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Autism spectrum disorders (ASDs) are highly prevalent neurodevelopmental disorders1, but 

the underlying pathogenesis remains poorly understood. Recent studies have implicated the 

cerebellum in these disorders with post-mortem studies in ASD patients demonstrating 

cerebellar Purkinje cell (PC) loss2,3, while isolated cerebellar injury has been associated 

with a higher incidence of ASDs4. However, the extent of cerebellar contribution to the 

pathogenesis of ASDs remains unclear. Tuberous Sclerosis Complex (TSC) is a genetic 

disorder with high rates of comorbid ASDs5 that results from mutation of either TSC1 or 

TSC2, whose protein products dimerize and negatively regulate mTOR signaling. TSC is an 

intriguing model to investigate the cerebellar contribution to the underlying pathogenesis of 

ASDs, as recent studies in TSC patients demonstrate cerebellar pathology6 and correlate 

cerebellar pathology with increased ASD symptomatology7,8. TSC patients with ASDs also 

display hypermetabolism in deep cerebellar structures on functional imaging when 

compared to TSC patients without ASDs9. However, to date, Tsc1's roles and the sequelae 

of Tsc1 dysfunction in the cerebellum have not been investigated. Here we show that both 

heterozygous and homozygous loss of Tsc1 in mouse cerebellar PCs results autistic-like 

behaviors, including abnormal social interaction, repetitive behavior, and vocalizations, in 

addition to decreased PC excitability. Treatment of mutants with the mTOR inhibitor, 

rapamycin, prevented the pathological and behavioral deficits. These findings demonstrate 
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novel roles for Tsc1 in PC function and define, for the first time, a molecular basis for a 

cerebellar contribution to cognitive disorders such as autism.

To evaluate Tsc1's role in cerebellar PCs, we generated mice with Tsc1 deleted in cerebellar 

PCs (L7Cre;Tsc1flox/+ (het) or L7Cre;Tsc1flox/flox(mutant))10. Cre expression is high in PCs 

with expression noted by post natal day (P)611. Tsc1+/+ (WT), L7Cre;Tsc1+/+ (L7Cre), 

Tsc1flox/flox (Flox), het, and mutant mice did not show reduced survival, and weights were 

comparable across genotypes, unlike the severe phenotype of neuronal or glial Tsc mutants 

(Figure Supplemental (S)1)12.

To insure that TSC1 function was impaired in PCs, we evaluated staining of phospho-S6 

(pS6) – a downstream effector of mTOR signaling. We expected TSC1 dysfunction to result 

in increased mTOR activity and indeed detected increased pS6 staining in het and mutant 

PCs (Figures S2-4). To assess the specificity of Cre-mediated recombination, we crossed 

L7Cre and Rosa26 reporter mice and found only infrequent, scattered recombination in non-

cerebellar areas as previously described (Figure S5)11. We also examined pS6 staining in 

other brain regions but found no differences between mutants and controls, except in 

cerebellar PCs (Figure S6).

One of the most consistent pathologic findings in post-mortem studies of ASD patients is 

reduced cerebellar PC numbers2. In the mutant cerebellum, while basic cellular architecture 

was maintained in adult mice, the PC layer was abnormal with increased soma area and 

reduced PC numbers when compared to control or het littermates (Figure 1A, S7). To 

investigate why PCs were decreased in mutants, we quantified PC numbers throughout 

development. Decreased cell numbers were first noted at 2 months of age with further 

reduction by 4 months of age, a reduction not seen in hets (Figure 1B). As these findings 

suggested cell loss, we investigated markers of apoptosis and found increased TUNEL and 

cleaved caspase 3 staining in mutant PCs at 7-8 weeks (Figure 1C, S8-9). Recently, neuronal 

stress in the cerebellum has been implicated in ASD pathogenesis13 while studies have 

demonstrated critical roles for the TSC/mTOR pathway in mediating neuronal stress 

responses14,15. To investigate whether similar mechanisms were involved in Tsc1 mutant PC 

death, we evaluated markers for both ER (GRP78) and oxidative (Heme Oxygenase 1) stress 

and found significantly elevated levels of both markers (Figure S9).

