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Avian influenza is a serious zoonotic infectious disease with huge negative impacts on local poultry farming,
human health and social stability. Therefore, the design of new compounds against avian influenza has been
the focus in this field. In this study, computational methods were applied to investigate the compounds with
neuraminidase inhibitory activity. First, 2D-SAR model was built to recognize neuraminidase inhibitors (NAIs).
As a result, the accuracy of 10 cross-validation and independent tests is 96.84% and 98.97%, respectively. Then,
the Topomer CoMFA model was constructed to predict the inhibitory activity and analyses molecular fields.
Twomodels were obtained by changing the cuttingmethods. The secondmodel is employed to predict the activ-
ity (q2 = 0.784 and r2 = 0.982). Molecular docking was also used to further analyze the binding sites between
NAIs and neuraminidase from human and avian virus. As a result, it is found that same binding Total Score has
some differences, but the binding sites are basically the same. At last, some potential NAIs were screened and
some optimal opinions were taken. It is expected that our study can assist to study and develop new types of
NAIs.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
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1. Introduction

The avian influenza (AI) virus is a negatively-stranded RNA virus
that belongs to influenza virus A of the Orthomyxoviridae in the virus
classification. The main host of this virus is birds, and humans and
other mammals can also be infected. Influenza viruses can be divided
into different subtypes based on the antigenicity differences of hemag-
glutinin (HA) and neuraminidase (NA). Currently, 18 subtypes of HA
(H1-H18) and 11 NA (N1-N11) have been found in the world [1,2].
Among them, H5, H7 and H9 are the most harmful subtypes of birds,
and some strains of H5 and H7 subtypes can cause high incidence and
mortality of birds, which is called highly pathogenic avian influenza
(HPAI) virus.

The avian influenza outbreaks caused serious economic losses to the
poultry industry due to the death of birds, mass slaughter and
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restrictions on national and international trade [3]. 2014–2015, H5N2
HPAI broke out in the United States. By the end of November 2015,
the outbreak has led to about 47 million poultry euthanized or killed.
The economic losses were up to 3.3 billion U.S. dollars, and 18 trading
partners banning the import of U.S. poultry [4,5]. The outbreak of AI in
Miyazaki in Japan in 2010 forced public officials to ban tourists from
entering the disaster-stricken areas, then slaughter all the infected
birds, causing a loss of about 8.1 billion yen [6]. On January 27, 2007, a
commercial turkey farm reported an H5N1 outbreak in the United
Kingdom, leading to a mass culling of poultry in the farm [7].

NA, also known as sialidase, is a mushroom like homologous four
dimer glycoprotein on the surface of influenza viruses A and B [8], and
plays a key role in viral infection, replication, maturation and release
[9,10]. The studies of the crystal structure of NA show that there is an
active site on each subunit that binds to the inhibitor, and the residues
are highly conserved. The conserved residues in the active pocket of in-
fluenza virus A and B almost identical [11]. Therefore, neuraminidase
becomes an important target for the design of influenza drugs. Since
2010, neuraminidase inhibitors have become the only group of antiviral
drugs recommended by the World Health Organization for the treat-
ment and prevention of influenza A and B in humans [12].

Since computer-aided drug design can shorten the cycle of drug de-
velopment and reduce the risk, in recent years, the structure-based
mputational and Structural Biotechnology. This is an open access article under the CC BY-
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relationship (SAR) / quantitative structure activity relationship (QSAR)
model based on machine learning algorithms and molecular docking
technologies have been widely used in the field of chemical informatics
and bioinformatics [13–16]. Xue et al. [17] used heuristic algorithm
(HM) and support vector machine (SVM) to construct prediction
models to predict the binding affinity of 94 compounds to human
serum albumin, leading to a good correlation coefficient (r2) of 0.86
and 0.94 and root-mean-square errors of 0.212 and 0.134 albumin
drug binding affinity units, respectively. Sun et al. [18] constructed
four QSAR models (PLS, HQSAR, CoMSIA and Almond model) by using
32 N-substituted oseltamivir derivatives NAIs. The r2 and q2 of the opti-
malmodel are 0.950 and 0.846, respectively. Li et al. [19] used35 resver-
atrol derivativeswith NA inhibitory activity by NA activity assay to build
both CoMFA andCoMSIAmodel. In the CoMFAmodel, the q2 is 0.62with
a standard error of estimate of 0.093 and r2 is 0.973 on the training set.
All these researches show awell predicted effect of the compounds, but
they are generally focus on only one or two types of derivatives, such as
sialic acid analogs and resveratrol derivatives, and the currently known
NAIs also include cyclohexene derivatives, cyclopentane derivatives,
benzoic acid derivatives, pyrrolidine derivatives, flavonoid analogs,
and caffeic acid derivatives [20–22]. This will lead to a result that the
model is only suitable for these derivatives, and it is difficult to get a
good prediction effect once the structure of test compounds are differ-
ent from the training set for modelling.

