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The capacity to produce and understand written language is a uniquely human skill that

exists on a continuum, and foundational to other facets of human cognition. Multivariate

classifiers based on support vector machines (SVM) have provided much insight into

the networks underlying reading skill beyond what traditional univariate methods can

tell us. Shallow models like SVM require large amounts of data, and this problem is

compounded when functional connections, which increase exponentially with network

size, are predictors of interest. Data reduction using independent component analyses

(ICA) mitigates this problem, but conventionally assumes linear relationships. Multilayer

feedforward networks, in contrast, readily find optimal low-dimensional encodings of

complex patterns that include complex nonlinear or conditional relationships. Samples

of poor and highly-skilled young readers were selected from two open access data sets

using rhyming and mental multiplication tasks, respectively. Functional connectivity was

computed for the rhyming task within a functionally-defined reading network and used

to train multilayer feedforward classifier models to simultaneously associate functional

connectivity patterns with lexicality (word vs. pseudoword) and reading skill (poor vs.

highly-skilled). Classifiers identified validation set lexicality with significantly better than

chance accuracy, and reading skill with near-ceiling accuracy. Critically, a series of

replications used pre-trained rhyming-task models to classify reading skill from mental

multiplication task participants’ connectivity with near-ceiling accuracy. The novel deep

learning approach presented here provides the clearest demonstration to date that

reading-skill dependent functional connectivity within the reading network influences

brain processing dynamics across cognitive domains.
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McNorgan Persistent Connectivity

THE CONNECTIVITY FINGERPRINTS OF
HIGHLY-SKILLED AND DISORDERED
READING PERSIST ACROSS COGNITIVE
DOMAINS

Proficient reading is a prerequisite for formal instruction and
independently navigating the world, but is a skill that exists
on a continuum. Developmental dyslexia is a learning disorder
characterized by a difficulty in reading in the absence of any
other pronounced cognitive difficulty, and is the most commonly
diagnosed learning disorder (Shaywitz and Shaywitz, 2005).
By definition, children with specific reading disability possess
normal-range intelligence, though reading difficulty is often
comorbid with dyscalculia. The factors underlying learning
difficulty in both domains is not well understood, but it has
been proposed that it may be attributable to a shared reliance
on core cognitive processes (Archibald et al., 2013). At the other
end of the continuum of reading skill, precocious reading is
associated with a modest advantage in other language abilities
in later childhood (Mills and Jackson, 1990), but it has not been
shown to confer a general cognitive advantage in other domains.

Reading maps visual to phonological representations, and
is thus fundamentally an audiovisual process. An extensive
literature has explored neural processing in dyslexics and
typically developing readers, and points to a model in which
reading difficulty is attributable to disordered audiovisual
integration of orthographic and phonological representations
(Richlan, 2019). Relative to controls, dyslexics under-activate
the left temporo-parietal cortex (Temple et al., 2001), and show
delayed specialization in the ventral visual object processing
stream for visual word processing (van der Mark et al., 2009).
Under-activation in this network of regions has been argued
to reflect failure of audiovisual integration processing (Blau
et al., 2010; Randazzo et al., 2019) and failure to engage
lexical-semantic representations (Richlan et al., 2009). Relative
to controls, dyslexics over-activate the right occipitotemporal
cortex and anterior inferior temporal gyrus, which has been
suggested to reflect compensatory activation (Shaywitz and
Shaywitz, 2005). This set of anatomically distributed brain
regions supporting orthographic, phonological and semantic
processing of written language is referred to as the reading
network (Perfetti et al., 2007; Perfetti and Tan, 2013; Morken
et al., 2017). All contemporary brain-based models of fluent
and disordered reading assume that reading entails interactions
within this network of more-or-less functionally-specialized
brain regions (e.g., Dehaene et al., 2010; Price and Devlin, 2011).

If patterns of regional activation within this network are
the dynamic product of connectivity among these regions,
connectivity differences between skilled and poor readers must
underlie the group differences described above. Dyslexic readers
show weaker reading task-based functional connectivity between
the visual word form area and other regions within the left
hemisphere reading network, but greater connectivity between
the visual word form area and left middle temporal and
middle occipital gyrus (van der Mark et al., 2011). Left angular
gyrus has also been implicated as a critical hub, with reduced

task-based functional connectivity with other reading network
nodes for dyslexics, but increased connectivity to posterior right
hemisphere, possibly attributable to compensatory recruitment
during phonological tasks (Pugh et al., 2000).

Multivariate Studies of Normal and
Disordered Reading
All brain-based reading models agree that fluent reading
entails cooperation among regions within the reading network
that may be only conditionally involved (e.g., when the task
involves phonological assembly, as in Pugh et al., 2000).
Nonetheless, models are largely informed by a literature that
relies on univariate general linear model analyses (GLMA),
which are limited in two important respects: First, they assume
linear relationships between observed and modeled values,
requiring multiple independent hypothesis tests to identify
conditionally-involved regions or connections. Second, because
univariate analyses examine only local relationships, they cannot
incorporate informative contextual information from other
sources. To address the second concern, multivariate analyses
have been increasingly important for informing the literature.

Multivariate pattern analyses (MVPA) commonly use
machine learning classifiers to decode patterns of activity among
voxel populations, revealing regional categorical sensitivity that
may not manifest as category-dependent mean differences in
response amplitude in a conventional GLMA. Models of normal
and disordered reading have been refined by MVPA in studies,
showing, for example, that impaired access to phonological
representations, rather than distorted representations, may
underlie reading difficulty (Boets et al., 2013; Norton et al.,
2015). MVPA have also shown that regional gray matter volume
patterns in posterior occipito-temporal and temporal-parietal
cortices differ between dyslexics, typical readers and those with
specific reading comprehension deficit (Bailey et al., 2016). The
enhanced sensitivity of MVPA was leveraged in a whole-brain
fMRI analysis of longitudinal data using recursive feature
elimination to find that dyslexics who made gains in reading skill
over a 2.5 year period could be discriminated from those who
did not on the basis of activity among voxels in right IFG, left
prefrontal cortex and left temporoparietal cortex (Hoeft et al.,
2011).

Multivariate approaches have also been applied at the
network-level. Wolf et al. (2010) used a multivariate independent
components analysis (ICA) to examine network-level functional
connectivity differences in older adolescents using a working
memory task, arguing ICA-based methods are better-able to
detect distributed network components (Esposito et al., 2006).
Their analysis found that the working memory delay period
was associated with increased connectivity for dyslexics within
a left-lateralized frontoparietal network, and mixed differences
in a second bilateral frontoparietal network, both including
regions implicated in phonological processing, which they argue
may reflect increased reliance on working memory in dyslexics
during phonological processing. A later ICA network analysis
found that improvements in word reading and comprehension
following reading remediation were correlated with connectivity
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McNorgan Persistent Connectivity

changes in functional networks supporting visual attention and
executive control (Horowitz-Kraus et al., 2015). Multivariate
studies have thus refined a model of skilled and disordered
reading as dependent on interactions among multiple cognitive
systems, and not reliant on a single system.

The univariate and multivariate approaches described above
rely on the general linear model to test relationships between
observed and predicted values for one or more variables.
However, linear models may be good approximations only within
certain ranges, as all biological systems exhibit nonlinearity
(e.g., saturation) along some range of inputs (Korenberg and
Hunter, 1990). Conditional relationships are an important
class of nonlinear relationships, and though they can often
be linearly modeled—for example by partitioning a continuum
into groups and demonstrating a nonremovable interaction—
doing so requires an experiment designed around testing
the interaction.

Multilayer Feedforward Classifiers
Support vector machines are the most commonly applied
machine learning application in MVPA (Mokhtari and Hossein-
Zadeh, 2013). These kernel-based approaches can use nonlinear
kernels to form classification boundaries, but require advanced
knowledge of a suitable nonlinear kernel function. Themultilayer
feedforward classifier is an alternativemachine learning approach
that uses the backpropagation of error algorithm (Rumelhart
et al., 1985) to discover an optimal nonlinear classification
function. Though these models are arguably more difficult to
interpret than are their simpler counterparts (Norman et al.,
2006), they have several advantages: First, they are extremely
powerful, and with the development of training algorithms
and architectures that mitigate concerns associated with high-
dimensional data (Poggio et al., 2017), variations of these
networks have been foundational to the recent Deep Learning
renaissance in machine learning. Second, they are arbitrarily
flexible, with the capacity to accommodate multiple outputs.
This feature allows these networks to find a solution space that
best fits the training data with respect to multiple problem
domains. McNorgan et al. (2020b) applied such a network to the
classification of imagined objects from fMRI data, simultaneously
learning to distinguish among object categories and identifying
the functional networks supporting category processing. Because
the model use shared parameters to solve each problem, the
solution in one problem domain (e.g., object categorization)
is explicitly tied to the other problem domain (e.g., functional
connectivity), making alternative explanations more unlikely.

