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Introduction
DNA copy number change is an important form of structural 
variation in human genomes. Variations in copy number of ger-
mline cells are commonly referred to as copy number variations 
(CNVs), whereas changes in copy number arising from tumor 
tissue are commonly referred to as copy number alterations 
(CNAs).

Genomic instability is known to be a fundamental trait in 
the development of tumors, and most human tumors exhibit 
this instability in structural and numerical alterations: dele-
tions, amplifications, inversions, or even losses and gains of 
whole chromosomes or chromosome arms. The chromosome 
instability indicated by these CNAs in the DNA has been 
associated with various events in the development or severity 
of tumors.

These DNA copy number changes can be measured by vari-
ous technologies—including microarray-based comparative 
genome hybridization (arrayCGH) or genotyping arrays, and, 
more recently, high-resolution next-generation sequencing 
(NGS).1

To mathematically and quantitatively describe these DNA 
CNAs, their genomic positions and ranges are first located. 
Each range, referred to as a segment, reflects a genomic region 
that has a similar genomic alteration profile. Each segment is 
assigned a numeric value that reflects the genomic instability in 

that segment. These segments are always unique to each 
patient. Such algorithms are referred to as segmentation 
algorithms.

Various methods have been proposed for copy number change 
detection. For CNV/CNA detection in a single profile, repre-
sentative methods include Gain and Loss Analysis of DNA,2 
Circular Binary Segmentation (CBS),3 and Hidden Markov 
Model (HMM).4 Consensus CNV/CNA detection methods can 
be categorized into 1-stage and 2-stage approaches. A 2-stage 
approach, such as Genomic Identification of Significant Targets 
in Cancer (GISTIC),5 involves a step of copy number change 
detection in individual profiles and a subsequent statistical analy-
sis of commonly altered DNA regions. A 1-stage approach, such 
as the Bayesian Segmentation Approach (BSA),6 can directly 
detect common CNV/CNA patterns shared by multiple signal 
profiles.

Bioconductor is an open-source, open-development reposi-
tory of software packages built using the R programming lan-
guage.7 Bioconductor has several copy number segmentation 
algorithms including copynumber,8 fastseg,9 Vega,10 SMAP,11 
and biomvRCNS.12 There are several copy number segmenta-
tion algorithms outside of Bioconductor, including Fused 
Margin Regression (FMR)13 and CBS.14

One of the challenges with segmentation algorithms is that 
the segments are unique to each patient, which complicates a 
global analysis of the segment data in a group of patients.
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We have created a Bioconductor package—CINdex—that 
can perform a global analysis of the segment data in a group of 
patients. The CINdex Bioconductor package accepts the seg-
ment information from any segmentation algorithm. It calcu-
lates a novel measure of genomic instability across a 
chromosome (referred to as Chromosome-CIN, Standard-
CIN, or Regular-CIN) for a global view of genomic instability 
and across cytobands (referred to as Cytobands CIN) for a 
higher resolution of genomic instability.

The advantage of the CINdex package is that the CIN val-
ues are calculated at chromosome level and cytoband level, 
which are standard regions across the entire human genome. It 
hence allows comparison of chromosome instability values 
between several groups for patients (control vs case), which is a 
typical use case in translational research. In addition, the pack-
age also allows further downstream systems biology analysis by 
connecting the differentially changed cytobands or chromo-
somes to genes and pathways.

A simplified version of the CINdex algorithm that shows 
overall instability (ie, both losses and gains represented as an 
instability without alluding to a loss or gain) has been inte-
grated into The Georgetown Database of Cancer (G-DOC) 
Web portal and made available for users for free as part of its 
toolkit at https://gdoc.georgetown.edu.15,16

Methods
The framework for the CIN analysis pipeline is shown in 
Figure 1A. The DNA copy number data are first obtained from 
one of many sources such as NCBI’s (National Center for 

Biotechnology Information) Gene Expression Omnibus, The 
Cancer Genome Atlas, or G-DOC, or user’s own data.