As TSC-mTOR signaling plays important roles in neuronal morphology/function16,17, we 

also investigated whether Tsc1 loss resulted in morphological changes in PCs at 4 weeks. 

TSC has known roles in the regulation of cell size17,18, and PC soma area was significantly 

increased in mutant, but not het, mice (Figure 1D, S10). TSC has also been implicated in 

regulating dendritic spine numbers19, and we found increased spine density on het and 

mutant PC dendrites (Figure 1D, E). Interestingly, decreased spine density has been reported 

in hippocampal and cortical neurons with Tsc loss17,19,20, suggesting diverse mechanisms 

underlying TSC1/2's regulation of dendritic spines. We also found numerous axonal 

varicosities and abnormal axonal collaterals in mutants (Figure S11), consistent with known 

roles for TSC in regulating axonal morphology16,21.
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To investigate whether PC Tsc1 mutants might demonstrate abnormal behaviors found in 

ASDs, we first evaluated social interaction, using a three chambered assay of social 

approach and preference for social novelty. We found social impairment in both het and 

mutant animals with no significant differences found between time spent in the chamber or 

interacting with the novel mouse versus novel object (Figure 2A). Subsequently, in a social 

novelty paradigm, while control animals spent significantly more time in the chamber and in 

close interaction with the novel animal, het, and mutant animals displayed no significant 

preference for social novelty by either measure (Figure 2B). We further tested whether 

mutants would have impaired social interaction in male – female interactions and observed 

significant reductions in mutant interaction time compared with controls (Figure S12).

With the cerebellum's role in motor functions, we investigated whether motor deficits 

contributed to social impairment. Mutants’ motor activity was indistinguishable from 

littermates until approximately 7-8 weeks of age when mutants displayed initial signs of 

ataxia. Ataxia progressed and by four months there were marked changes in gait parameters 

(Figure S13). Hets, however, displayed no ataxia (Figure S13) and locomotion during social 

testing and open field testing was not significantly different between genotypes (Figure 

S14-15), suggesting that motor impairments were not responsible for observed social 

deficits.

In rodents, social interaction largely depends on olfactory cues. We observed comparable 

time spent investigating three non-social olfactory cues – water, almond extract, and banana 

extract (Figure S16), indicating that olfactory function in mutants is intact. However, 

consistent with observed social impairment phenotypes, het and mutant mice demonstrated 

reduced investigation of social odors compared to controls, suggesting that impaired 

discrimination of social olfactory cues contributed to social deficits in mutants.

ASD patients also display repetitive behaviors and cognitive, behavioral inflexibility. To 

model the perseverative thinking and cognitive inflexibility exhibited by patients with 

ASDs, we tested animals in a reversal learning paradigm using a water T maze. Mutant 

animals demonstrated similar acquisition learning of a submerged, escape platform location 

(days 1-3) to control littermates (Figure 2C, S17), using two measures of learning 

performance – correct trials and trials needed before 5 consecutive correct trials. However, 

when the escape platform location was reversed, mutant animals demonstrated significantly 

impaired learning of the new platform location. We also examined repetitive behavior in a 

repetitive grooming task and found significantly increased self-grooming rates in hets and 

mutants (Figure 2D).

ASD patients also demonstrate deficits in communication. Murine pups use ultrasonic 

vocalizations (USV) to communicate with their mothers, and abnormal mother-pup 

communication has recently been demonstrated in Tsc2+/- mice22. We evaluated USV from 

P5-12 and, similar to reported ASD mouse models23, found increased vocalizations in both 

hets and mutants (Figure 2E). Consistent with roles for Tsc1 in regulating these early 

phenotypes, pS6 levels were elevated by P7 in mutant PCs (Figure S3). Motor deficits are 

also found in over 50% of patients with ASDs. To evaluate whether mutants have impaired 
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motor learning, we evaluated mutant animals prior to ataxia onset on the accelerating 

rotarod and found significantly impaired motor learning in mutants (Figure S18).