The Present Study
Because there are n2 connections among n regions, connectivity
studies of large networks face practical computational,
interpretation and statistical challenges, and seed-based
approaches are thus often used to restrict analyses to the n-1
connections to a seed region. Larger networks are not well
suited for exploration using conventional parametric methods
because univariate methods must avoid inflating the Type I
error rate, and even multivariate methods like the MANOVA
mathematically require a sample size that exceeds the number

of variables. The present study uses a multilayer feedforward
classifier network to explore large-network connectivity, and as
a nonparametric multivariate analysis, suffers neither of these
drawbacks. The analysis takes advantage of the extensibility
of feedforward neural networks to simultaneously identify
task-related functional connections that distinguish between
poor- and highly-skilled readers and between word and
pseudoword processing.

MATERIALS AND METHODS

Archival Data
Neuroimaging and phenotypic data were obtained from two
open access longitudinal datasets hosted on the OpenNeuro.org
data repository, and described in detail in Lytle et al. (2019)
and Suárez-Pellicioni et al. (2019). The first (“Reading Set”)
comes from Lytle et al. (2019), and was collected from 188
children between the ages of 8 and 13 years spanning a
range of reading ability. The Reading Set data were collected
while participants engaged in rhyming judgments of pairs of
sequentially-presented lexical items (monosyllabic words or
pseudowords). Within each run of the task were 6 trial types:
Four types of lexical items (rhyming vs. non-rhyming items that
had either similar or dissimilar spelling), a fixation cross response
baseline, and a nonlinguistic symbol matching judgment. This
experiment was blocked by run, using multiple presentation
modality (auditory, visual, audiovisual) and lexicality (words,
pseudowords) conditions, and the present study analyzed only
data from the unimodal visual condition.

The second (“Math Set”) comes from Suárez-Pellicioni et al.
(2019), and was collected from 132 children between the ages
of 8 and 14 years spanning a range of math and reading
ability. These data were selected for two reasons: First, the Math
Set study drew from the same population as the Reading Set
study, and was carried out concurrently with the Reading Set
study by the same research staff, using the same equipment
and the same standardized testing procedures. Second, because
mental arithmetic arguably bears little similarity to rhyming
judgments of written words, validation of the classifier models
against these data provides an extremely challenging test
of generalizability. The Math Set experiment was blocked
by run, during which participants made relative numerosity
judgments, performed mental subtraction or multiplication. The
present study analyzed only data from the single-digit mental
multiplication runs, which was selected because single-digit
multiplication is commonly taught by rote memorization and
was assumed to be the mental arithmetic task most likely to
involve lexical processing. Aside from domain-specific difficulties
in reading or math fluency, participants in both studies were
cognitively normal.

The Reading Set and Math Set studies were carried out in
accordance with recommendations of the Institutional Review
Board at Northwestern University and the anonymized data
were released for reanalysis. The protocols were approved by the
Institutional Review Board of Northwestern University. Parents
of all participants gave written informed consent in accordance
with the Declaration of Helsinki.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 590093

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


McNorgan Persistent Connectivity

Participant Selection
Participants were selected from among those who had
completed both longitudinal time points in either dataset.
This initial selection criterion was motivated by two important
considerations: First, participants with poor-quality data
resulting from, e.g., excessive movement, failure to satisfactorily
perform the task etc., were not invited to return for the second
longitudinal time point, and were thus heuristically excluded
from the study. Second, the longitudinal dataset permits
analytic flexibility to accommodate follow-up investigations
of developmental changes. From among those participants,
subsets of participants were selected from each of the datasets
on the basis of MRI data quality and standardized test scores.
Fourteen poor readers with low scores (< 85 scaled score)
across multiple standardized measures of reading skill at the
first longitudinal time point were selected from among the
Reading Set participants. These participants were matched
against 14 highly-skilled readers with high scores across the
same standardized measures of reading skill. Aside from the
poor scores in measures specific to reading ability, the poor
readers had otherwise normal language ability, as indicated by
their spoken word recognition and picture vocabulary scores,
which were within the normal range, as were their WASI subtest
and full-scale IQ scores. This selection method followed the
approach applied to this dataset in McNorgan et al. (2013) which
identified matched samples of 13 typically-developing readers
and 13 children reaching a clinical criterion for reading-specific
impairment using similar selection criteria. Standardized testing
scores for the Reading Set participants are presented in Table 1.
Five Math Set participants with the lowest Woodcock-Johnson
III reading subtest scores (≤85) at the first longitudinal time
point were matched against five participants with high scores at
the first longitudinal time point on the same tests. Standardized
testing scores for these participants are presented in Table 2.

Neuroimaging Data Processing
MRI acquisition details can be found in the dataset descriptors
provided in Lytle et al. (2019) and Suárez-Pellicioni et al.
(2019). FreeSurfer/FS-FAST (version 6.0, http://surfer.nmr.mgh.
harvard.edu) was used for all fMRI data preprocessing and GLM
analyses. Reading Set and Math Set data were collected from the
same MRI scanner with the same acquisition parameters, and
identical processing pipelines were applied to both data sets to
obtain functional connectivity estimates and generate machine
learning classifier patterns.

Anatomical Data Processing
After segmenting into white and gray matter volumes, the mean
of the timepoint 1 and timepoint 2 T1-weighted images were
rendered in 3D surface space and normalized to the FreeSurfer
standard template space. Cortical surface space was labeled
using an automated atlas-based parcellation of the gyri and sulci
(Destrieux et al., 2010).

Functional Data Processing
We applied here the data processing pipeline used in a
recent application of a multilayer machine learning classifier

to functional connectivity and coarse-scale cortical pattern
analysis (McNorgan et al., 2020a). Functional images for both
timepoint 1 and timepoint 2 were co-registered with the 3D
anatomical surface generated from the mean anatomical value
for each subject by FreeSurfer (Version 6.0) for each participant
and mapped onto a common structural template for group
analysis using isomorphic 2mm voxels. Functional data were
preprocessed using the standard FS-FAST BOLD processing
pipeline interoperating with FSL (Version 5.0) to apply motion-
correction, slice-time correction and spatial smoothing using
a 2mm Gaussian kernel. For the functional connectivity
estimation, an additional voxel-wise detrending step removed
linear trends and regressed out white matter and CSF signal from
the data.

GLM Analysis and Region of Interest
Construction
Subject-level GLM analyses were performed for each participant
in the Reading Set, combining the functional data from both
longitudinal timepoints. The event-related GLM analyses used
the SPM canonical hemodynamic response function to model
blood oxygen dependent (BOLD) responses for the lexical,
fixation cross baseline, and symbol matching trials. Subject-level
contrasts between lexical trials and fixation cross baseline were
carried out separately for word and pseudoword runs. Group-
level random effects analyses concatenated the first level analyses
for poor- and highly-skilled readers separately. These single-
sample group-level contrast maps allowed unbiased selection of
regions involved in either word or pseudoword processing for
either poor or highly-skilled readers.

Large cortical patches are unlikely to be homogenously
organized, and so custom Python scripts, written by the author,
computed the union of the group-level cluster map cortical
surface annotation files that was then intersected with the
FreeSurfer surface annotation of the Destrieux et al. (2010) atlas.
This procedure subdivided functional clusters along anatomical
boundaries into multiple regions of interest (ROI). Large ROIs
that remained after this subdivision were manually subdivided
into smaller regions of visually similar size to other ROIs. The
union of clusters from the four significant contrast maps were
thus subdivided into 115 ROIs of comparable size (M = 145
mm2) to the Lausanne parcellation ROIs used in previous studies
of functional connectivity in surface space (Hagmann et al.,
2008, 2010; Honey et al., 2009; McNorgan and Joanisse, 2014;
McNorgan et al., 2020a).

Classifier Training
Pattern Generation
Classifier input patterns were generated from task-related
functional connectivity among ROIs within residualized BOLD
time series data for each functional run (4 pseudoword, 4 word).
An initial regression removed linear trends and white matter
and CSF signal, and the mean BOLD time series was computed
across the voxels in each of the ROIs. The weights in a machine
learning classifier are free parameters that are iteratively adjusted
to fit the training data. An overabundance of free parameters can
allow the classifiers to overfit the training data, “memorizing” the
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TABLE 1 | Mean (SD) standardized measure scores for Reading Set participants.