In this article, we demonstrate the working of the CINdex 
Bioconductor package using a portion of the data set from the 
work by Madhavan et al17 consisting of 10 samples (5 relapse 
and 5 relapse-free). This data set is also available in G-DOC.15,16 
This allowed us to reproduce the results from the paper and 
hence serve as a validation of the working of the package. This 
use case has been made into a tutorial and is available for down-
load (as a vignette, Supplementary File 1) along with the pack-
age at http://bioconductor.org/packages/CINdex/. In addition 
to this tutorial, the package also includes another detailed tuto-
rial on how to prepare input data for the package, along with 
downstream biological interpretation. The steps in brief on how 
to run an end-to-end analysis are shown in Figure 1B.

The input to CINdex package is segmentation data. It can 
accept segment data from any segmentation algorithm.

After the raw copy number data were obtained, we first 
applied a segmentation algorithm to obtain the segments and 
its values for each sample. For this use case, we used the FMR13 
as the segmentation method. We chose FMR as it had several 
advantages compared with other detection methods: (a) FMR is 
a unified computational model for detecting both copy number 
changes in a single profile and consensus copy number changes 
in population data; (b) FMR has higher sensitivity for low sig-
nal to noise ratio signal profiles compared with probabilistic 
model-based methods (eg, HMM) and thus would be more 
effective in detecting complex CNA patterns in tumor genomes; 
(c) FMR generates more accurate estimates of breakpoint loci 

Figure 1. (A) The framework of the chromosome instability (CIN) analysis pipeline. (B) An end-to-end analysis using the CINdex package.
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compared with other regression-based methods18-20; and (d) 
FMR is empowered by a modified path algorithm19 and hence 
is computationally efficient for detecting CNVs/CNAs in high-
density microarray data.

For the purposes of reproducibility, efficiency, and scalabil-
ity, input data files for the CINdex package were converted into 
standard compressed data structures. One such format is the 
GRanges class object from the GenomicRanges Bioconductor 
package.21 The segment data, which can be large in size, are 
converted into this GRanges compressed data structure. 
Similarly, the platform annotation file and the genome refer-
ence files are also saved as GRanges objects. Detailed notes on 
how to convert input data into the GRanges object is provided 
along with the CINdex Bioconductor package in the file “How 
to prepare input data.pdf ” (also as Supplementary File 2).

We would like to note that for this example use case, 
genome reference hg18 was used. This is because the analysis 
and results of the colon cancer data set17 were performed 
using the hg18 reference genome. Our intent is to demon-
strate the use of the CINdex package using the same data set 
as in the work by Madhavan et al17 and reproduce the results 
from their work,17 serving as a validation of our package. 
CINdex could be used with any reference version, as long as 
the same genome reference version used for segmentation is 
used for CINdex as well.

Once the input files (the segment data, the platform 
annotation file, and the genome reference file) were con-
verted into the GRanges object, it was ready for the CINdex 
package. The CINdex package then calculated the chromo-
some instability index (CIN) values at the chromosome and 
cytoband levels.

Chromosome instability index is calculated by the following 
steps:

Given

•• the signal profile of chromosome i,
•• the segments generated by any segmentation method,

|| t gain  is the threshold for gain,
|| tloss  is the threshold for losses.

Steps are as follows:

•• Make gain/loss calls on the segments. A segment with mean 
signal intensity greater than t gain  is a gain, whereas 
smaller than tloss  is a loss; the biologically experiential 
values of t gain  and tloss  are 2.5 and 1.5, respectively22;

•• For each gain segment, its amplitude is the mean signal 
intensity;

•• Get the maximum gain amplitude A  across all 
samples;

•• For each loss segment, convert its amplitude a  to the 
new value ′a  based on the relationship given by 
( ) / ( ) / ( )t a a a t A tloss gain gain− = ′ − − ; the copy number of 

a loss segment is stretched from the range tloss ~ 0  to the 
range t Again ~ .

•• Compute the chromosome-specific instability index 
CIN = ( ) /i kk j

a a N∑ ∑+ ′j  for each sample, where N  
is the number of probes (SNPs [single-nucleotide poly-
morphisms]) on the chromosome.