The changes in PC morphology, combined with previous reports that Tsc1 loss can alter 

synaptic properties17,20, suggested that synaptic inputs to PCs might also be affected. PCs 

receive a single, strong climbing fiber (CF) input and many weak granule cell-parallel fiber 

(PF) inputs (Figure 3A). However, we found no difference in the amplitude of single fiber 

CF inputs between mutant and littermate controls (Figure 3B) at P28. In control animals, 

when synapses are stimulated twice in rapid succession, CF synapses depress, whereas PF 

synapses facilitate, consistent with the high and low release probabilities of these synapses, 

respectively (Figure 3B, left). The same characteristic plasticity was observed in mutants 

(Figure 3B, right). We also stimulated PFs, which produce both a direct excitatory short-

latency PF EPSC and a disynaptic IPSC that arises from PF activation of molecular layer 

interneurons (Figure 3C, left). There was a trend towards a reduction in the ratio of the 

amplitudes of the EPSCs and IPSCs recorded in PCs, but it was not statistically significant 

(Figure 3C, right). Although it is difficult to exclude a subtle effect on synaptic properties, 

these results suggest that in spite of morphological differences, synaptic function in mutants 

appears normal.

Previous studies of Tsc1 have also focused on neurons that are quiescent in the absence of 

excitatory input, whereas PCs fire spontaneous action potentials even in the absence of 

synaptic inputs. Because PC firing rate is thought to be critical for encoding cerebellar 

output in deep cerebellar nuclei (DCN)24, we examined the intrinsic excitability of PCs 

using extracellular recordings, and found a significantly lower, graded spontaneous spiking 

rate in hets and mutants (Figure 3D, left). Moreover, also in graded fashion, current injection 

evoked fewer action potentials in het and mutant PCs (Figure 3E). A plot of firing frequency 

versus injected current shows that het and mutant PCs were significantly less excitable than 

controls (Figure 3E, right). Injection of small hyperpolarizing currents resulted in smaller 

voltage changes in mutant and het PCs suggesting a decrease in the effective input resistance 

(Figure S19A), which has been described previously for hippocampal neurons17, likely 

contributed to the reduced excitability of PCs in mutant and het animals. By 6 weeks of age 

there was an even more profound reduction in excitability in mutant mice (Figure S19B). 

Hence, despite receiving seemingly normal functioning synaptic inputs, the output of the 

cerebellar cortex of het and mutant animals appears to be strongly reduced, both tonically 

and in response to incoming excitatory drive. Our findings implicate reduced PC excitability 

as a potential mechanism underlying the abnormal behaviors in PC Tsc1 mice, consistent 

with clinical observations of impaired cerebellar function in ASD patients9,25.

To evaluate whether the abnormal phenotypes seen in PC Tsc1 mice were modifiable as 

demonstrated in other models of increased mTOR signaling12,19,26, we treated animals with 

the mTOR inhibitor, rapamycin, starting at P7. Whereas vehicle treatment resulted in 

identical phenotypes to untreated cohorts, rapamycin treatment prevented the development 

of pathologic deficits in mutant animals, with mutant soma size and PC numbers 

indistinguishable from controls (Figure 4A, S20).
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We subsequently evaluated whether the abnormal behaviors could also be rescued with 

rapamycin treatment. In vehicle treated mice, behavioral phenotypes were identical to 

untreated cohorts (Figure 4B-C, S21-23); however, rapamycin treatment ameliorated the 

motor phenotypes seen in mutant animals in gait testing and the rotarod (Figure S21, S24). 

Rapamycin treatment also prevented deficits in the water T Maze with no significant 

differences seen between rapamycin treated mutants and controls in both acquisition and 

reversal learning (Figure 4B, S22). In addition, following rapamycin treatment, mutants 

displayed comparable social behaviors to controls in both social approach and social novelty 

assays (Figure 4C, S23). Thus, rapamycin prevented both pathologic and behavioral 

phenotypes in Tsc1 PC mutants, supporting the possibility of a therapeutic role for mTOR 

inhibition.

