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The development and implementation of highly multiplexed molecular diagnostic tests have allowed clinical microbiology labora-
tories to more rapidly and sensitively detect a variety of pathogens directly in clinical specimens. Current US Food and Drug Ad-
ministration–approved multiplex panels target multiple different organisms simultaneously and can identify the most common
pathogens implicated in respiratory viral, gastrointestinal, or central nervous system infections. This review summarizes the test char-
acteristics of available assays, highlights the advantages and limitations of multiplex technology for infectious diseases, and discusses
potential utilization of these new tests in clinical practice.
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The ability to simultaneously detect and identify the most fre-
quent causes of infectious diseases directly from clinical speci-
mens is useful for patient care, hospital infection control
practices, and epidemiologic studies. A variety of commercially
available nucleic acid amplification platforms are capable of tar-
geting multiple microorganisms in a single test reaction. This
approach, known as multiplexing, is being increasingly applied
for the diagnosis of a variety of different infectious diseases. The
focus of this review is on the current US Food and Drug Admin-
istration (FDA)–cleared or approved multiplex polymerase
chain reaction (PCR) panels designed to aid in the diagnosis
of respiratory virus (RV), gastrointestinal (GI), and central ner-
vous system (CNS) infections (Table 1).

Respiratory, GI, and CNS infections are similar in that the
clinical signs and symptoms of these syndromes are often not
pathogen specific and the infectious differential diagnosis is
broad. Historically, making a microbiologic diagnosis required
a combination of microscopy, antigen tests, culture, and patho-
gen-specific PCR assays. A multiplex molecular approach
potentially simplifies testing algorithms and laboratory work-
flow, as well as increases the likelihood that an actionable diag-
nosis will not be missed. Multiplex assays significantly increase
diagnostic yield (ie, number of organism detections), largely
due to the fact that they target potential pathogens not routinely
identified by traditional methods. In addition, multiplex PCRs
are generally more sensitive than routine culture or antigen de-
tection. The limitations of current multiplex tests are that they

no not detect all potential pathogens and that a negative panel
result does not entirely exclude infection. Furthermore, panel-
based testing cannot be tailored to the individual patient be-
cause current platforms offer few or no options for selecting
which organism targets will be tested.

FDA-approved panels for microorganism detection vary in
the organisms that they detect (Tables 2 and 3) and turnaround
time (TAT) to results; all are considered to be of moderate or
high complexity. Laboratories performing these tests must
meet Clinical Laboratory Improvement Amendments quality
standards, such as those for proficiency testing, quality control,
and personnel requirements. Regulations for moderate vs high
complexity testing differ only in the personnel requirements,
which ultimately influence whether individual laboratories
can perform multiplex testing and where the testing is per-
formed (eg, in a rapid-response laboratory located near the pa-
tient vs a specialized molecular section in the main laboratory).

RESPIRATORY TRACT INFECTION

The first large multiplex PCR panel for infectious diseases tar-
geted 12 respiratory viruses and was FDA approved in 2009.
Since then, multiple other RV panels have been FDA approved
(Table 2). These assays are all intended for use with nasopha-
ryngeal (NP) swabs. Clinical laboratories may also validate
other specimen types such as bronchoalveolar lavage fluid or
nasal washes/aspirates to run off-label. Testing lower respiratory
tract specimens is required to confirm whether or not a virus
detected in an NP sample is also the cause of lower respiratory
tract. Additionally, testing a lower tract specimen may be indi-
cated despite a negative nasal result when the clinical suspicion
for viral pneumonia is high.

The various commercially available RV panels have been com-
pared to one another and to laboratory-developed monoplex
PCRs. Significant sensitivity differences have been observed for
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adenovirus and influenza virus detection in particular [1–3]. A
recent comparative study reported that the sensitivity of different
influenza A targets ranged from 73% to 100% and influenza B
from 46% to 100% across various platforms [1]. It is essential

that laboratorians and clinicians understand the performance
characteristics of all the members in a panel as well as recognize
that the prevalence of individual pathogens in a given patient
population will affect the predictive value of their test.