The same calculation is also done at the cytoband level to 
get cytoband-specific instability index.

The CIN values are calculated for several gain and loss 
thresholds. These thresholds define the cutoff values for a CIN 
value to be defined a gain or loss. By default, the following gain 
thresholds of 2.5, 2.25, and 2.10 and loss thresholds of 1.5, 
1.75, and 1.90 are used to optimize visualization quality. Users 
can also input one or more of their own gain and loss thresh-
olds. For each of these threshold settings, the algorithm calcu-
lates CIN values for gains, losses, and a combination of gains 
and losses (referred to as sum or overall CIN). For each thresh-
old setting, CIN is also calculated with normalization (using a 
scaling factor based on median) and without normalization (no 
scaling factor used).

Using this algorithm, a CIN value was generated for each 
sample and for every chromosome and then collated into a 
matrix. Similarly, for each sample, the CIN values were gener-
ated for each cytoband and collated into another matrix. Hence, 
for every threshold setting, a chromosome-CIN matrix and a 
cytoband-CIN matrix are generated for gains, loss, and overall 
CIN. Example matrices for Chromosome-CIN and Cytoband-
CIN are shown in Figure 2A and B, respectively.

Once the CIN matrices are obtained, they can be visualized 
in the form of heatmaps. The purpose of generating CIN val-
ues for multiple thresholds is to allow the user to pick the 
appropriate gain and loss threshold/setting. The appropriate 
threshold is the one that shows the best contrast between 2 
groups of interest.

Once the appropriate gain and loss thresholds were cho-
sen, a T test was performed on the CIN values to compare the 
case (relapse) and control (relapse-free) groups. This pro-
duced a list of differentially changed cytobands (and/or chro-
mosomes). It was interesting to see which genes belong to 
these significant cytoband regions. In the last step of the 
workflow, the gene symbols obtained in the previous step 
were used to perform pathway enrichment using the Reactome 
database within Bioconductor (using the ReactomePA 
Bioconductor package).23

Our CINdex Bioconductor package has built-in functions 
that allow users to perform each of the abovementioned steps. 
This hence provides the user the ability to perform an end-to-
end analysis, starting from DNA copy number data and all the 
way up to genes and pathways.

The CINdex algorithm is also available for omics data anal-
ysis inside the G-DOC platform.15,16 A simplified version of 
the algorithm has been implemented in G-DOC for easy 

http://journals.sagepub.com/doi/suppl/10.1177/1176935117746637
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usability and interpretation. This simplified version displays 
only overall CIN (sum of losses and gains), meaning both 
losses and gains are displayed as an “instability” without dif-
ferentiating between a loss and a gain.

Results
In this article, we demonstrate an analysis of copy number data 
with CINdex Bioconductor package using a portion of the data 
set from Madhavan et al17 consisting of 10 samples (5 relapse 
and 5 relapse-free).

Once the input files were converted into the GRanges 
object, it was ready for the CINdex package. Detailed notes 
on how to convert input data into the GRanges object are 
provided as Supplementary File 2. The CINdex algorithm 
calculated the CIN values at the chromosome and cytoband 
levels, and chromosome-CIN and cytoband-CIN matrices 
were generated.

Once the CIN matrices were obtained, they were visualized 
in the form of heatmaps. Figure 3 shows chromosome-CIN 
heatmaps generated for 3 gain and loss threshold combinations 
(with unnormalized setting): gain threshold of 2.1 and loss 
threshold of 1.9, gain threshold of 2.25 and loss threshold of 
1.75, and gain threshold of 2.5 and loss threshold of 1.5. On 
comparing the 3 images, it was clear that the image from gain-
loss threshold setting of 2.1 and 1.9 (Figure 3, top) was too 
dense, and the image from gain-loss threshold setting of 2.5 
and 1.5 (Figure 3, bottom) was too sparse. This indicated that 
the setting with gain threshold of 2.25 and a loss threshold of 
1.75 (Figure 3, middle) showed the ideal contrast between 2 

groups of interest—relapse and relapse-free groups. As a future 
feature, we plan to automate the selection of the best threshold 
setting.