Our study demonstrates critical, novel roles for the TSC-mTOR pathway in cerebellar PCs. 

We find that mice with homozygous loss of Tsc1 in PCs (mutant) demonstrated social 

impairment, restrictive behavior, and abnormal vocalizations – representative of the three 

core deficits in ASDs. Mutants also displayed pathologic features found in ASD post-

mortem studies with reduced PC numbers and evidence of increased neuronal stress. While 

PC loss has been reported in postmortem studies of ASD patients, several lines of evidence 

suggest that PC death cannot fully explain the abnormal behaviors seen in PC Tsc1 mice. 

Prior to PC death, mutants displayed abnormal vocalizations and motor learning 

impairments. In addition, mice with heterozygous loss of Tsc1 displayed no evidence of PC 

loss yet displayed autistic-like behaviors.

In this study, we also demonstrate that loss of Tsc1 from cerebellar PCs is sufficient to result 

in abnormal autistic-like behaviors. These findings implicate the cerebellum in the neural 

circuitry mediating core features of autism. The cerebellum has been previously suggested to 

play roles in social interaction27 while cerebellar abnormalities are associated with ASDs as 

well as cognitive and behavioral disturbances28. How the cerebellum modulates the 

abnormal behaviors of autism remains a topic of intense investigation. Autism has been 

proposed to be a disorder of abnormally distributed networks29. The cerebellum, via the 

DCN, is connected to these networks and cortical areas implicated in ASDs. Akin to its role 

in motor coordination, the cerebellum has been proposed to modulate these cognitive 

networks, with dysfunction resulting in abnormally regulated behaviors comparable to 

cognitive, behavioral dysmetria30. Our data displayed markedly impaired PC excitability in 

both hets and mutants. As PC firing rates are critical determinants of DCN output, by 

affecting DCN activity, PC dysfunction could be postulated to alter these downstream 

neuronal networks, thereby contributing to abnormal autistic-like behaviors. Therefore, PC 

Tsc1 mutants should provide a valuable experimental system to investigate the effects of PC 

dysfunction on these neuronal networks and other mechanisms contributing to the 

pathogenesis of ASDs.

METHODS

Mice

L7cre; Tsc1flox/flox (mutant)animals were generated by crossing L7/Pcp2-Cre (L7Cre) 

transgenic mice11 with floxed Tsc1 mice (Tsc1flox/flox)10 to yield L7Cre;Tsc1 flox/+ progeny. 
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These progeny were then crossed with one another or with Tsc1flox/flox animals to yield 

litters consisting of control (Tsc1+/+ (WT), Tsc1flox/+, L7Cre;Tsc+/+ (L7Cre), or 

Tsc1flox/flox(Flox)) mice, heterozygous (L7Cre;Tsc1flox/+ (het)) mice, or mutant 

(L7Cre;Tsc1flox/flox (mutant)) mice. Only male animals were used for behavioral experiments 

except for ultrasonic vocalizations where both male and female pups were utilized in the 

analysis. Mice were of mixed genetic backgrounds (C57Bl/6J, 129 SvJae, BALB/cJ). During 

analysis, germline deletion was discovered to occur in the mouse colony at a frequency of 

~5%. Genotyping for het mice would exclude inclusion of these animals in this cohort, but it 

is possible that a small percentage of L7Cre;Tsc1flox/- mice were included in the mutant 

cohort. As such, we repeated behavioral analysis in a cohort of mutant 

(L7Cre;Tsc1flox/flox[LFF]) mice and littermate controls and found no significant differences 

with the previous mutant (LFF*) cohort (Figure S25-26), and thus cohorts were combined 

for analysis. As behavioral data revealed comparable behavioral phenotypes between all 

untreated control (Tsc1+/+, Tsc1flox/flox, L7Cre;Tsc+/+) genotypes, these genotypes were 

pooled for behavioral studies involving rapamycin treatment. All experimental protocols 

were approved by the Animal Research at Children's Hospital Committee.