Measure Poor Skilled t(26)

WJ-III WordID 89 (6) 119 (8) 11.04

WJ-III Word Attack 91 (11) 117 (8) 9.84

WJ-III Passage Comprehension 90 (11) 110 (12) 5.01

WJ-III Oral Comprehension 106 (12) 112 (11) 1.29 n.s.

WJ-III Picture Vocabulary 112 (12) 110 (13) −0.3 n.s.

TOWRE SW 92 (13) 115 (10) 5.02

TOWRE PDE 90 (17) 118 (12) 4.76

WASI Verbal IQ 110 (16) 123 (15) 1.77

WASI Performance IQ 107 (12) 120 (11) 2.64

WASI FSIQ 110 (14) 124 (11) 2.59

WJ-III, Woodcock-Johnson III; TOWRE, Test of Word Reading Efficiency; WASI, Wechsler

Abbreviated Scale of Intelligence. All t statistics are significant at p< 0.05 unless otherwise

noted (n.s.).

TABLE 2 | Mean (SD) standardized measure scores for Math Set participants.

Measure Poor Skilled t(8)

WJ-III WordID 92 (8) 125 (5) 4.53

WJ-III Word Attack 96 (8) 114 (11) 2.07

WJ-III Passage Comprehension 91 (6) 116 (4) 4.61

WJ-III Passage Comprehension N/A N/A

WJ-III Oral Comprehension N/A N/A

TOWRE SW 90 (6) 124 (7) 7.58

TOWRE PDE 86 (8) 113 (18) 2.65

WASI Verbal IQ 83 (1) 143 (3) 37.4

WASI Performance IQ 89 (5) 119 (14) 4.05

WASI FSIQ 84 (3) 135 (6) 14.39

WJ-III, Woodcock-Johnson III; TOWRE, Test of Word Reading Efficiency; WASI, Wechsler

Abbreviated Scale of Intelligence. All t statistics are significant at p < 0.05.

patterns rather than learning rules that generalize to novel cases.
Overfitting is measured by the degree of discrepancy between
training set fit and validation set fit: A model has overfit the data
if it demonstrates high training set accuracy but poor validation
set accuracy. Machine learning approaches commonly mitigate
overfitting by increasing the number of distinct patterns in the
training set through data augmentation (Lemley et al., 2017). This
increases the ratio of unique patterns to the dimensionality of the
feature encodings, introducing additional noise in the process,
but providing additional contexts in which to identify reliably
predictive features (see Koistinen and Holmström, 1991, for a
discussion of the utility of noise in classifier training).

Data were augmented by splitting the 6-min time series
in half, and computing weighted connectivity between time
series vectors separately for the first and second half of each
run using two methods: Pearson correlation, which measures a
linear dependency between time series vectors, and cross-mutual
information (XMI), which is sensitive to the general dependency
between two variables, which may or may not be linear (Li,
1990), may be more sensitive to synchronization in noisy systems

(Paluš, 1997), and has been shown to be a useful connectivity-
based predictor in classifier-based studies of learning difficulty
(McNorgan et al., 2020b). The main diagonal of the 115 × 115
symmetric matrix was eliminated, as was the redundant lower
triangle of the symmetric matrix. The remaining 6,555 values
were normalized, and rescaled to fall between 0 and 1. It must
be noted that the correlation-based and XMI-based connectivity
patterns were only moderately correlated with each other (r
= 0.42). This is important because it ensures that an accurate
classification of a validation-set pattern, e.g., computed using
XMI, is not attributable to training exposure to a highly-similar
pattern computed over the same time series using the Pearson
correlation. Rather, the classifiers were forced to identify both
linear and nonlinear coactivation dynamics that are predictive of
reading skill and lexicality.

The distributions of the positively-skewed functional
connectivity values were made normal by application of a
square-root transformation. Each connectivity pattern vector
was tagged with a value indicating lexicality (0 = pseudoword;
1 = word), and a value indicating group (0 = poor reader; 1
= highly-skilled reader). The source and destination nodes of
each functional connection was also noted, and the indices of
the 253 functional connections between subregions of a single
cluster within the functional mask were recorded for subsequent
filtering, as these connections might reflect trivial correlations.

Classifier Model Architecture
Classifier models were implemented in TensorFlow (Version
2.2, https://www.tensorflow.org), using hyperparameters and a
model architecture informed by a previous study performing
orthogonal ADHD diagnosis and behavioral profile classification
in an unrelated dataset (McNorgan et al., 2020a). Input values
fed forward through a Gaussian noise (SD= 0.05) and a dropout
layer (rate= 0.2), which further distorted the training patterns as
a standard data augmentation method (Srivastava et al., 2014).
The standard deviation of the Gaussian noise was selected to
roughly match the standard deviation of input values (SD =

0.07). The perturbed input patterns fed forward through three
densely connected rectified linear unit hidden layers, with the
size of each layer determined by a logarithmic function (base
2) of the number of input features: The size of the first hidden
layer was determined using formula (1), where i is the number of
input features:

max(16, 2× ceil(log2 i)) (1)

The second and third hidden layers were always half the size of
the first hidden layer. Batch normalization was applied at each
hidden layer (Ioffe and Szegedy, 2015). The first hidden layer
additionally used an ℓ1 (LASSO) regularizer of 0.0005 to promote
sparsity among the weights and act as a pruning mechanism
(Allen, 2013) by eliminating redundant or non-predictive (i.e.,
noisy) features. These activations fed forward to two single-unit
logistic classifier layers using the sigmoid activation function
to simultaneously classify patterns with respect to condition
lexicality and group.Models of this architecture are also known as
multilayer perceptrons (MLP), and compute a Bayesian posterior
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probability of category membership, given a set of input features
(Ruck et al., 1990). An important feature of multilayer networks
is that the imposition of small hidden layers between the
input and classifier layers requires the network to compute a
low-dimensional transformation of the high-dimensional input
patterns. This denoises and computes a nonlinear stochastic
independent components analysis (ICA) on the input patterns
(Hyvärinen and Bingham, 2003).

In the context of this network, classification decisions
were thus made from configurations of functional connections
encoded in the final hidden layer, rather than on individual
functional connections encoded in the input layer as would
be the case in a standard SVM classifier. This is important
to bear in mind because the ratio of training examples to the
dimensionality of the hidden layer ICA transformation was
over 30:1. A comparison between performance of SVM and
MLP single-class classification of high-dimensional connectivity
vectors in McNorgan et al. (2020a) found that the SVM classifier
had a propensity to overfit the training patterns, demonstrating
poor validation set accuracy (58% for group classification). In
contrast, the MLP classifier showed high validation set accuracy
(91%) for group classification of the same data, demonstrating
the utility of hidden layer ICA dimensionality reduction afforded
by MLP models. The training set was balanced with respect
to both classifications and the categories were orthogonal. The
classifier model architecture is illustrated in Figure 1.

Training Parameters and Procedure
Classifiermodels were trained over 216 epochs using the standard
gradient descent optimizer with a learning rate of ε = 0.01, decay
= 0.05 and momentum = 0.9, and a batch size of 16. Early-
stopping was used, monitoring lexical classifier error (Caruana
et al., 2001). Stratified K-folds cross-validation (Diamantidis
et al., 2000) pseudo-randomly partitioned the patterns into
K = 5 balanced sets of training and withheld validation set
data, such that each pattern appeared among the validation
set data exactly once. One model was trained for each of the
folds, and performance was evaluated on the withheld validation
set, allowing performance metrics to reflect the model’s ability
to generalize to novel data. Note that the machine learning
literature may distinguish between validation and test sets, with
validation sets partitioned from the training data for initial model
hyperparameter tuning, and test sets removed from the training
data for measuring the model’s ability to generalize to new
data (Larsen et al., 1996), however this study refers to withheld
cross-validation set accuracy as validation set performance, as
hyperparameter tuning was not performed.

Iterative Feature Reduction
Classifier training often applies feature set reduction to eliminate
uninformative features and improve accuracy (Chu et al.,
2012). In addition to the nonlinear ICA imposed by the
model’s hidden layer architecture, feature reduction at the input
layer was used as an analog to backwards stepwise linear
regression in this study as a means of identifying the small
proportion of functional connections with the greatest influence
on classification decisions.