Table 1. US Food and Drug Administration–Approved Syndromic Panels for Multiple Pathogen Detection

Characteristic

Test System

BD MAX FilmArray eSensor Prodesse Verigene Luminex

Method Real-time
PCR

Nested PCR with melt
curve analysis

PCR with electrochemical
detection

Real-time PCR PCR with low-density
nucleotide array

PCR with liquid phase
bead array

Degree of
multiplexing

4 targets 14–22 targets 13 targets 3–4 targets 1–16 targets 9–20 targets

Panels GI Respiratory,
GI
CNS

Respiratory Respiratory,
GI

Respiratory,
GI

Respiratory,
GI
CNS

Testing location Clinical
laboratory

Near patient facility or
clinical Laboratory

Clinical laboratory Clinical
laboratory

Near patient facility or
clinical laboratory

Clinical laboratory

Complexity Moderate Moderate High High Moderate High

automation Full Full Partial Partial Full Partial

throughput Low-medium Low-medium Medium Medium Low Medium-high

Time to results ∼3 h ∼1 h ∼6 h 3–4 h ∼2 h ∼5–8 h

Abbreviations: CNS, central nervous system; GI, gastrointestinal; PCR, polymerase chain reaction.

Table 2. Comparisons of US Food and Drug Administration–Approved Respiratory Panels

Pathogens FilmArray eSensor Verigene

Luminex xTAG

RVP RVP Fast NxTAG

Viral

Adenovirus • • • • • •

Coronavirus HKU1 • •

Coronavirus NL63 • •

Coronavirus 229E • •

Coronavirus OC43 • •

Human bocavirus •

Human metapneumovirus • • • • • •

Influenza A • • • • • •

Subtype H1 • • • • • •

Subtype H3 • • • • • •

Subtype 2009 H1N1 • •

Influenza B • • • • • •

Parainfluenza 1 • • • • •

Parainfluenza 2 • • • • •

Parainfluenza 3 • • • • •

Parainfluenza 4 • • •

Respiratory syncytial virus • • •

Respiratory syncytial virus A • • • •

Respiratory syncytial virus B • • • •

Rhinovirus/enterovirus • • • • •

Bacteria

Chlamydia pneumoniae • •

Mycoplasma pneumoniae • •

Bordetella pertussis • •

Bordetella parapertussis/Bordetella bronchiseptica •

Bordetella holmesii •

Abbreviation: RVP, respiratory viral panel.
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The potential for false-positive results from PCR amplicon
carryover contamination is a major concern for the high-
complexity platforms that involve manipulation of amplified
PCR products. Even with fully integrated, closed systems,
there is potential to contaminate raw specimens with viruses
shed by the respiratory tract of the operator. Laboratories
must carefully follow operating procedures designed to mini-
mize the contamination of specimens, work surfaces, and
equipment. This can be a major challenge when testing is per-
formed outside of a dedicated molecular diagnostics section.
For near patient testing, consideration should be given to ma-
nipulating specimens in a biological safety cabinet that can be
cleaned and kept separate from positive control material. At a
minimum, wearing a mask or face shield should be considered
for specimen processing. Laboratories should also monitor pos-
itivity rates of the individual targets as a way to quickly detect
potential contamination problems.

Despite years of experience with RV panels, there are relatively
few data on the clinical impact of multiplex testing. Previous RV
diagnostic studies have shown that rapid direct fluorescent anti-
body staining from NP specimens can shorten the length of hos-
pital stay, minimize ancillary testing, and reduce unnecessary
antibiotic use for pediatric patients [4, 5]. Is there an advantage
to more-sensitive molecular tests that detect a broader spectrum
of potential pathogens? An inpatient pediatric cost analysis

assessed the price of hospital admission, time in respiratory iso-
lation, antibiotic usage, and diagnostic procedures to conclude
that multiplex PCR testing was the least expensive test strategy
as long as the prevalence of RV disease was ≥11% [6].Multiplex
panel testing may also be cost-effective for children with influen-
za-like illness evaluated in the emergency department [7].

In contrast to pediatric studies, most hospitalized adult patients
with suspected lower respiratory tract infection receive antibiotics
even when a virus is detected out of concern for bacterial coinfec-
tion [8]. This approach leads to the overuse of antibiotics and has
potential for unnecessary drug toxicity. Comprehensive molecu-
lar testing for viral and bacterial pathogens from sputum signifi-
cantly increases the likelihood of making an etiologic diagnosis in
community-acquired pneumonia (CAP) [9, 10]. However, cur-
rently there are no FDA-approved molecular tests for “typical”
bacterial CAP pathogens. An alternative strategy has been to
combine RV multiplex testing with the results of cultures and
urine pneumococcal and Legionella antigens. Going forward,
combining RV panel results with serum biomarkers [11, 12]
and/or measures of host immune response [13] may hold prom-
ise for ruling in or out viral infection.