In this study, for this problem we collected more molecules (197
NAIs and 185 non-inhibitors) and more classification of inhibitors to
broaden the application of theQSARmodel. Six differentmachine learn-
ing algorithms were taken to construct 2D-SAR models to identify
whether a compound is a NAI or not. Then partial least squares (PLS)
method was used to build Topomer CoMFA model by all the inhibitors
to predict theNA inhibitory activity. Molecular dockingwas also applied
to simulate and analysis the interaction between NA and inhibitors.
Finally, somepotential NAIswere designed and screened, thus some ad-
vice for design newNAIs can be obtained.We hope that all these results
will help pharmacologists to develop new drugs with higher NA inhib-
itory activity and cheaper price.

2. Materials and Methods

2.1. Data Preparation

In this work, 197 NAIs were collected from references [23–29] and
185 non-inhibitors were downloaded from the DUD database (http://
dud.docking.org). The inhibitor molecules include sialic acid analogs,
cyclopentane derivatives, benzoic acid derivatives, pyrrolidine deriva-
tives, and flavonoid analogues.

45 molecular descriptors calculated for each molecule were used to
construct a 2D-SAR model. First, three-dimensional structures of the
molecules were optimized by molecular mechanics as implemented
using the MM2 force field with the Polak–Ribiere algorithm until the
root-mean-square gradient became b0.1 kcal/mol. MM2 force field
[30] is one of the important force fields based on molecular mechanics
for the optimization of small organic molecules. It is designed to repro-
duce equilibrium geometry of small organic molecules very precisely.
This force field ignores the electronic motions in the molecular system
and calculates energy as a function of position of atoms. It can optimize
small molecules considering intra and intermolecular interaction ener-
gies considering of stretching of bonds, bending of angles, rotation
around single bond, steric and electrostatic interactions between pairs
of non-bonded atoms. And then, the descriptors were obtained for the
most stable conformation of each molecule by using the AM1 semiem-
pirical method at the restricted Hartree–Fock level with no configura-
tion interaction. The AM1 method [31] was selected because it is a
simple geometrical optimization that requires no complex mathemati-
cal calculation. Structural optimization using the AM1 method is rapid,
and electronic structures are generated easily [32]. The molecular
descriptors of all the compounds (382, including non-inhibitors) are
shown in the Supplement 1 and thewhole data set is randomly divided
into training set (285) and test set (97).

In the Topomer CoMFA model, the pIC50 is used to represent the bi-
ological activity of the inhibitors. For molecules represented by IC50

were transformed according to the formula pIC50= -logIC50. 197 inhib-
itor molecules were also divided into training set (149) and test
set (48).

2.2. 2D-SAR Model

2.2.1. CfsSubsetEval and Best First Algorithm
For a data set containing ?? vectors, there are 2?? possible combina-

tions of feature subset. The bestway to find anoptimal subset is to try all
the possible feature combinations. However, because of the large
amount of computation, this strategy is difficult to implement. The
CfsSubsetEval (CFS) method combined with Best-first (BF) search was
employed to search the optimal feature subset in this study. CFS
[33,34] is a heuristic feature-selection algorithm for evaluating the
worth of a subset of attributes by considering the individual predictive
ability of each feature along with the degree of redundancy between
them. Therefore, feature-class and feature-feature correlations of train-
ing set were first calculated by CFS and themerit was calculated accord-
ing to function (1):

Sn ¼ icfcffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iþ i i−1ð Þcff

p ð1Þ

where Sn is the heuristic “merit” of a feature subset S, cfc is the mean
feature-class correlation, and cff is the average feature-feature inter-
correlation.