An iterative feature selection algorithm was applied over
a series of model generations. Beginning with the full set of
functional connectivity patterns, the 253 functional connections
between nodes within clusters from the unified GLM contrast
maps were eliminated from the input patterns prior to the
first model generation. After training, cross-validation set
performance was assessed for each fold, and the summed path
weights from each remaining input feature unit to each of the
classifier output units was computed. Each input feature unit
contributes toward each classification decision by driving the
classifier unit toward either 0.0 (if the summed path weights
are negative) or 1.0 (if the summed path weights are positive).
After all training folds had completed, the input feature set was
reduced through decimation, by which the summed absolute
value of input feature weights to both classifier units were ranked-
ordered, and features that were in the bottom tenth percentile
for either classification were eliminated for the subsequent
generation. Training proceeded in this way until the full feature
set had been reduced to 0.05 of its original size (i.e., finding
the 95th percentile of functional connections predictive of both
lexicality and group) while still demonstrating above-chance
classification accuracy, requiring either 15 or 16 generations.
This was repeated twenty times to produce a sample of n =

20 model families. Note that, because the hidden layer size
was a logarithmic function of the number of input features,
hidden layers were also reduced across generations. The final
generation of models contained 0.01 of the number of trainable
weights as the first generationmodels, despite containing 0.05 the
number of input features. The disproportionately large reduction
in trainable weights across model generations greatly reduced the
representational capacity of later models.

The feature selection procedure leaks information about
the most informative features between generations of a single
family of models, however this is not problematic for several
reasons: First, the relative diagnostic utility of an input feature
is not fixed as the models become more constrained with
the elimination of hidden units across generations. Second,
feature reduction was intended to facilitate interpretation, rather
than improve accuracy (it will be shown that removing 0.95
of the input data and 0.99 of the trainable model weights
decreased classification accuracy); the survival and subsequent
inclusion of predictor xi in the n+1th model generation is
analogous to the survival of predictor xi into the n+1th step in
a backwards stepwise multiple regression. Finally, each of the 20
model families are independent, precluding information leakage
betweenmodel families. The analyses that follow aggregate results
across all model families, permitting measures of predictive
reliability for each functional connection, and more importantly,
the evaluation of a composite model comprising the most
informative features independently identified by each of the
model families.

Model Evaluation
Each generation of models was evaluated with respect to
validation set classification accuracy for lexical condition and
group, and d′ was computed, collapsing across all cross-
validation folds. The frequency with which each functional
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FIGURE 1 | Feedforward classifier model architecture. Gaussian noise and

probabilistic dropout perturbs functional connectivity input patterns, which

feed forward through a series of densely connected hidden layers before

reaching two classifier output units. Most model weights are omitted for clarity.

The influence of a particular functional connection on a classification decision

is indexed by summing the weights of all paths between the corresponding

input unit and a classifier unit. Multiplication of the series of the matrices

encoding the weights between each layer computes these values in parallel for

all input features.

connection was retained in the final generation of models was
summed across the twenty model families, and used to inform
the construction of a composite model comprising the most
informative features across all model families. Input features
appeared with decreasing frequency among the final generation
of models, with more than a third appearing in none of the
models, and most of the remaining appearing in at most one
model. The most informative features were defined as those
327 functional connections that appeared in at least 4 of 20
final-generation models, because they represented 0.049 of the
full set of functional connections, and thus corresponded to
the 95th percentile of most predictive features. Validation set
lexicality and group classification performance was assessed for a
composite model trained using this set of functional connections

using 10-fold cross-validation to permit relative comparisons
among the most reliably predictive features. This composite
model served as a direct evaluation of these putatively predictive
functional connections in isolation.

Math Set Evaluation
Five sets of first-generation classifier models were trained using
all Reading Set patterns as training data. Classification accuracy
and d′ scores were computed for classification decisions on
functional connectivity patterns from the Math Set mental
multiplication task as a replication to bolster claims of classifier
generalizability and test whether lexically-related functional
connectivity within the reading network distinguishes poor from
highly-skilled readers, even when engaged in a non-reading
task. This evaluation followed the procedure described above for
evaluating classifier models performance at the first generation,
with two differences: First, only 3 cross-validation folds were
used in each set—each network was trained using a random .66
partitioning of the Reading Data. The second critical difference
was that, in place of the withheld Reading Data, classification
performance was evaluated using patterns from the Math Set.

RESULTS

GLM Lexicality Contrasts
GLM contrast maps were thresholded using a voxel-wise
significance level of p = 0.001 and a cluster-size threshold of
P = 0.05 based on the FreeSurfer random permutation cluster
simulation. Figure 2 and Tables 3, 4, 5 shows retained clusters
showing contrasts for highly-skilled readers between words and
fixation (A) and pseudowords and fixation (B), and for poor
readers between words and fixation (C). Poor readers had no
above-threshold regions showing significant differences between
pseudowords and fixation. The union of the GLM contrast
maps depicted in Figure 2 served as a functionally-defined mask
that include regions with high signal-to-noise and associated
with preferential responses to either words or pseudowords for
either highly-skilled readers or poor readers, and functional
connectivity among these regions was computed for the analyses
that follow. Contrasts between lexical conditions or groups would
select regions with a priori bias toward one condition or group
and thus not performed. Similar analyses have been reported
elsewhere on supersets of these data (McNorgan et al., 2014;
McNorgan and Booth, 2015; Edwards et al., 2018; Smith et al.,
2018), and so the GLM results are not discussed further.

Classifier Performance
Reading Set validation set classification accuracy and d′ was
computed separately for lexicality and group classifications
among the twenty families of models. These values were
computed separately for each lexicality and group, however
because the 95% confidence intervals overlapped between
words and pseudowords and between poor and very skilled
readers in each analysis, both lexicality conditions and both
group conditions were collapsed in the presentation of results
that follow.
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FIGURE 2 | GLM contrast maps showing regions with significant activation

(hot) or deactivation (cold) for lexical trials vs. fixation cross baseline for good

readers making rhyming judgments on words (A) and pseudowords (B) and

for poor readers making rhyming judgments on words (C). All maps

thresholded with a voxel-wise p = 0.001 and a cluster-size corrected

threshold of P = 0.05. There were no regions showing above-threshold

differences between pseudoword and fixation cross baseline among poor

readers. The union of these clusters was used as a functional mask to define

the Reading Network. Functional connectivity was computed over

anatomically-delineated subdivisions of the Reading Network.

TABLE 3 | Coordinates of peak surface activity within clusters reaching P < 0.05

(cluster-level corrected) significance in the words vs. fixation contrast for

highly-skilled readers.

Contrast Region t Size X Y Z p

W > Fix r. superior frontal 6.46 315 12 28 33 0.0001

l. superior frontal 6.34 888 −11 12 43 0.0001

l. superior

temporal sulcus

5.99 155 −58 −35 3 0.0116

l. fusiform 5.89 1383 −41 −64 −14 0.0001

l. lateral occipital 5.83 443 −17 −99 −11 0.0001

l. caudal middle

frontal

5.68 172 −36 1 48 0.0068

l. pars opercularis 5.61 458 −36 24 10 0.0001

r. lateral occipital 5.50 295 21 −92 −8 0.0001

l. pars opercularis 5.49 556 −51 17 22 0.0001

l. pericalcarine 5.25 1118 −13 −83 4 0.0001

r. pericalcarine 4.74 959 7 −78 12 0.0001

l. pars triangularis 4.63 220 −46 34 4 0.0018

W < Fix r. inferior parietal −5.55 333 40 −71 39 0.0001

l. inferior parietal −5.07 274 −41 −67 39 0.0005

r. supramarginal −4.82 353 60 −41 22 0.0001

r. superior frontal −4.73 179 22 12 47 0.0049

r. precuneus −4.63 188 9 −43 39 0.0030

r. superior frontal −4.27 182 9 54 15 0.0043

l. precuneus −4.02 198 −13 −55 32 0.0034

L, left; R, right; t, peak t-statistic; Size, cluster extent in mm2. Coordinates reflect standard

MNI space. Region labels derived from the FreeSurfer Desikan-Killiany atlas surface.

TABLE 4 | Coordinates of peak surface activity within clusters reaching P < 0.05

(cluster-level corrected) significance in the pseudowords vs. fixation contrast for

highly-skilled readers.