A recent example of the utility of multiplex testing for epide-
miology was the enterovirus D68 outbreak that occurred in the
summer of 2014. Hospitals in Kansas City and Chicago notified
the Centers for Disease Control and Prevention (CDC) due to

Table 3. Comparisons of US Food and Drug Administration–Approved Gastrointestinal Panels

Pathogens FilmArray Verigene Luminex BDMax Prodesse

Bacterial

Campylobacter • • • • •

Salmonella • • • • •

Shigella • • • • •

Shiga-like toxin 1 and 2 • •
a

• • •

Enterotoxigenic Escherichia coli • •

Enteropathogenic E. coli •

Enteroaggregative E. coli •

E. coli O157 • •

Vibrio • •

Yersinia enterocolitica • •

Plesiomonas shigelloides •

Clostridium difficile • •

Viral

Norovirus GI and GII • • •

Adenovirus 40/41 • •

Rotavirus • • •

Astrovirus •

Sapovirus •

Parasitic

Giardia • • •

Cryptosporidium • • •

Cyclospora cayetanensis •

Entamoeba histolytica • • •

a Verigene detects and reports each Shiga-like toxin gene separately.

MEDICAL MICROBIOLOGY • CID 2016:63 (15 November) • 1363



an increase in severe respiratory illness among children in those
2 cities [14]. Respiratory specimens initially tested positive for
rhinovirus/enterovirus. Identifying these viruses as the etiologic
agent of disease was possible because the clinical laboratories
were using multiplex panels for routine patient testing.

GASTROINTESTINAL INFECTIONS

The use of multiplex molecular panels for the detection of GI
pathogens has also been a hot area of commercial product de-
velopment in recent years. Some GI assays are designed to de-
tect subsets of parasites or bacteria only, whereas others
combine bacterial and viral targets, or target broader combina-
tions as syndromic panels (Table 3). The various platforms have
different TATs, but even the most time-intensive assays (>4
hours) are significantly faster than stool culture (2–5 days).
The rapidity of multiplex tests compared to that of conventional
methods is one of the major advantages of molecular testing.

Available evidence suggests that the analytical performance
of current GI panels is essentially equivalent. Analytical specif-
icity has exceeded 98% for all targets with rare exceptions
[15–19]. Sensitivity characteristics have been more variable,
however, with values ranging from 90% to 100% [15–19].
Sensitivity differences may be due in part to the low prevalence
of individual pathogens in some studies—a situation where a
single missed organism detection can dramatically affect calcu-
lations of target test performance.

It is also important to recognize the lack of a robust diagnostic
gold standard for use as the comparator test for multiplex
panel studies. For example, multiple GI studies have observed a
significant proportion of multiplex PCR Campylobacter–positive,
culture and monoplex PCR- or DNA sequencing – negative stool
specimens [15, 18–21]. An important consideration here is
that Campylobacter culture is insensitive [21] and the analytic
sensitivity of arbitrator PCRs and/or nucleic acid sequencing
was poorly defined. It is likely that many of the multiplex
Campylobacter DNA detections were true positives given the
high specificity of these assays. Similar, though less dramatic,
trends were seen with other targets across multiple platforms
including Salmonella, Shigella/enteroinvasive Escherichia coli,
and Shiga-like toxin–producing E. coli.

Clinicians typically formulate a discrete list of pathogens at
the top of their differential diagnosis, and a multiplex panel
may or may not detect those organisms. A potential challenge
comes when a patient tests positive for Clostridium difficile, for
example, simply because it is included in the panel but not nec-
essarily because the organism is the causative agent of disease.
With increasing incidence of community-acquired C. difficile
infections, the identification of this target in the stool of a symp-
tomatic outpatient may be difficult to interpret [22]. Children
<1 year of age can be colonized with toxigenic C. difficile, but
clinical disease in this age group is rare [23]. Laboratories that
implement GI panel testing with C. difficile toxin A/B targets

should consider how positive results will be reported for infants
and children. Some laboratories may choose not to release these
results or potentially use disclaimers in their reporting. Health-
care providers will also need to interpret the significance of
other unexpected detections, such as for sapovirus and enter-
oaggregative or enteropathogenic E. coli. These are examples
for organisms not routinely identified by clinical laboratories
in the past.

Prolonged shedding of GI pathogens also presents a potential
conundrum. Both Salmonella [24] and norovirus [25] can be ex-
creted in the stool for weeks or months after symptoms have re-
solved, and children may be asymptomatically infected with
Cryptosporidium [26] or Giardia lamblia [27]. Prolonged shed-
ding events could complicate acute diagnosis when >1 entero-
pathogen is detected. Recent studies have shown that 27%–33%
of GI panel–positive specimens contained >1 potential patho-
gen [19, 28], but the clinical implications of coinfection with
specific pathogen combinations have not been defined. These
nuances will force clinicians and laboratorians to evaluate
panel results carefully in the context of the host and the season.