Eq. (1) forms the core of CFS and imposes a ranking on feature sub-
sets in the search space of all possible feature subsets. Then, Best-first
search was applied to search the feature subset space. BF is a general
heuristic search algorithm which explores a graph by expanding the
most promising node chosen according to an evaluation function
[35,36]. BF search start using the follow steps:

1) Use greedy hill-climbing to enhance the backtracking facility to
search for the space of attribute subset.

2) Set the number of consecutive non-improved nodes that allow con-
trol the completion level of the backtracking done.

3) Best first may start with the empty set of attributes and search for-
ward, or start with the full set of attributes and search backward,
or start at any point and search in both directions.

The search will terminate if five consecutive fully expanded subsets
do not improve “merit” on the current best subset in order to avoid
exploring the entire feature subset.

2.2.2. Modelling Methods
Various different machine learning methods, such as Adaboost [37],

Bagging [38], J48, and some other methods were used for the training
set data to construct the classification prediction model by the 10-fold
cross-validation test. The test set is used to evaluate the prediction abil-
ity of the model.

2.2.3. Prediction Measurement
For measuring the success rates in this kind of binary classifications,

a set of four metrics are usually used in this part. They are: (1) overall
accuracy (Acc), (2) stability or Mathew's correlation coefficient (MCC),
(3) sensitivity (Sn), and (4) specificity (Sp). The SN, SP, ACC, and MCC

http://dud.docking.org
http://dud.docking.org


Table 1
The results of prediction model by 22 Parameter.

Classifier Training set Test set

SN (%) SP (%) ACC (%) MCC SN (%) SP (%) ACC (%) MCC

Naïve Bayes 79.59 97.83 88.42 0.78 82.00 97.87 89.69 0.81
SVM 80.95 97.83 89.12 0.80 82.00 93.62 87.63 0.76
KNN 96.60 97.10 96.84 0.94 100.00 97.87 98.97 0.98
AdaBoost 89.80 97.10 93.33 0.87 72.00 95.74 83.51 0.69
Bagging 92.52 95.65 94.04 0.88 94.00 89.36 91.75 0.84
C4.5 93.20 94.20 93.68 0.87 96.00 95.74 95.88 0.92

The significance of bold shows the best predicted result of the model.

Table 2
The modelling results of single-factor by IB1.

Molecular
descriptors

Description SN
(%)

SP
(%)

ACC
(%)

MCC

DPLL Dipole length 74.15 69.57 71.93 0.44
TIndx Molecular topological index 72.79 76.09 74.39 0.49
NRBo Number of rotatable bonds 65.99 60.14 63.16 0.26
Ovality Ovality 65.99 77.54 71.58 0.44
Rad Radius 78.91 65.94 72.63 0.45
TVCon Total valence connectivity 69.39 76.09 72.63 0.46
Sol Water solubility 62.59 80.43 71.23 0.44

41B. Niu et al. / Computational and Structural Biotechnology Journal 17 (2019) 39–48
can be represented as:

Sn ¼ 1−
Nþ

−

Nþ 0≤Sn≤1

Sp ¼ 1−
N−

þ
N− 0≤Sp≤1

Acc ¼ 1−
Nþ

− þ N−
þ

Nþ þ N− 0≤Acc≤1

MCC ¼
1−

Nþ
−

Nþ þ N−
þ

N−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ N−

þ−Nþ
−

Nþ 1þ Nþ
−−N−

þ
N−

s −1≤MCC≤1

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð2Þ

where N+ is the total number of the positive events investigated while
N −

+the number of positive events incorrectly predicted as the nega-
tive ones; N−the total number of the negative events investigated
while N +

−is the number of the negative events incorrectly predicted
as the positive ones.

2.3. Topomer CoMFA

Topomer CoMFA is a rapid fragment-based three-dimensional
quantitative structure-activity relationship (3D-QSAR) method
[39,40]. Unlike traditional CoMFA, the Topomer CoMFA does not require
subjective alignment of 3D ligand conformers and uses automatic align-
ment rules, so analysis is faster. The steps of the Topomer CoMFA are as
follows:

1) Split the 3D molecular structure into fragments containing common
features, open valence bonds or linkages.

2) Align each segment based on overlapping part to provide an abso-
lute orientation of any segment.