Behavioral Analysis

Social Interaction—Animals were tested for social interaction in the three chambered 

apparatus (Dold Labs) as previously described31. Time in chambers and number of crossings 

between chambers was recorded in an automated manner (National Instruments). Time spent 

interacting with the novel animal and object was recorded by the examiner with stopwatch. 

Animals were tested between 7-9 weeks of age. For male-female interaction, tested males 

were placed into an open field with control females and evaluated for male-initiated 

interaction over a five minute period. All behavioral assays (including social interaction) 

were performed by examiner blinded to genotype.

Gait Analysis—Animals were placed into the end of an apparatus 5 cm in width 

(preventing animals from turning around), 56 cm in length with paper placed along the 

entire course of the apparatus. Apparatus walls consisted of opaque material and were 15 cm 

in height preventing animals from looking or escaping beyond walls. Paws were painted 

with red (Forepaws) and black (Hindpaws) ink. Length of stride was measured from the 

longest stride for each trial. Stride width was also measured between hind paws at time of 

the longest stride. Measurements were taken from 14-16 week old animals.

Open Field—Open field testing was performed as described for 15 minute period32. 

Movement and time spent in center quadrants were recorded by video camera and analyzed 

by Noldus (Virginia) analysis software. Measurements were taken from animals aged 7-10 

weeks.

Olfaction—Olfaction was tested as previously described33. Animals were presented 

sequentially with odors on cotton tipped applicators: first non-social, then social odors. 

Odors were presented in 3 consecutive trials per odorant stimulus (2 minutes/trial) in the 

following order: water, almond extract, banana extract, social odor 1, and lastly social odor 
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2. Social odors were swipes from cages containing unfamiliar, gender (male), and age 

matched animals. Measurements were taken from animals aged 8-12 weeks.

Grooming—After habituation, animals were observed for 10 minutes, and time spent 

grooming was recorded as described34. Measurements were taken from animals aged 8-12 

weeks.

Water T Maze—Reversal learning was tested using the water T maze as described35. On 

Days 1-3, mice were given 15 trials and tasked to locate a submerged platform placed in one 

of the maze arms. After 15 trials on Day 3, the platform was changed to the other T arm. 

Mice were then tested for 15 additional trials (Reversal (R)Day1). Then for 2 subsequent 

days (Reversal (R)Day 2-3), mice were given 15 trials/day. Number of correct trials and 

number of trials required to achieve 5 consecutive correct trials were recorded. 

Measurements were taken from animals aged 8-12 weeks.

Ultrasonic Vocalizations—Ultrasonic Vocalizations were tested as described on 

postnatal days 5-1223. Pups were removed individually from their mother and placed inside 

a soundproof container where 3 detectors were used to monitor vocalizations for 5 minutes. 

Calls were recorded using Ultravox recording software (Noldus)36. Maternal genotype in all 

experiments was L7Cre;Tsc1flox/+.

Accelerating Rotarod—Animals were tested using the Accelerating Rotarod as described 

over 5 consecutive days37. Animals were tested prior to overt ataxia between 5-7 weeks of 

age.

Slices: Acute sagittal slices (250-300 μm thick) were prepared from the cerebellar vermis of 

4 and 6 week old mutant and control littermates. Slices were cut in an ice cold artificial 

cerebrospinal fluid (ACSF) solution consisting of (mM): 125 NaCl, 26 NaHCO3, 1.25 

NaH2PO4, 2.5 KCl, 1 MgCl2, 2 CaCl2, and 25 glucose (pH 7.3, osmolarity 310) equilibrated 

with 95% O2 and 5% CO2. Slices were initially incubated at 34° C for 25 minutes, and then 

at room temperature prior to recording in the same ACSF.

Recordings: Visually guided (infrared DIC videomicroscopy and water-immersion 40x 

objective) whole-cell recordings were obtained with patch pipettes (2-4 MΩ) pulled from 

borosilicate capillary glass (World Precision Instruments) with a Sutter P-97 horizontal 

puller. Electrophysiological recordings were performed at 31-33° C.