Unexpected organism detections also provide unique oppor-
tunities to expand our understanding of rare pathogens and for
seasonal outbreaks. In the clinical trials of one of the most com-
prehensive GI panels, investigators in Iowa and Nebraska de-
tected Cyclospora cayetanensis in multiple patient specimens
well in advance of an outbreak being recognized by laboratories
employing classical methodology [29].

Conventional microbiologic testing for the evaluation of di-
arrheal illness has historically been viewed as low cost. Thus, the
threshold for ordering stool cultures, stool antigens, and/or ova
and parasite examinations has been low despite limited clinical
utility in the acute care setting [30, 31]. Given the difference in
cost for newer rapid molecular tests vs traditional methods, in-
stitutions should not consider all cases of acute diarrhea as im-
mediate candidates for molecular GI testing. In the outpatient
setting, clinicians should think about what, if any, impact a pos-
itive or negative test result will have on patient care, especially
when the illness may be self-limited. On the inpatient side,
Goldenberg and colleagues calculated potential cost savings to
the hospital through a reduction of unnecessary isolation prac-
tices, but with an increase in laboratory expenses vs convention-
al methods [32].

Although GI panels may replace traditional testing in certain
situations, there is still a need to maintain culture capabilities
for repeat testing if the molecular test is negative and clinical
suspicion is high or to have an isolate for susceptibility testing.
For example, routine susceptibility testing is indicated for ty-
phoidal Salmonella and Shigella isolated from intestinal sources.
Isolation and submission of cultured isolates from ill patients to
public health laboratories (PHLs) for typing helps to identify
clusters of disease caused by bacterial pathogens such as E.
coli 0157, Salmonella, and Listeria. Working with the CDC,
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the Association of Public Health Laboratories and the American
Society for Microbiology have published interim recommenda-
tions in the new era of culture-independent tests [33]. These
recommendations include contacting the PHL prior to imple-
menting molecular testing and to continue to obtain isolates
as much as possible. If clinical laboratories are unable to culture
isolates, the original nucleic acid test–positive specimens should
be submitted in transport medium within 24 hours.

MENINGITIS AND ENCEPHALITIS

In October 2015, the FDA cleared the first fully automated mul-
tiplex PCR panel for CNS pathogens. The FilmArray meningitis/
encephalitis (ME) panel (BioFire Diagnostics) tests for 14
bacterial, viral, and yeast pathogens using a 200-µL sample of
cerebrospinal fluid (CSF) in about an hour. The bacteria and
yeast pathogens identified by the panel are listed in Table 4.

There have been 3 published reports evaluating the test perfor-
mance of the ME panel [34–36]. The largest was a prospective
study that enrolled 1560 residual CSF specimens and was de-
signed to support the company’s 510(k) submission to the
FDA [35]. Culture was used as the diagnostic gold standard for
bacterial target comparisons, and monoplex PCR assays followed
by bidirectional sequencing were used for the viruses and yeast.
Discrepancies across methods were resolved by repeat molecular
testing (when possible) combined with a blinded review of avail-
able medical records. After adjudication of discordant results,
there was 84.4% positive and >99.9% negative agreement between
the ME panel and conventional methods [35].

Several important messages are evident in the report by Leber
and colleagues [35]. First, there were relatively few cases of bac-
terial or cryptococcal meningitis, which precluded statistically
significant assessments of these targets. Previous reports ob-
served that the Cryptococcus targets were less sensitive than an-
tigen testing [34], and the ME panel had a limit of detection on
the order of 100 colony-forming units/mL [36]. Next, there
were as many false-positive or unconfirmed ME panel results
(n = 22) as there were additional confirmed detections
(n = 21) made with the comprehensive panel. The authors

hypothesized that contamination could have played a role in
the false-positive ME panel results, either from the positive con-
trol material or from the normal flora of the test operators. The
ME test system is closed (ie, the likelihood of amplicon carry-
over should be low); but like the RV panels, environmental con-
tamination is still possible and laboratories must work diligently
to prevent and monitor for this. It is also important to note that
study subjects did not necessarily have a high pretest probability
for infectious meningoencephalitis, which would have also
reduced the pretest probability for disease in some cases. Last,
the detection of latent or reactivated Herpesviridae was not
uncommon, and the significance of these identifications must
be evaluated in the context of the patient.