Contrast Region t Size X Y Z p

PW > Fix l. fusiform 8.081 936 −40 −71 −12 0.0001

l. lateral occipital 6.268 339 −17 100 −7 0.0001

l. lateral occipital 5.937 171 −17 −99 −8 0.0033

l. insula 4.255 154 −28 23 5 0.0063

l. pericalcarine 4.152 137 −12 −79 12 0.0113

PW < Fix r. precuneus −7.245 304 6 −37 42 0.0001

l. inferior parietal −5.427 272 −45 −69 25 0.0002

r. superior frontal −5.355 112 21 26 46 0.0138

r. middle temporal −5.314 287 65 −19 −15 0.0001

r. medial

orbitofrontal

−4.256 301 9 55 −4 0.0001

r. caudal middle

frontal

−4.243 113 40 10 51 0.0138

L, left; R, right; t, peak t-statistic; Size, cluster extent in mm2. Coordinates reflect standard

MNI space. Region labels derived from the FreeSurfer Desikan-Killiany atlas surface.

First Generation
Among all first-generation models, which used all but the
253 short-distance within-cluster functional connections as
predictors, lexical classification accuracy (M = 0.64, SD =
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TABLE 5 | Coordinates of peak surface activity within clusters reaching P < 0.05

(cluster-level corrected) significance in the words vs. fixation contrast for poor

readers.

Contrast Region t Size X Y Z p

W > Fix l. superior frontal 7.08 798 −10 13 52 0.0001

l. lateral occipital 6.591 229 −17 −101 −6 0.0007

r. pericalcarine 6.326 1863 18 −72 11 0.0001

l. precentral 5.69 600 −52 −2 45 0.0001

l. pericalcarine 5.312 1623 −9 −81 3 0.0001

l. lateral

orbitofrontal

5.28 308 −27 28 −3 0.0001

l. pars opercularis 5.148 144 −53 14 14 0.0093

l. precentral 3.867 206 −25 −14 56 0.0010

W< Fix r. precuneus −6.447 1064 6 −38 42 0.0001

r. supramarginal −6.141 1197 53 −45 28 0.0001

l. inferior parietal −5.713 266 −37 −74 38 0.0002

r. rostral middle

frontal

−5.323 316 27 25 38 0.0001

l. precuneus −5.29 616 −14 −62 23 0.0001

r. inferior parietal −5.289 715 41 −69 39 0.0001

l. posterior

cingulate

−5.007 176 −6 −27 39 0.0026

l. inferior parietal −4.665 195 −49 −55 38 0.0015

r. middle temporal −4.35 188 53 −55 −2 0.0013

l. supramarginal −4.3 180 −56 −45 40 0.0023

L, left; R, right; t, peak t-statistic; Size, cluster extent in mm2. Coordinates reflect standard

MNI space. Region labels derived from the FreeSurfer Desikan-Killiany atlas.

0.04,0.95 CI [0.63, 0.66]) was well above chance, with all chi-
squared tests of the ratios of classification decisions to expected
chance performance significant at p< 10−21, andmean d′ of 0.74,
0.95 CI [0.65, 0.83]. The mean phi coefficients of the contingency
table for each model family was 0.29, SD = 0.09,0.95 CI [0.25,
0.32], indicating that middle- to long-distance task-dependent
functional connections within the reading network bear a weak-
to moderate explanatory relationship with lexical task.

Group classification accuracy (M = 0.94, SD = 0.06.95 CI
[0.92,0.96]) was high for all first-generation model families, with
all chi-squared tests of the ratios of classification decisions to
expected chance performance significant at p< 10−256, andmean
d′ of 3.58, 0.95 CI [3.28, 3.88]. The mean phi coefficient of the
contingency table for eachmodel family was 0.88, SD= 0.11, 0.95
CI = [0.84, 0.93], indicating that middle- to long-distance task-
dependent functional connections within the reading network
bear a very strong explanatory relationship with reading skill.

Final Generation
Among all final-generation models, lexical classification accuracy
(M = 0.53, SD = 0.01.95 CI [0.52, 0.53]) was above chance for
most models, with 18 of 20 chi-squared tests of classification
accuracy significant at p < 0.05, and a mean d′ of 0.13,0.95 CI
[0.11, 0.15]. The mean phi coefficients of the contingency table
for each model family was 0.05, SD = 0.02,0.95 CI = [0.04,
0.06], indicating that the top 5% most predictive middle- to
long-distance task-dependent functional connections within the

reading network bear a negligible explanatory relationship with
lexical task.

Group classification accuracy (M = 0.71, SD = 0.03.95
CI [0.70, 0.72]) remained well above chance for all final-
generation model families, with all chi-squared tests of the
ratios of classification decisions to expected chance performance
significant at p< 10−110, and mean d′ of 1.22,0.95 CI [1.15, 1.29].
The mean phi coefficient of the contingency table for each model
family was 0.42, SD = 0.06,0.95 CI = [0.40, 0.44], indicating
that the 0.05 most informative middle- to long-distance task-
dependent functional connections among the reading network
bear a strong explanatory relationship with reading skill.

Figure 3 plots the d′ scores for lexical and group classification
performance for all models as a function of the proportion
of the total number of functional connections used as input
features. Trendlines were fit with a third-order polynomial.
The performance trajectory shows a nearly linear relationship
between lexicality classification performance and the number
of functional connections used in the models, suggesting that
most functional connections within the task-defined network
are roughly equally predictive of lexicality condition, and thus
that classification accuracy is proportional to the number of
connections in the model. The performance trajectory for group
classification shows a nearly logarithmic relationship, with a
large increase in classification performance between models
using 0.05 and 0.15 of all functional connections, and declining
gains in accuracy as models become larger. This indicates that
a small number of functional connections within the task-
defined network are disproportionately predictive of reading
skill. Finally, d′ measures of lexicality and group classification
performance were positively correlated across all models, r(315)
= 0.71, p < 10−48. As would be expected by the equal weighting
given to the error signal for the two classifier units, this indicates
that optimizing accuracy in one classification decision was not at
the expense of the other.

Evaluation of Predictive Functional
Connections Using a Composite Model
Of the 6,555 functional connections, 2,770 never appeared in
a final model, with most of the remaining features appearing
in at most one of the 20 final-generation models. Validation
set lexicality and group classification performance was assessed
for a composite model trained using the set of 327 functional
connections appearing in at least 4 final generation models using
10-fold cross-validation to permit relative comparisons among
the most reliably predictive features, which were otherwise found
in independent model families. Collapsed across all 10 model
folds, the d’ measure was 0.03 for lexical classification accuracy,
but 1.02 for group classification accuracy, which was significantly
better than chance, X2

(1) = 58.58, p < 10−13, and indicates that
the 95th percentile of most predictive functional connections
within the task-defined network are significant predictors of
reading skill.

The weight structures of the composite models generated
by each fold were used to construct functional networks
for further analysis and visualization: The magnitude of a
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FIGURE 3 | Scatterplot of d-prime measures of classifier performance for

each generation of twenty model families as a function of the proportion of the

total number of functional connections used to predict reading skill group or

lexicality.

path weight indexes the relevance of that feature on the
classification decision, and the valence of the weight indicates
the classification associated with high functional connectivity
(negative: pseudoword, poor reader; positive: word, highly-
skilled reader). To limit the scope of analysis, the weight
magnitudes were normalized, and those functional connections
with |Z| > 1.0 were selected as highly-relevant. To enable
visualization of networks comprising only highly relevant
connections, adjacency matrices were constructed for functional
networks predicting group and lexicality classification by adding
to an empty adjacencymatrix the correspondingmean functional
connectivity score for all highly-relevant functional connections
identified in the previous step. For example, high connectivity
between left inferior frontal sulcus and right cingulate ROIs
was a highly-relevant predictor of the highly-skilled reading
group. The mean connectivity between these regions for all run
splits for all highly-skilled readers was thus added to the Group
adjacencymatrix. These adjacencymatrices were used to generate
Figures 4, 5.

Group Classification
Functional connectivity networks including only those functional
connections with strong classification weights for reading
skill are rendered in Figure 4 and Table 6. From this figure
are highlighted regions that participate in multiple predictive
functional connections, and therefore may be important network

hubs. Three adjacent nodes belonging to a functional cluster
spanning the right occipital pole and right calcarine sulcus
were terminal points of multiple functional connections within
the right hemisphere that are predictive of poor reading skill.
Similarly, two adjacent nodes belonging to a functional cluster
within the left occipitotemporal cortex were terminal points
of multiple functional connections both within and between
hemispheres that are predictive of high reading skill. Finally,
two regions of interest, one within the left precuneus and the
other within the anterior intermediate parietal sulcus of Jensen,
were terminal points of the functional connections that most
reliably predict both poor and highly-skilled reading, suggesting
that these regions may be critical hubs supporting reading.