3) Calculate the steric and electrostatic fields of the top-aligned
segments.

4) Use PLS regression to build the model and the jackknife test to eval-
uate the model.

The r2 and q2 were used to evaluate the Topomer CoMFA models
[41]. Cutoff values of r2 and q2 are 0.8 and 0.5, respectively. The opti-
mum model was determined by the highest q2, and the validity of the
model depends on the r2 value [42].

2.4. Molecule Docking

Two different NA crystal structures were downloaded from the Pro-
tein Data Bank (PDB) database: N2 protein of H3N2 (A / Tanzania / 205 /
2010) (PDB ID: 4GZP) [43], H5N2 (A / Northern pintail / Washington /
40964 / 2014) (PDB ID: 5HUK) [44]. Proteins were prepared with pro-
tein structure preparation module of the SYBYL X-2.0. All ligands and
water molecules were removed, and hydrogen atoms were added. In
addition, charges were added to N- and C-terminal regions of the NAs
which became NH3+ and COO−. The Meanwhile, during ligand
converted, the two-dimensional (2D) representations of NAIswere con-
verted in three-dimensional (3D) ones and were minimized at physio-
logical pH 7.0 with hydrogen atoms and charge by using Powell
energy gradient method and the Gasteiger-Huckel system. At last, the
Surflex-Dock module was used for molecule docking [45].

3. Results and Discussion

3.1. 2D-SAR Model

For an unknown compound, it should first be determinedwhether it
is an inhibitor of neuraminidase by 2D-SAR prediction model. After
removing the factors with strong correlation, the remaining 22 param-
eters were used for variable screening, and 7 variables were finally
selected (see Table 2). The model was built using 6 common machine
learning methods, and the results are shown in Table 1. The ACC is
96.84% for cross-validation model and 98.97% for the independent test
set by using the k-nearest neighbors algorithm (KNN), indicating that
the model prediction effect was good. Through literature review, there
is little classification model used in the prediction of NAIs. Li et al. [46]
use SVM to establish four classification models to predict whether col-
lected compounds were active or weakly active. The ACC and the MCC
of the optimal model on the test set are 89.71% and 0.81 respectively.
There may be some difference between the structures of compounds
with active and weakly active, the difference between the collected in-
hibitor and non-inhibitor molecules is much larger, so the model has
higher ACC and MCC values in this study.

The single factormodellingmethodwas chosen to analyze the corre-
lation of the ACC and molecular descriptors. According to Table 1, the
IB1 method was selected to perform single factor modelling on the 7
molecular descriptors used for modelling. The results are shown in
Table 2 and the correlation between selected descriptors are also calcu-
lated in Table 3. The independent predictive value of any single factor is
low, but accumulating factors results in increased ACC. From the corre-
lation matrix, the correlation between most selected descriptors is low,
the correlation between TIndx and Rad is a little higher but not high
enough to delete one of them [13]. TIndx was obtained via mathemati-
cal operations from the corresponding molecular graphs of compounds
[47]. Though it is difficulty to encode stereo–chemical information, it
can be easily and rapidly computed for any constitutional formula yield-
ing good correlation abilities. The ACC and MCC of TIndx is the highest
among 7 single factor model indicate that this factor might be the
most important variable of the 2D-SAR model.

Sensitivity analysis was also performed on the selected 7 molecular
descriptors (see Fig. 1) to further analyze the relationship betweenmo-
lecular descriptors and inhibitory activity. The change trends of NRBo
and Ovality are similar to that between dipole length (DPLL) and inhib-
itory activity, activity increasing first and then decreasing as DPLL value
increases. The TIndex, Rad, TVCon and themolecular activities showed a
trend of increasing first, then decreasing and then increasing. Sol is
closely related to the chemical structure of the molecule. The presence
of hydrophilic groups such as hydroxyl, carboxyl, and amino groups
can greatly increase the water solubility of the molecule. At the same
time, the hydrophilic group easily interacts with the active pocket of
the NA protein through hydrogen bonding and inhibits NA activity, so



Table 3
Correlation matrix of the selected descriptors.