Available data suggest that the ME panel test performance is
acceptable for patient care but that the test cannot replace cur-
rent routine testing. The CSF Gram stain remains critical for in-
terpreting PCR results, and bacterial culture is required to detect
organisms not covered by the panel as well as to have an isolate
for susceptibility testing. Furthermore, cryptococcal antigen
with fungal culture remains the preferred method for diagnos-
ing cryptococcal meningitis. Because the panel does not detect
all potential pathogens and false-negative results are possible,
patients with a very high clinical suspicion for bacterial menin-
gitis or herpes encephalitis should still receive empiric therapy
even when the ME panel is negative.

DISCUSSION

The potential advantages and disadvantages of large multiplex
panels for infectious diseases are summarized in Table 5. These
assays have substantially increased our ability to detect potential
pathogens in a variety of different clinical specimens. Further-
more, moderate-complexity platforms have enabled many more
clinical laboratories to perform molecular diagnostic testing in-
house, which substantially improves TAT relative to conven-
tional methods. Multiplex molecular capabilities also come
with several important caveats. Just because a new test is FDA
approved does not necessarily mean it is the right test for all pa-
tients. Multiplex reagents and instrumentation is expensive and
the pretest probability for infection differs significantly accord-
ing to patient age, host immunocompetence, time of year, and

Table 5. Potential Advantages and Limitations of Large Multiplex Panels

Pros Cons

• Convenience
• Rapid turnaround time

to results
• Guide treatment
• Impact isolation

practices
• Patient satisfaction
• Identify outbreaks
• Epidemiologic studies

• Cost
• Not tailored to the individual patient
• Nucleic acid detection ≠ viable organism
• Detects asymptomatic carriers, prolonged

shedding, or latent/reactivated viruses
• May still need culture, additional PCRs,

antigens, and/or stool O&P
• Potential for contamination and false-

positive results

Abbreviations: O&P, ova and parasite; PCR, polymerase chain reaction.

Table 4. The FilmArray Meningitis/Encephalitis Panel

Bacteria

• Escherichia coli K1 • Neisseria meningitidis

• Haemophilus influenzae • Streptococcus agalactiae

• Listeria monocytogenes • Streptococcus pneumoniae

Viruses

• Cytomegalovirus • Human herpesvirus 6

• Enterovirus • Human parechovirus

• Herpes simplex virus 1 • Varicella zoster virus

• Herpes simplex virus 2

Yeasta

• Cryptococcus neoformans • Cryptococcus gattii

a The assay does not differentiate C. neoformans from C. gattii.
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geographic region. In the absence of cost-effectiveness data, we
recommend the following targeted approach to panel testing:

1. RV panels have the highest potential impact for immuno-
compromised patients, critically ill patients, and hospitalized
children.
2. GI panels should primarily be used in cases of dysentery,

for moderate or severe disease, for symptoms lasting more than
a week [37], and for the immunocompromised host with com-
munity-onset symptoms.
3. The ME panel targets pathogens that are the most prob-

lematic for immunocompromised patients. Testing may also
speed time to diagnosis when the clinical suspicion for bacterial
meningitis is high or when the patient has already received an-
tibiotics. Outside of these selected scenarios, laboratory consul-
tation with acceptance criteria based in part on elevated CSF cell
counts should be considered for immunocompetent adults as a
way to limit unnecessary testing [38].

CONCLUSIONS

Highly multiplexed molecular diagnostics are powerful tools for
patient care, epidemiologic studies, and, potentially, infection
control. It is highly likely that panel testing will be increasingly
used in clinical microbiology in the future. However, these as-
says cannot replace culture, and additional testing for organisms
not included in the panel will be required in some cases. Isola-
tion of microorganisms will still be required to perform pheno-
typic antimicrobial susceptibility testing and to provide isolates
for public health investigations.

The optimal use of large panels for infectious diseases has not
been established. Clinical utilization and outcome studies are
ultimately required to determine whether a syndromic diagnos-
tic approach is cost-effective. Ideally, randomized trials should
be conducted to determine the potential impact of rapid and
comprehensive molecular diagnostic tests. Outcomes of interest
include antimicrobial use, time to optimal therapy, length of
hospital or emergency department stay, mortality, and costs.
However, prospective studies may not be feasible due to prohib-
itive costs or time required to accrue enough patients with a rare
disease (eg, meningoencephalitis). Implementation research
and cost-effectiveness decision analyses could also provide valu-
able information to help guide the rational use of these technol-
ogies. In the meantime, it is essential that local implementation
of panel testing be done in partnership with clinicians to assure
that there is a clear understanding of test characteristics, results
interpretation, and appropriate utilization. Consultation with
the clinical laboratory is also useful to help interpret unexpected
or confusing results.
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