Once the appropriate gain and loss thresholds were cho-
sen, the CIN values can be used for downstream analysis and 
interpretation. As an example, the cytoband-level heatmap 
for chromosome 20 obtained from this data set analysis is 
shown in Figure 4. It was obtained using a gain threshold of 
2.25 and a loss threshold of 1.75 with unnormalized setting. 
The nonrelapse group has more blue-colored bands compared 
with the relapse group. The blue color indicates deletions 
(losses).

A T test was performed on the CIN values to compare the 
case (relapse) and control (relapse-free) groups. Figure 5 is a 
heatmap showing statistically significant differentially changed 
cytobands between 2 groups (relapse and relapse-free). Among 
the top results are regions 4q, 16q, and 20q.

Once we got the list of differentially changed cytobands, it 
was interesting to see which genes belong to these significant 
cytoband regions. This was performed using a built-in function 
in our package that allows to find genes present in the cyto-
band regions (Supplementary File 3).

In the last step of the workflow, the gene symbols obtained 
in the previous step were used to perform pathway enrichment 
using the Reactome database within Bioconductor.23 Figure 6 
shows the top pathway results of pathway enrichment in the 
form of a bar plot. The enrichment analysis of cytobands 
affected by chromosome instability indicated enrichment of 
specific pathways and biological processes related to immune 

Figure 2. Examples of (A) chromosome-CIN matrix—samples are columns and chromosomes are rows and (B) cytoband-CIN matrix—samples are 

columns and cytobands are rows. The red-colored matrix contains only amplifications, the blue-colored matrix shows only deletions, and the yellow-

colored matrix contains the sum of both (also referred to as “overall CIN”). CIN indicates chromosome instability.

http://journals.sagepub.com/doi/suppl/10.1177/1176935117746637
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response. These results are consistent with findings obtained in 
the work by Madhavan et al17 using multi-omics data including 
gene expression, exome deep sequencing, metabolomics, and 
microRNA.

All these steps were done using the CINdex package. This 
shows that this package allows assessing the impacts of CNAs 
on various biological events or clinical outcomes by studying the 
association of CIN indices with those events. Hence, the CINdex 
package enables a complete end-to-end analysis on a data set 
without having to digress and use another software/tool.

Discussion
CINdex package was successfully applied to analysis of DNA 
copy number data in colorectal cancer as a part of multi-omics 
integrative study providing new insights for predictive 

biomarkers of relapse for stage II colorectal cancer,17 as well as 
in multiple studies with a simplified version as part of the 
G-DOC platform.

The example shown in this use case was done on somatic 
structural alterations in tumor studies. It demonstrates the 
comprehensive systems biology application of the CINdex 
package—by connecting the differently changed cytobands to 
genes and pathways, it allows users to gain insights on the 
development or the severity of tumors in terms of clinical 
outcome.

In Figure 4, we can see more genomic instability in the 
relapse-free group compared with relapse groups. Higher risk 
groups (such as relapse) are known to have frequent fractional 
CNAs, whereas whole chromosomal arm CNAs are seen more 
in lower risk groups.24 It is known that frequent fractional 

Figure 3. Chromosome-CIN heatmaps for gain and loss thresholds: 2.1 and 1.9 (top), 2.25 and 1.75 (middle), and 2.5 and 1.5 (bottom) showing 

amplifications (gains), deletions (losses), and overall (sum) CIN. CIN indicates chromosome instability.
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aberrations in DNA cause mutations and regulatory changes.25 
This is consistent with our findings where we see almost the 
entire chromosome lost in the relapse-free group compared 
with the relapse group.