DPLL TIndx NRBo Ovality Rad TVCon Sol

DPLL 1
TIndx 0.194 1
NRBo 0.152 −0.115 1
Ovality −0.095 −0.412 −0.199 1
Rad 0.220 0.883 −0.167 −0.297 1
TVCon −0.133 −0.430 −0.077 0.167 −0.371 1
Sol −0.322 −0.671 0.098 0.225 −0.607 0.314 1

Table 4
The results of two Topomer CoMFA model.

Model 1 2

Segmentation
methods

q2 0.686 0.748
r2 0.854 0.982
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the inhibitory activity of compounds increases with the increasing
of Sol.

3.2. Topomer CoMFA

According to the 2D-SAR model, a compound can be quickly deter-
mined whether it is a NAI or not. To further predict its inhibitory activ-
ity, the 3D-QSAR model should be used. Topermer CoMFA model was
selected for quantitative analysis in various 3D-QSAR models. This
model has been widely used in the auxiliary design of avian influenza,
HIV, central nervous system diseases and other tumor-targeted thera-
peutic drugs [48–50]. In the Topomer CoMFA model, the activity of the
inhibitor molecules are related to the segmentation methods [51]. In
the modelling process, once the segmentation is completed, the input
Fig. 1. Sensitivity analysis results of selected molecular descriptor. A
structure will be standardized and generate Topomers with the same
substructure. As more identical substructures are identified in the test
set, the predictive power of the model is better. In this study, the com-
pound was divided into two segments, R1 and R2. The two Topomer
CoMFA model was obtained by changing the segmentation methods
by using training set. The q2 and r2 of the two model are shown in the
Table 4. For a reliable predictive model, the q2 should be N0.5 [52], the
Model 2 was statistically significant (q2 = 0.748 and r2 = 0.982). Li et.
al [19]. developed both CoMFA and CoMISA model by 35 NAIs in their
research, the q2 and r2 of CoMFA model is 0.722 and 0.996. Obviously,
the r2 of our model is lower than them, but our q2 is higher, and please
note that the NAIs in ourmodel is 197. It means that ourmodel not only
has a good predictive effect but also a wide range of applications.
: DPLL; B: TIndex; C: NRBo; D: Ovality; E: Red; F: TVCon; G: Sol.



Fig. 2. The plot of experimental pIC50 and predicted pIC50 of training and test set
compounds in Model 2.

43B. Niu et al. / Computational and Structural Biotechnology Journal 17 (2019) 39–48
But the model was less predictive of certain compounds (shown in
Fig. 2), such as Compound 80 and Compound 68, by using the indepen-
dent test set. As we all know, the verification of 3D-QSAR analysis
strongly depends on the selected training data set [26,53]. Compounds
80 and 68 are both benzoic acid derivatives (the molecular structure is
shown in the Fig. 3). In this experiment, there are 19 benzoic acid deriv-
atives, 13 in the training set and 6 in the test sets. Compared with other
compounds, the number is slightly less, and the structure difference be-
tween the collected benzoic acid derivatives is relatively large, which
may lead in poor prediction ability of the model for such kind of com-
pounds. The plot of experimental pIC50 and predicted pIC50 for all the
training set and independent test set molecules are show in Fig. 1 and
the value are show in Supplement 2.

The CoMFA model also provides recommendations for the redesign
NAIs of high selectivity, low toxicity, and high activity. In the electro-
static contour maps, the blue contours represent the positively charged
areas of the molecule that favored an increase in activity, while the red
contours stand for the negatively charges areas ofmolecule that favored
an increase in the activity. And in the steric field contours, the green
contours mean a bulky group here would be favorable for higher
COOH
COOH

O N H

NHCOCH3

COOH

NHO
N
H

NH2

CH2N

NHC(=NH)NH2

NHC

NHCCOCH3

COmpund 68 Compund 80

Compund 06

Fig. 3. The molecular structure of some inhibitors. The red and blu
inhibitory activity, while the yellow color means oppositely [54]. We
chose Compound 37 and 06 as a sample, the molecular structures
were shown in Fig. 3. Through the analysis of steric and electrostatic
field of CoMFA model, the yellow regions near the cutting place of R1
fragment in Compound 37(see Fig. 4-A and B) indicate that the intro-
duction of small groups can improve the inhibitory activity of the
compounds. The R2 fragment of Compound 06 is obvious smaller
than Compound 37, which could explain why the inhibitory activity of
Compound 06 is much higher (the pIC50 value of Compound 06 and
Compound 37 is 8.52 and 6.74, respectively). For the other compounds,
adding appropriate groups in the suitable position can improve the
biological activity of compounds.