IPSCs were recorded at the EPSC reversal potential, and PF EPSCs were recorded at the 

IPSC reversal potential. To measure climbing fiber synaptic inputs, 500 nM NBQX was 

used to reduce the size of synaptic currents, and picrotoxin (20 μM) was used to block 

GABAergic inhibition. For experiments recorded at the EPSC reversal potential and for CF 

EPSCs, the internal pipette solution contained (in mM): 140 Cs-methanesulfonate, 15 

HEPES, 0.5 EGTA, 2 TEA-Cl, 2 MgATP, 0.3 NaGTP, 10 phosphocreatine-tris2, 2 QX 314-

Cl. pH was adjusted to 7.2 with CsOH. Membrane potentials were not corrected for the 

liquid junction potential. The EPSC and IPSC reversal potentials were determined in each 

experiment by adjusting the membrane potential until no EPSC or IPSC was evident, and 
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was approximately +15 mV for the EPSC reversal, and -65 mV for the IPSC reversal. For 

current-clamp recordings, the internal solution contained (in mM): 150 K-gluconate, 3 KCl, 

10 HEPES, 0.5 EGTA, 3 MgATP, 0.5 GTP, 5 phosphocreatine-tris2, and 5 phosphocreatine-

Na2. pH was adjusted to 7.2 with NaOH. Current-clamp and extracellular recordings were 

performed in NBQX (5 μM), R-CPP (2.5 μM), and picrotoxin (20 μM) to block AMPA 

receptors, NMDA receptors, and GABAA receptors respectively. All drugs were purchased 

from Sigma-Aldrich or Tocris. Electrophysiolgical data were acquired as described 

previously 38.

Rapamycin Treatment: Rapamycin was dissolved in 0.25% polyethylene glycol and 

0.25% tween prior to usage. Vehicle or rapamycin was administered intraperitoneally every 

Monday, Wednesday, and Friday with rapamycin dosed at 6 mg/kg per injection starting at 

P7. As behavioral data revealed comparable behavioral phenotypes between all untreated 

control (Tsc1+/+, Tsc1flox/flox, L7Cre;Tsc+/+) genotypes, these genotypes were pooled for 

behavioral studies involving rapamycin treatment.

Immunohistochemistry: Mice were perfused and post-fixed with 4% paraformaldehyde. 

Sections were prepared by cryostat sectioning and were stained with the following 

antibodies: PhosphoS6 (Cell Signaling), calbindin (Sigma, Cell Signaling), GRP78 

(Stressgen), Heme Oxygenase-1 (Stressgen), Cleaved Caspase 3 (Cell Signaling). TUNEL 

staining was performed per manufacturer recommendations (Millipore).

Microscopy: Intracellular labeling of Purkinje cells was accomplished using recording 

pipettes filled with 0.05% biocytin (Tocris). Neurons in deeper portions of the Purkinje cell 

layer were targeted and filled for 3 min, and then the pipette was slowly withdrawn so that 

the cell membrane could reseal. Slices (250 μm thick) were then fixed in 4% 

paraformaldehyde in 0.1 M phosphate buffer for 24 hours, rinsed thoroughly in PBS, and 

incubated for 90 min in a PBS solution containing 0.5% Triton-X, 10% normal goat serum 

and streptavidin Alexa Fluor 488 conjugate (1:500, Life Technologies). Slices were then 

rinsed in PBS, mounted on Superfrost Plus slides (VWR International), air-dried, and cover-

slipped in Vectashield mounting media (Vector Labs). Immunohistochemical studies were 

captured using Zeiss Confocal LSM710. Images were processed and morphology quantified 

using ImageJ software with studies performed by examiner blinded to genotypes.