The T test results list regions 4q, 16q, and 20q as the top 
significant differently changed cytoband regions. Chromosome 
losses in 4q region have been previously associated with local 
recurrence in colon cancers after surgical resection.26,27 The 
16q region is the second most frequent target of loss of hete-
rozygosity (LOH) in breast cancer.28 High frequency of LOH 
has been associated with metastasis.29,30 The 16q region is also 
frequently methylated in lymphomas31—the CpG island 
methylator phenotype pathway, associated with methylation 
changes, is one of the known pathways of genomic instability 
in colon cancer.30

In the heatmap shown in Figure 5, we see cytoband region 
20q13.12 listed among the top statistically significant 
regions. This region is known to contain several oncogenes 
including MMP9, MYBL2, and UBE2C. MMP9 is known 
to facilitate metastasis by promoting matrix degradation and 

Figure 4. Cytoband-CIN heatmap for chromosome 20. Blue color 

indicates genomic instability (losses). Black color indicates no genomic 

instability. CIN indicates chromosome instability.

Figure 5. Heatmap showing statistically significant differentially changed cytobands between 2 groups.
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cell migration, MYBL2 is a transcription factor involved in 
cell cycle progression and antiapoptosis, and UBE2C is over-
expressed in many different types of cancers and is associated 
cell cycle progression and tumor differentiation.23

A simplified version of the CINdex algorithm has been 
implemented inside the G-DOC platform. The G-DOC 
system currently contains 8 studies (data sets) with copy 
number data that can be analyzed in conjunction with clini-
cal or other omics data types. The main advantage of the 
CINdex algorithm is that it enables comparison chromo-
some instability values between several groups for patients 
(control vs case), a typical use case in translational research. 
Supplementary File 4 shows several of these comparisons 
performed using the CINdex algorithm inside the G-DOC 
platform.

The first figure in Supplementary File 4 (Figure S4A) shows 
a CIN heatmap from the NCI REMBARNDT study in 
G-DOC16 comparing copy number data between 2 glioma 
types—astrocytoma (low-grade glioma) and glioblastoma 
(GBM, high-grade glioma). In the image, we see a higher level 
of chromosome instability in the astrocytoma group in the 8q 
region (indicated by the bright red colors). Aberrations in the 8q 
region in patients with astrocytoma are known in literature.32,33 
In addition to 8q region, 7p and 10q regions were also unstable 
in GBM compared with astrocytoma. The 7p and 10q regions 
are known to be highly amplified in patients with GBM.34–37

The second figure in Supplementary File 4 (Figure S4B) 
shows a screenshot of T test results performed using the 
CRC_BROSENS_2010_01 study in G-DOC. The T test 

compared Cytoband-CIN data from patients who relapsed 
with patients who were relapse free (Disease-Free Survival = 
Event vs Disease-Free Survival = Censoring). The results 
showed that the most differentially changed cytoband 
regions are in chromosomes 3, 4, and 18. From the T test 
results, we can see that the most differentially changed cyto-
band regions include regions 3p, 4q, and 18q. Chromosome 
instability 4q has been previously associated with local recur-
rence in colon cancer38; deletions in chromosome 3p have 
been associated with distant metastasis and poor survival in 
colorectal cancer.39 The T test results include cytoband 
region 18q.21.2 among its top significant results, which con-
tains the DCC gene where frequent LOH events in colon 
cancer occur.40

The results of the CINdex algorithm applied using both 
Bioconductor and G-DOC are consistent with previously 
reported biological findings, which clearly demonstrates a util-
ity of the CINdex package for fast and effective exploration of 
DNA copy number data.

The source code, along with an end-to-end tutorial, and 
example data are freely available in Bioconductor at http://bio-
conductor.org/packages/CINdex/. Supplementary File 5 shows 
a screenshot of the download statistics of the CINdex 
Bioconductor package as of May 30, 2017, showing more than 
1600 downloads in total since its release.

Conclusions
CINdex package can analyze experimental CNV and CNA 
data generated by Affymetrix SNP 6.0 arrays or NGS 

Figure 6. Pathway enrichment using Reactome database. The colors in the bars represent P values.
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technologies on studies with germline, structural, or somatic 
variations. It allows users to perform end-to-end analysis to 
assess the impacts of CNAs on various biological events or 
clinical outcomes.
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