Lexicality Classification
The functional connectivity network including only those
functional connections with strong classification weights for
lexical condition are rendered in Figure 5 and Table 7. It
is notable that that the set of highly-relevant functional
connections was dominated by multiply-connected hubs within
the left hemisphere, many along the left occipitotemporal sulcus,
consistent with the privileged role of this region in orthographic
processing. However, because lexicality classification among
composite models was at chance accuracy, this network should
be interpreted with caution: Though the identified connections
are the most individually predictive of lexicality, they are
only a subset of the functional connections that accurately
predict lexicality. This follows from the observation that iterative
pruning produced a linear decrease in classification accuracy.
Thus, the core functional networks supporting word and
pseudoword processing appear to be very similar, and become
reliably differentiable only when examining connectivity among
the reading network as a whole.

Math Dataset
Across all five sets of models, classification accuracy was
comparable to classification of the Reading Dataset (M = 0.96,
SD = 0.04, 0.95 CI = [0.92, 0.98]), with all chi-squared tests
of the ratios of classification decisions to expected chance
performance significant at p < 10−18, and mean d′ score of 5.60
(SD = 1.42;0.95 CI = [4.25, 6.95]). The mean phi coefficient
for the 5 model families was .91 (SD = 0.07;0.95 CI = [0.84,
0.98]), indicating that functional connectivity during mental
multiplication within the reading network has a very strong
explanatory relationship with reading skill.

There was no clear correct lexicality classification for
mental multiplication connectivity patterns, and so it was
expected that the lexicality classifications would be random
and equiprobable. It was thus noteworthy that all models
classified 100% of mental multiplication patterns as consistent
with pseudoword processing.

DISCUSSION

This study used a classifier model in a novel analytic
approach that identified functional connectivity patterns that
simultaneously distinguished word from pseudoword processing
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FIGURE 4 | Functional networks including only those highly-relevant functional connections where high connectivity was predictive of poor (blue) or highly-skilled (red)

reading in the set of composite models. Edge thickness indexes connectivity strength, and ROI node diameter indexes summed connectivity with other regions.

FIGURE 5 | Functional networks including only those highly-relevant functional connections where high connectivity was predictive of pseudoword (blue) and word

(red) lexicality condition in the set of composite models. Edge thickness indexes connectivity strength, and ROI node diameter indexes summed connectivity with

other regions.

with above chance accuracy and distinguished between patterns
from poor and highly-skilled readers with near-ceiling accuracy,
sensitivity, and specificity. Indeed, because each participant
contributed multiple patterns, if the modal classification decision
was used for each participant, the probability of misclassifying a
participant on 5 of 8 task runs is <10−5. The phi coefficient is
a non-parametric relative of the Pearson correlation, measuring
the strength of association between two variables. To provide
context for the phi coefficients computed from the classification
of reading skill in both the Reading and Math sets, they are
well above the correlations reported between reading skill and
predictors such as working memory (r = 0.29; Peng et al.,
2018), or phonological processing, which has been argued to
play a causal role in reading acquisition (r = 0.09 to 0.73
depending on measure; Wagner, 1988). The results indicate
that a functional connectivity fingerprint of reading skill can
be found within the network supporting word and pseudoword

reading, and produced two unexpected findings not discoverable
by traditional univariate parametric approaches.

Reading Skill Shapes Functional
Organization in Other Cognitive Domains
First, task-based functional connectivity fingerprints of poor-
and highly-skilled reading are present in task-based functional
connectivity in other cognitive domains. Functional networks
are dynamic, reflecting the demands of the cognitive task
(Gonzalez-Castillo and Bandettini, 2018), and so it is remarkable
that the manner in which the brain organizes during mental
multiplication reflects an individual’s reading skill. As noted
earlier, reading difficulty is often comorbid with math difficulty,
and the co-occurrence of math difficulty with reading difficulty
is attributed to reliance on shared components (Fletcher, 2005).
The mental multiplication task presented problems symbolically,
rather than as word problems. However, the classifiers were
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TABLE 6 | Highly relevant functional connections predictive of reading skill in composite model.

Group Source region X Y Z Destination region X Y Z r n

Poor Skill l Cingulate Gyrus −10 20 30 l Inferior Frontal Sulcus −39 14 23 0.52 9

l Cingulate Gyrus −10 20 30 r Superior Frontal Sulcus 25 25 41 0.64 8

l Jensen Sulcus −49 −52 35 l Pars Opercularis −50 14 14 0.52 10

l Jensen Sulcus −49 −52 35 l Superior Temporal Sulcus −42 −69 24 0.55 4

l Precentral Sulcus −42 −1 34 r Supramarginal Gyrus 56 −38 41 0.62 9

l Precuneus −6 −35 42 l Superior Temporal Sulcus −56 −36 3 0.72 8

l Superior Frontal Gyrus −10 11 45 r Inferior Temporal Sulcus 52 −56 −2 0.47 10

l Supplementary Motor Area −7 6 63 r Middle Frontal Gyrus 40 11 50 0.69 5

l Supramarginal Gyrus −55 −42 42 l Middle Frontal Gyrus −36 1 50 0.47 7

r Cuneus 5 −80 19 r Calcarine Sulcus 23 −62 2 0.48 5

r Occipital Pole 12 −88 0 r Angular Gyrus 42 −69 34 0.50 7

r Occipital Pole 12 −88 0 r Anterior Cingulate Gyrus 13 22 32 0.52 11

r Occipital Pole 12 −88 0 r Calcarine Sulcus 23 −62 2 0.54 4

r Superior Frontal Gyrus 20 30 48 r Marginal Sulcus 11 −32 39 0.43 6

r Superior Frontal Gyrus 22 19 47 r Superior Temporal Sulcus 50 −47 22 0.44 4

High Skill l Inferior Frontal Sulcus −39 14 23 r Cingulate Gyrus 6 −31 40 0.50 6

l Inferior Frontal Sulcus −39 36 7 r Superior Frontal Gyrus 20 30 48 0.47 5

l Jensen Sulcus −49 −52 35 l Inferior Frontal Sulcus −39 36 7 0.59 7

l Lateral Occipitotemporal Gyrus −42 −57 −11 l Occipital Pole −17 −99 −5 0.49 6

l Lateral Occipitotemporal Gyrus −42 −57 −11 r Subparietal Sulcus 12 −44 36 0.48 6

l Lateral Occipitotemporal Gyrus −43 −44 −18 l Calcarine Sulcus −21 −68 2 0.47 4

l Lateral Occipitotemporal Gyrus −43 −44 −18 l Parieto–occipital Sulcus −13 −63 24 0.47 6

l Lateral Occipitotemporal Gyrus −42 −57 −11 r Marginal Sulcus 11 −32 39 0.46 5

l Medial Lingual Gyrus −7 −74 2 r Marginal Sulcus 11 −32 39 0.57 9

l Pars Opercularis −50 14 14 r Occipital Pole 19 −94 −7 0.47 7

l Precentral Gyrus −52 −3 42 r Parieto–occipital Sulcus 13 −60 19 0.47 7

l Precuneus −6 −35 42 l Cingulate Gyrus −11 18 39 0.84 6

l Precuneus −6 −35 42 r Angular Gyrus 54 −50 31 0.71 8

r Calcarine Sulcus 18 −75 7 r Transverse Frontopolar Gyrus 11 64 −1 0.59 8

r Inferior Temporal Sulcus 52 −56 −2 r Anterior Cingulate Gyrus 12 50 10 0.52 10

r Occipital Pole 19 −94 −7 r Transverse Frontopolar Gyrus 11 64 −1 0.49 7

L, left; R, right; n, number of models (/20) containing connection; Coordinates reflect standard MNI space. Region labels derived from the FreeSurfer, Destrieux et al. (2010) atlas.

required to simultaneously classify reading skill and lexicality,
and the shared weight structure for these classifications ensured
that the functional connections that discriminate reading skill
are prima facie relevant to lexical processing (and vice versa).
This makes it difficult to explain this finding through appeals
to non-lexical processes. The single-digit multiplication task was
selected because it is often taught by rote memorization, so that
these problems are solved by retrieving verbalized facts, rather
than algorithmically. This result may thus reflect reading-skill
dependent differences in the networks that are engaged whenever
accessing lexicalized knowledge.