Statistics: Data are reported as mean ± SEM, and statistical analysis was carried out with 

GraphPad Prism software using one- and two-way ANOVA with Bonferroni's multiple 

comparison tests for post hoc analysis unless otherwise specified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PC Tsc1 mutants display reduced PC numbers and abnormal PC morphology
A. Mutants displayed reduced Purkinje cell numbers by Calbindin staining. B. PC loss 

occurred by 2 months in mutants. No PC loss was observed in hets at 4 months. C. Increased 

cleaved caspase-3 (CC-3) staining in mutants. (for B-C, controls/mutants: n=3 mice; hets, 

n=2 mice; >500 cells/group) D., E. Mutant PCs displayed increased spine density. (control: 

n=10 cells, 3 mice; het: n=10 cells, 4 mice; mutant: n=11 cells, 3 mice). *** p < 0.001, two-

way ANOVA, Bonferroni's post hoc analysis. Scale bars in A.100μm; D. 20μm (left), 5μm 

(middle), 2μm (right).
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Figure 2. PC Tsc1 hets and mutants display autistic-like behaviors
A. In assays of social approach, unlike all control genotypes (WT, L7Cre, and Flox), hets 

and mutants (mut) demonstrated no significant preference for novel mouse over novel object 

by time spent in chamber (above) or time in close interaction (below) with novel mouse. B. 

Unlike controls, hets and mutants also failed to display preference for social novelty in 

chamber (above) and close interaction (below) times. n≥11 for each group. C. Mutants 

displayed normal acquisition of escape platform location but impairments on day 1 of 

reversal learning (RDay) 1 in a water T-maze. (total trials = 15), n≥13 for each group. D. 

Hets and mutants spent significantly more time self-grooming. n≥11 for each group. E. Hets 

(P10) and mutants (P7, 10) pups emitted significantly more ultrasonic vocalizations than 

controls. n≥8 for each time point and group. ns, p>0.05; *, p<0.05; ** p<0.01, *** p <0.001, 

two-way ANOVA, Bonferroni's post hoc analysis.
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Figure 3. PC excitability is reduced in PC Tsc1 hets and mutants, but no significant difference in 
synaptic inputs to PCs is apparent
A. Schematic of the electrophysiological recording configuration and synaptic inputs onto 

cerebellar PCs. B. Electrical stimulation of climbing fibers (CF, top) and granule cell-

mediated parallel fiber (PF, bottom). Whole cell mode voltage-clamp recordings showed no 

difference in the conductance (g) of single fiber CF inputs (control (con) n=20 cells, 5 mice; 

mutant (mut) n=16 cells, 5 mice, p=0.34), or the paired-pulse ratio (PPR) of either CF or PF 

inputs (CF PPR: con n=8, mut n=5, p=0.51). C. Electrical stimulation revealed no 

differences in the ratio of evoked synaptic excitation to inhibition (E/I ratio; con n=29, mut 

n=17, p=0.19). D. Extracelluar recording of spontaneous PC spiking (left) revealed a 

significantly lower spike rate in hets and mutants (right, con n=77 cells, 12 mice, het n=62 

cells, 7 mice; n=42 cells, 9 mice). E. Whole cell mode current-clamp recordings showed 

reduced excitability in PCs from hets and mutants compared to control PCs. Left, current 

injections of 1 and 3 nA produced fewer spikes in PCs from hets and mutants. Right, 

average data showed a reduced spike output for mutant PCs (con n=77 cells, 12 mice, het 

n=48 cells, 7 mice; n=43 cells, 9 mice). ns, p>0.05, * p<0.05, ** p<0.01. two-way ANOVA, 

Bonferroni's post hoc analysis.
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Figure 4. Rapamycin treatment prevents pathologic and behavior abnormalities in PC Tsc1 
mutant mice
A. Treatment with rapamycin (Rapa) prevented cell loss seen in vehicle (Veh) treated PC 

Tsc1 mutants. Scale bar: 100 μm. Quantification of cell numbers on right (n > 500cells; 2 

mice per group) B., C. Whereas vehicle treated mutants displayed behavioral deficits, 

rapamycin treated mutants displayed amelioration of these deficits in B. reversal learning in 

the water T maze (n≥9 in each group) and in C. social approach in the three chambered 

apparatus (n≥10). As behavioral phenotypes were not significantly different between the 

three control genotypes in untreated mice, control genotypes were pooled into a single group 

for these studies. ns, p>0.05; *, p<0.05; *** p <0.001, two-way ANOVA, Bonferroni's post 

hoc analysis.
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