3.3. Molecule Docking

To further analyze the interaction of a protein receptor with its
ligand and revealing their bindingmechanism, all the NA inhibitor mol-
eculeswere simulated dockingwithN2proteins of two different strains.
The 3D structure of NA was measured using the single-crystal X-ray
diffraction method by Yang et al. [55] and Zhu et al. [56]. Since NA is a
tetramer composed by four identical polypeptides [57], the active
pocket on only one of the subunits are selected for molecular docking
in this study (the active pocket are shown in Fig. 5). All the docking re-
sults of the inhibitors were summarized in Table 5 (for detailed results,
see Supplement 3). The docking score between NAIs and 4GZP were
better than 5HUK. We speculate that this may be related to the drug
were designed based on human and the gene fragments of A / Northern
pintail / Washington / 40,964/2014 strain were recombined [58,59]. For
some compounds, the pIC50 values are relatively close, but Total Score
has great difference, especially when docking with 5HUK. Taking Com-
pounds 06 and 09 as an example, the pIC50 value of Compound 6 and 9
are all equal to 8.52, but the Total Score of Compound 6 is 6.1 and Com-
pound 9 is just 4.13(see Supplement 3).When using SYBYL for molecu-
lar docking, only hydrogen bonds between drugs and proteins can be
identified. Therefore, we cannot exclude there are other interactions
between some compounds and NA, such as covalent bonds and electro-
static interactions.

Compounds 132 and 120 were taken as an example, the interaction
sites with 2 NA andmolecular structure were shown in Fig. 6. Although
the binding sites of the two compounds are different from the protein,
but the Total Score is very close, for Compounds 132 the Total Score
O

F

NH2

COOH

NHCOCH3

NHCOCH3

COOH

NH2O

H2

CH(CH2CH3)2
(=NH)NH2

Compund 09

Compund 37

e part means R1 fragment and R2 fragment in CoMFA model.



Fig. 4. The CoMFA Contour map of Compound 37. A and B are the steric and electrostatic fields of the R1 group; C and D are the steric and electrostatic fields of the R2 group.
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with 4GZP and 5HUK are 8.25 and 8.29, respectively. For Compounds
120, the action sites of 4GZP are Arg292, Arg371 and Tyr406, and Com-
pounds 120 can bind to 5HUK with Asp151, Asp152, Arg292 and
Arg371, the difference in one compound binding to 5HUK and 4GZP is
also very small. Summery all the binding site of inhibitors to NA
Fig. 5. The docking area of NA. Left: the whole 3D structure of NA. Right: one of the sub
proteins, the interaction sites were mainly Arg292, Arg371, Asp151,
Glu227, and Glu277, these sites were identical to those reported in
many research [43–45]. Hydrophilic groups including carboxyl and
amino groups tend to form hydrogen bonds with NA. The negative
group (such as –COOH) easily binds to the Arg292 and Arg371 site,
units of the NA. The green area indicates the residues around active site within 5 Å.



Table 5
The summary of molecule docking results by Total Score.

Type Number 4GZP 5HUK

Max
ST a

Mean ST The NO. of ST ≥ 5 Max
ST

Mean ST The NO. of ST ≥ 5

Cyclopentane derivatives 32 11.56 8.74 32 9.11 6.70 30
Benzoic acid derivatives 19 8.88 6.73 14 8.14 5.42 11
Sialic acid analogues 74 8.8 6.23 57 7.49 5.32 44
Pyrrolidine derivatives 37 8.61 6.82 37 7.98 5.48 25
Flavonoid analogues 35 7.79 6.53 35 7.57 5.59 26
Total 197 11.56 6.70 175 9.11 5.63 136

a ST represent Total Score.