Lexicality Sensitivity Differentiates Poor-
and Highly-Skilled Readers
Second, iterative pruning on the basis of diagnosticity for
both classification decisions provided novel insight into lexical
processing in poor and skilled readers. There were equal numbers

of poor and highly-skilled readers, and all participants performed
both word and pseudoword reading, and it was thus expected
that characteristic functional connections associated with both
word and pseudoword reading would be found for both groups.
Instead, among the most categorically-diagnostic functional
connections in the composite model, there were no cases
where strong functional connectivity was strongly predictive
of both poor reading skill and of word reading. Conversely,
there were no cases where strong functional connectivity was
strongly predictive of both high-reading skill and of pseudoword
reading. This suggests that poor- and highly-skilled readersmight
be best differentiated by how they process pseudowords and
familiar words, respectively. The most transparent explanation
is that there are functional networks that are used almost
exclusively by children with reading difficulty when encountering
unfamiliar letter strings, and other functional networks used
almost exclusively by highly-skilled readers for decoding known
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TABLE 7 | Highly relevant functional connections predictive of lexicality in composite model.

Lexicality Source region X Y Z Destination region X Y Z r n

Pseudoword l Anterior Lateral Fissure −36 32 −2 r Angular Gyrus 39 −67 43 0.46 7

l Cingulate Gyrus −10 20 30 l Inferior Frontal Sulcus −39 14 23 0.49 9

l Jensen Sulcus −49 −52 35 l Superior Temporal Sulcus −42 −69 24 0.52 4

l Occipital Pole −17 −99 −5 r Intraparietal Sulcus 39 −57 41 0.44 6

l Pars Opercularis −50 14 14 l Jensen Sulcus −49 −52 35 0.49 10

l Posterior Cingulate Gyrus −5 −27 38 l Insula −33 22 10 0.59 7

l Precentral Sulcus −42 −1 34 r Supramarginal Gyrus 56 −38 41 0.59 9

l Precuneus −6 −35 42 r Angular Gyrus 39 −67 43 0.72 7

r Anterior Cingulate Gyrus 12 29 31 r Superior Frontal Gyrus 9 58 −3 0.41 5

r Occipital Pole 12 −88 0 r Calcarine Sulcus 23 −62 2 0.51 4

r Occipital Pole 12 −88 0 r Anterior Cingulate Gyrus 13 22 32 0.5 11

r Occipital Pole 12 −88 0 r Middle Temporal Gyrus 58 −54 0 0.48 6

r Occipital Pole 12 −88 0 r Cingulate Marginalis 11 −32 39 0.45 4

r Subparietal Sulcus 12 −53 39 r Middle Occipital Gyrus 38 −75 32 0.45 5

Word l Inferior Frontal Sulcus −39 36 7 l Jensen Sulcus −49 −52 35 0.57 7

l Inferior Frontal Sulcus −39 14 23 r Posterior Cingulate Gyrus 6 −31 40 0.49 6

l Inferior Frontal Sulcus −39 36 7 l Occipital Pole −17 −99 −5 0.43 4

l Inferior Temporal Sulcus −42 −65 −6 r Posterior Cingulate Gyrus 6 −31 40 0.45 4

l Occipital Sulcus −40 −70 −9 l Insula −33 22 10 0.46 5

l Occipital Sulcus −40 −70 −9 r Anterior Cingulate Gyrus 12 50 10 0.43 5

l Occipitotemporal Sulcus −43 −44 −18 l Subparietal Sulcus −12 −53 31 0.48 4

l Occipitotemporal Sulcus −42 −57 −11 r Posterior Cingulate Gyrus 6 −31 40 0.46 6

l Occipitotemporal Sulcus −43 −44 −18 l Calcarine Sulcus −21 −68 2 0.45 4

l Occipitotemporal Sulcus −43 −44 −18 l Parieto–occipito Sulcus −13 −63 24 0.45 6

l Occipitotemporal Sulcus −42 −57 −11 l Lateral Fissure −36 32 −2 0.44 5

l Occipitotemporal Sulcus −42 −57 −11 l Lateral Fissure −39 24 8 0.44 5

l Occipitotemporal Sulcus −42 −57 −11 r Cingulate Marginalis 11 −32 39 0.44 5

l Precentral Sulcus −27 −11 50 r Parieto–Occipital Sulcus 13 −60 19 0.5 7

l Precuneus −6 −35 42 r Supramarginal Gyrus 58 −42 23 0.78 7

l Superior Frontal Gyrus −8 12 55 l Angular Gyrus −47 −61 39 0.54 5

l Supplementary Motor Area −7 6 63 l Precentral Gyrus −52 −3 42 0.68 8

r Angular Gyrus 47 −56 44 r Angular Gyrus 45 −63 34 0.52 6

r Inferior Temporal Sulcus 52 −56 −2 r Anterior Cingulate Gyrus 12 50 10 0.5 10

r Occipital Pole 19 −94 −7 r Inferior Temporal Sulcus 52 −56 −2 0.45 6

r Subparietal Sulcus 10 −56 31 r Superior Temporal Sulcus 44 −58 14 0.62 7

L, left; R, right; n, number of models (/20) containing connection; Coordinates reflect standard MNI space. Region labels derived from the FreeSurfer, Destrieux et al. (2010) atlas.

words. This informs the interpretation of previous network
studies of normal and impaired reading (Fraga González
et al., 2016; Edwards et al., 2018), suggesting that reading-
skill related differences in graph-theoretic metrics of functional
networks reflect different network configurations, rather than
the same networks used to different extents. The absence of
characteristic connectivity predicting poor reading and word
processing suggests that when dyslexics encounter highly-
practiced words, they use the same networks as do their non-
impaired counterparts.

Poor reading skill was predicted by high connectivity
between right occipital pole and right anterior cingulate and
right calcarine sulcus that was also predictive of pseudoword

reading. This highlights a right-lateralized network preferentially
recruited by poor readers when encountering unfamiliar lexical
strings, and may indicate that the posterior right hemisphere
compensatory mechanism proposed by Shaywitz and Shaywitz
(2005) reflects ongoing processing of lexical items after initial
failed lexical retrieval. High-skilled reading was predicted
by strong connectivity from two hubs in the left lateral
occipitotemporal gyrus that were also predictive of word reading.
This is consistent with the privileged role this region plays
in orthographic processing and provides a connectivity-based
explanation for the under activation of this region in dyslexics
(Richlan et al., 2009). The pattern indicates that activity in
this region is less coordinated with other regions in the
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reading network for poor readers, and also suggests precocious
specialization of the region is accompanied by strong coherence
with upstream left visual cortex in strong readers.

This pattern is interesting in the context of both the Price
and Devlin (2011) Interactive Account and the hierarchical
organization model proposed by Dehaene et al. (2005).
The Interactive Account assumes that connectivity between
occipitotemporal and higher-level processing regions is
experience-dependent, but that connectivity with earlier visual
cortex is not. Dehaene’s hierarchical account argues that this
region represents complex conjunctions of visual features
represented in earlier visual cortex. In both of these models,
strong connectivity with earlier visual cortex should support
a robust representation of orthographically-relevant visual
information and promote reliable orthography-phonology
mapping for higher-skilled reading processing known words,
consistent with the pattern-separation mechanism described by
McNorgan et al. (2011).

The left Jensen sulcus, which bounds the angular and
supramarginal gyri at the posterior end of the superior temporal
sulcus, was the terminus of functional connections predictive
of both poor reading and highly-skilled reading, and of word
and pseudoword reading, depending on the connected region.
Shahin et al. (2009) proposed that a circuit between left angular
gyrus and superior temporal sulcus was part of a phonological
repair network. Moreover, Del Tufo and Myers (2014) found
that dyslexics with greater reading difficulty were more likely
to engage the phonological repair processes when listening
to distorted speech sounds. This connection was predictive
of pseudoword reading and poor reading skill, and in this
light, suggests that a dyslexic reader’s difficulty mapping from
orthography to phonology initiates two parallel processes:
the engagement of a left hemisphere circuit to clean up a
phonological representation to find a most likely match, and
the engagement of a posterior right hemisphere visual circuit
that facilitates processing unrecognized orthographic forms.
The inferior frontal sulcus has been argued to be involved in
both semantic and phonological processing (Poldrack et al.,
1999; Turkeltaub et al., 2003), and high connectivity between
Jensen sulcus and this posterior frontal region was predictive
of highly-skilled reading of familiar words. This suggests that
the rapid transmission of phonological information between left
temporoparietal cortex and posterior frontal cortex for semantic
and higher-order phonological analysis is a characteristic feature
of highly-skilled reading.

