]. Therefore, BBB
permeable coumestrol could be a potential therapeutic drug that acts by inhibiting Aβ

aggregation and improving Aβ clearance in the brain.

5. Conclusions

The phytoestrogen coumestrol, present in P. lobata leaves, acts as a selective and
competitive MAO-A inhibitor by competing with the substrate at the substrate-binding site
and stably binding to key residues and FAD in the active site of the enzyme. In addition,
coumestrol significantly reduced the self-aggregation of Aβ, which is known to be a major
cause of AD. Taken together, this study suggests that coumestrol may act as a food-derived
natural anti-depressant and anti-AD material that can treat or prevent diseases related to
MAO-A activation and Aβ self-aggregation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14183822/s1, Table S1: Kinetic parameters for Lineweaver-Burk
plot and its secondary plots. Table S2: Fluorescent signals obtained from self Aβ25–35 aggregation assay.
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