COOH

HN

O
OHHN

NH2HN

A D

HN

C(CH3)2

NHCOCH3

COOH

NH

D

C

E

F

Fig. 6.Docking results of NAIs (Compound 132 and 120) and 2 different NA. A andD: the structure of Compound 132 and 120; B and E: Views of the binding site of Compound 132 and 120
with 4GZP; C and F: Views of the binding site of Compound 132 and 120 with 5HUK. The yellow broken line indicates a hydrogen bond.
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and the positive group facilitates (such as -NH2, -CN3H4) binding to the
Asp151 site [46,47]. This result is basically consistent with sensitivity
analysis. The larger the Sol, the stronger the NAI activity is. Through
molecular docking, it can provide some ideas for the future use of
NAIs especially for poultry and promote the development of new veter-
inary drugs.



Table 6
The predicted pIC50 of selected compounds.

NO. Pred pIC50 NO. Pred pIC50 NO. Pred pIC50

M1 5.35 M11 4.45 M21 4.36
M2 5.39 M12 4.25 M22 3.86
M3 5.09 M13 5.47 M23 5.44
M4 4.34 M14 3.42 M24 4.68
M5 4.78 M15 4.25 M25 4.88
M6 4.55 M16 4.41 M26 4.13
M7 3.35 M17 4.25 M27 4.24
M8 4.25 M18 4.71 M28 4.53
M9 4.39 M19 4.95 M29 4.11
M10 4.17 M20 4.92 M30 4.35

The significance of bold shows the best NA inhibitory activity in the selected ones.
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3.4. Design of Potential NAIs

The use of herbal medicine has been accepted in many countries, in-
cluding regions with improved healthcare systems [60,61]. Most herbal
Fig. 7. The hydrophobicity surface of 5HUK with Compound M13
medicinal herbs are inexpensive and have been shown an anti-
influenza activity in long-term practice [62,63]. Herbs are rich in biolog-
ically active compounds, including phenols, flavonoids, flavonoids, and
flavanols. Some flavonoids were designed based on the results of
CoMFA model, and 2D-SAR model were applied to judge whether they
were NAIs. All the compounds are shown in Supplement 4. Then the
NA inhibitory activity of the compounds tested as NAIs were predicted
by Topmer CoMFA model. The predicted pIC50 of these potential NAIs
are shown in Table 6. Thirty compounds show a positive result though
2D-SAR model and some of them seems to have a good NA inhibitory
activity (if the pIC50 N 5, means IC50 may lower than 10−5 mol/L). The
pIC50 of Compounds M13 is 5.47 shows that this compound may have
a goodNA inhibitory activity. Throughmolecule docking, the interaction
sites of M13 and 5HUK were shown in Fig. 7, the docking sites are al-
most the same as known NAIs. The hydroxyl of Compound M13 can in-
teract with Trp178 residues, and the oxygen atoms on the ring can also
interact with Arg118 and Arg371 through hydrogen bonds (green line
in Fig. 7). The aromatic nucleus on the ligand can also interact with
(Left) and interaction site Compound M13 and 5HUK (Right).
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the positively (Arg151 andArg292) and negatively charged amino acids
(Glu277) residues by electrostatic interaction (orange line in Fig. 7). The
CoMFA Contour map of Compound M13 (shown in Supplement 5) can
also provide some recommendations to redesign the compound with
higher inhibitory activity. We believe that these results will help phar-
macologists to develop and design new drugs that are much cheaper
and with highly effective against influenza. This will make a positive
contribution to more patients to overcome this disease, even in less de-
veloped areas.

4. Conclusions

In this study, 2D-SAR and 3D-QSAR prediction models were
constructed using the collected inhibitor molecules (n = 197) and
non-inhibitor molecules (n = 185). First, NAIs and non-inhibitors
were classified by establishing a 2D-SAR model. Ten cross-validation
tests have an accuracy of 96.84%, and independent tests have an accu-
racy of 98.97%. The Topomer CoMFA model was then built using only
NAIs. Two models were obtained by changing the segmentation
methods. Model 2 is selected with higher q2 and r2 values, the q2 is
0.784 and the r2 is 0.982. Molecular dockingwas also used to further an-
alyze the binding sites between the NAIs with NA from two different
host. The results showed that the Total Score had some differences be-
tween human and avian virus, but the binding sites are basically the
same. At last, some potential NAIs were screened by 2D-SAR model,
and the NA inhibitory activity were predicted by Topmer CoMFA
model. Compound M13 shows a good NA inhibitory activity and the
predicted pIC50 is 5.47. In conclusion, we hope that our work will help
to study drug and drug activity against avian influenza.
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