Other Theoretical Implications
The Primacy of Left Occipitotemporal Cortex in

Visual Word Identification
Though brain-based theories of reading may disagree on
the mechanisms underlying its privileged role in lexical
processing, it is widely accepted that the left occipitotemporal
cortex plays a critical role in decoding written words.
Though connectivity within this region was excluded from the
classifiers, multiple functional connections for which strong
connectivity was predictive of word reading terminated in the
left occipitotemporal sulcus, suggesting that strong functional

connectivity with this region is associated with lexical decoding of
familiar words. It follows that functional connectivity to and from
the left occipitotemporal sulcus must be weaker when decoding
unfamiliar letter strings, perhaps as a consequence of incoherent
inter-regional activation patterns when pattern matching fails.
The predictive reciprocal backwards connectivity to left calcarine
sulcus and forwards connectivity to the inferior frontal gyrus
maps well on to the circuit proposed in the Interactive Account
(Price and Devlin, 2011) and those proposed to be responsible
for the specialization of the visual word form area (Bouhali et al.,
2014), and suggests that lexical decoding of familiar words relies
on multiple intact pathways involving this region (Richardson
et al., 2011).

Reading on a Continuum
By focusing on the extremes of the reading skill continuum,
this study avoided ambiguous cases falling close to the category
boundary. Themultilayer classifier architecture used in this study
supports multiclass categorization, allowing for classification
of poor, typical and highly-skilled readers. However, though
the poor readers had either diagnosed reading difficulty or
received reading intervention, the highly-skilled readers did not
come from an identified special population, and the extent to
which this group deviates from typical readers is unknown.
If reading skill is on a continuum, the inclusion of typical
readers, as a midpoint between the extremes, would provide
additional context for interpreting predictive connections as
characteristic of a particular level of reading skill, as opposed
to merely absent in one group or another. However, model
performance should decrease with increasing similarity between
adjacent groups.

It was hypothesized that the classifier would distinguish
between opposite ends of a continuum of reading skill,
however it was surprising that between-group classification
of reading skill was far more accurate than was within-
subject classification of lexicality. Classification in these models
depends on overall pattern similarity, rather than on a
mean difference threshold as in conventional parametric null
hypothesis testing, and accuracy decreases when there is
no clearly-matching category prototype. The original studies
used an event-related design, and functional connectivity was
thus computed over time series including both lexical and
non-lexical trials. Non-lexical trials were common to both
lexicality conditions and comprised roughly half the time
series. Thus, functional connectivity was likely more similar
between word and pseudoword runs than would be the
case if computed over homogeneous blocks of lexical trials.
This similarity should contribute toward confusability between
word and pseudoword patterns. That said, task overlap alone
cannot account for poorer lexicality classification because poor
and highly-skilled readers completed identical tasks, yet the
classifiers distinguished groups with near-ceiling accuracy. This
implies that the functional connectivity patterns characteristic of
reading skill are detectable even when functional connectivity
measures are substantially influenced by a non-lexical task,
confirmed by the near-ceiling classification accuracy of the
mental multiplication task.
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The overall pattern of results therefore suggests that word
and pseudoword reading entails very similar processes, leading
to similar category prototypes; that word and pseudoword
processing is highly variable, leading to multiple prototypical
patterns for each category; or possibly both. However, the
results also indicate that poor and highly-skilled readers
engage in characteristic processing that leads to easily-identified
functional connectivity patterns. Again, the capacity to make
multiclass categorizations open up the possibility of further
exploration including nonwords in addition to words and
pseudowords to further disentangle the networks involved in
lexicality processing.

As noted earlier, there was no obvious lexical category for
the mental multiplication trials, which used neither words
nor pseudowords. It was thus expected that random lexicality
classifications of these patterns would produce approximately
equal numbers of word and pseudoword categorizations. Instead,
all classifiers categorized all mental multiplication patterns as
pseudowords, indicating that the functional networks recruited
during mental multiplication are consistent with those used
during pseudoword processing. Pseudowords are lexical strings
using legal arrangements of known orthographic symbols, but
with no associated semantic content. Mental multiplication
problems (e.g., “3 × 5”) are likewise composed of legal
arrangements of orthographic symbols with no semantic content.
One explanation for this unexpected finding is that the lexical
classifiers associated pseudowords with connectivity patterns
related to low-level lexical syntax matching in the absence of
top-down semantic input, though this implies different syntax-
matching processes under semantic contexts. Additional study
using experimental tasks that include nonwords and illegal
mathematical expressions is required to explore this interesting
cross-domain overlap.

LIMITATIONS AND OPEN QUESTIONS

The reported results provide distributional statistics aggregating
classifier performance over hundreds of replications using a
particular set of experimental hyperparameters such as learning
rate, batch size, Gaussian noise distribution, dropout probability,
and network size. The random nature of several of these
parameters and of the training procedure itself guarantees that
the network performance was not contingent on a specific set of
parameters and sequence of training events, but it is tempting
to speculate that a different set of parameters might produce
a different outcome. This is certainly the case, though just
as it is trivially easy to select an inappropriate statistical test
or experimental design, it is not interesting to observe that a
poorly-selected set of hyperparameters can produce a poorly-
performing set of models that lead to a different conclusion.
Hyperparameter optimization techniques exist (e.g., Knudde
et al., 2017), and it is possible that better performance is possible.
However, because the data used for hyperparameter optimization
should be removed from the training set, these techniques are
more data and time intensive. As described earlier, network
hyperparameters were based on those from the classifier used in

McNorgan et al. (2020a), and the high classification performance
did not justify the additional effort. Many hyperparameter
changes will have uninteresting consequences, such as changing
the amount training required to reach asymptotic performance,
however interesting insights might be gained from parametric
manipulations to, e.g., the number of hidden units or hidden
layer regularization, that impact the model’s ability to encode
network motifs among the hidden units.

This study used intact groups, and though the poor readers
had normal-range IQ (>100) consistent with a specific reading
impairment, highly-skilled readers had significantly greater
scores on all IQ subtests. The set of participants within the Math
Set with non-overlapping reading skill likewise differed on all
IQ subtests, raising the question of whether the classifiers were
categorizing on the basis of general intelligence. Though the
influence of general intelligence cannot be ruled out, parallel
lexicality classification using shared parameters ensured that
diagnosticity was contingent on relevance to lexicality, which
is confirmed by the nonrandom lexicality classification of
patterns from both datasets. Intelligence is generally viewed
as a complex multidimensional construct, and though poor
and highly-skilled readers may differ with respect to traits like
working memory that correlate with both general intelligence
and reading skill, the rhyming task on which the classifiers
were trained cannot be argued to be representative of general
cognitive processing. It is thus probable that the models learned
the connectivity fingerprints of reading skill, rather than of
general intelligence level. Multiple aspects of the classifier
training—from the ICA reduction of input dimensionality to the
parallel within- and between-subject classification decisions—
prevented the reliance on idiosyncratic (i.e., participant-
specific) features extracted from training patterns. Though cross-
validation measures on the reading set established classifier
generalizability, cross-validation using the mental multiplication
task replicated the finding and generated novel insight into
the relationship between lexical processing and other cognitive
tasks. The shared processing elements between the tasks
remain unknown, and future studies should explore the extent
to which reading-skill related connectivity influences brain
processing dynamics in other cognitive tasks or the default
mode network.

Finally, as with any study using intact groups, this
correlational study cannot claim a causal relationship between
the characteristic connectivity patterns and reading skill.
Moreover, the most diagnostic functional connections are
elements of larger patterns of predictive networks. Thus, even
if causality could be established using manipulations that
temporarily impact interregional communication (e.g., TMS),
modification of individual pathways may be necessary but not
sufficient to impact reading ability. Moreover, it is unclear
how predictions made from simulated impairment should be
interpreted, given that disruption of an intact network would
correspond to an acquired dyslexia, which has a different profile
from the developmental dyslexia that is the focus of this study
(Baddeley et al., 1982). Nonetheless, hubs for multiply-predictive
functional connections, such as the left Jensen sulcus, are an
intriguing target for experimental manipulations better suited
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for exploring causal relationships underlying brain-behavior
correlations that may drive reading skill.

CONCLUSIONS

A multilayer perceptron classifier concurrently learned the
functional connectivity fingerprints of poor and highly-skilled
reading and of word and pseudoword processing within
the functionally-defined reading network. These connectivity
fingerprints were identifiable among functional connectivity
measured in a mental multiplication task, and bore a very strong
associative relationship with reading skill and a moderately
strong associative relationship with lexicality processing. These
results suggest that the manner in which reading skill reciprocally
shapes functional connectivity in the reading network impacts
dynamic brain organization in other cognitive domains,
providing a path by which the uniquely human capacity for
written language may influence human cognition in general.
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