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    Introduction 
 CD317, also known as BST2 or HM1.24 antigen ( Goto et al., 

1994 ;  Vidal-Laliena et al., 2005 ) and recently designated tetherin 

( Neil et al., 2008 ), is an integral membrane protein with a novel 

topology. It has a conventional transmembrane domain (near 

its N terminus) and a C-terminal glycosyl-phosphatidylinositol 

(GPI) anchor ( Kupzig et al., 2003 ). CD317 plays a role in regu-

lating the growth and development of B cells and is highly ex-

pressed in human myeloma cells ( Goto et al., 1994 ;  Ishikawa 

et al., 1995 ;  Ohtomo et al., 1999 ); its expression is up-regulated 

by interferon- �  ( Blasius et al., 2006 ), and it causes retention of 

fully formed HIV viral particles at the surface of HIV-infected 

cells ( Neil et al., 2008 ;  Van Damme et al., 2008 ). 

 CD317 was initially described as being present at the cell 

surface ( Goto et al., 1994 ;  Ishikawa et al., 1995 ;  Ohtomo et al., 

1999 ), but we subsequently demonstrated that it also resides in 

an intracellular pool and that it cycles between this intracellular 

pool and the cell surface ( Kupzig et al., 2003 ), the internal-

ization step being clathrin dependent ( Rollason et al., 2007 ). 

CD317 resides, at least at the cell surface, in cholesterol-rich 

lipid microdomains (lipid rafts) with the transmembrane do-

main apparently lying outside the lipid raft and with the raft 

localization being dependent on its GPI anchor ( Kupzig et al., 

2003 ). Lipid rafts have been implicated as being important in 

membrane traffi cking by helping to segregate proteins for deliv-

ery to specifi c locations and in cell signaling by providing plat-

forms for the transient assembly of signaling complexes (for 

reviews see  Simons and Toomre, 2000 ;  Viola and Gupta, 2007 ). 

A recent review ( Viola and Gupta, 2007 ) prefers the term  “ mem-

brane rafts ”  to lipid rafts and defi nes membrane rafts as  “ small 

(10 – 200 nm in diameter), heterogenous, highly dynamic, sterol- 

and sphingolipid-enriched domains that compartmentalize cel-

lular processes. ”   Viola and Gupta (2007)  highlight the fact that 

there have been several studies of integral membrane proteins 

that tether membrane rafts to the underlying actin cytoskeleton. 

Indeed, the work of  Kusumi et al. (2005)  has developed the 

 “ picket fence ”  model, originally proposed by  Sheetz (1983) , in 

which specifi c integral membrane proteins are linked to the ac-

tin cytoskeleton and thereby act as rows of pickets in the plane 

of the lipid bilayer, limiting the free diffusion of membrane lip-

ids and proteins and thereby serving to establish highly dynamic 
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(see Materials and methods) gave similar results. Stably trans-

fected Caco-2 cells were selected and processed for immuno-

fl uorescence and immunoblot analysis using antibodies to 

CD317. This demonstrated that levels of CD317 expression had 

been reduced in the knockdown cells to  < 20% of those in con-

trol cells ( Fig. 1 B  and Fig. S1 A, available at http://www.jcb

.org/cgi/content/full/jcb.200804154/DC1). 

 Colonies of nonpolarized Caco-2 cells in which CD317 

expression had been knocked down appeared to have a subtly 

different phenotype to that seen in colonies of control cells. This 

led us to investigate the organization of the actin cytoskeleton in 

the CD317 knockdown cells. Colonies of CD317 knockdown 

cells were shown to possess signifi cantly more-pronounced 

bundles of F-actin than control colonies as well as distinct fi lo-

podia at the periphery of colonies ( Fig. 1 C ). Immunoblot analy-

sis of the total actin present in control and CD317 knockdown 

cells demonstrated that this extra F-actin is not the result of 

overexpression of actin (unpublished data) and is therefore most 

likely the result of increased F-actin polymerization. 

 CD317 knockdown in polarized 
Caco-2 cells 
 The fact that reducing expression of CD317 in nonpolarized 

Caco-2 cells results in an alteration in the organization of the 

actin cytoskeleton in those cells led us to ask what effect the re-

duced expression of CD317 would have on the phenotype of 

polarized Caco-2 cells (assuming they were still able to polarize 

after CD317 knockdown). Control Caco-2 cells were grown to 

confl uency and allowed to polarize (as described in Materials 

and methods). As expected for polarized epithelial cells, the 

majority of the F-actin in these cells can be seen to be subapical 

( Fig. 2 A ). CD317 knockdown Caco-2 cells grown to confl u-

ency also polarized and exhibited a similar gross morphology to 

that of control cells. However, there is a signifi cantly different 

distribution of F-actin in these cells, with an almost complete 

absence of any detectable subapical F-actin and a preponder-

ance of F-actin bundles at the basal membrane ( Fig. 2 A ). This 

observation suggested that knockdown of expression of CD317 

might affect the organization of apical microvilli in polarized 

Caco-2 cells because F-actin fi bers normally run along the 

length of microvilli providing mechanical support ( Bretscher, 

1991 ;  Bartles, 2000 ). Scanning EM (SEM) analysis of polar-

ized Caco-2 cells showed that although there is a dense network 

of long apical microvilli on the surface of control cells, the api-

cal surface of CD317 knockdown cells is almost completely de-

void of any microvilli; those that are present are sparse, short, 

and/or stubby ( Fig. 2 A , right). XZ reconstructions of confocal 

images of control and CD317 knockdown cells show the altered 

distribution of F-actin and also that the knockdown cells appear 

to be shorter than their control counterparts ( Fig. 2 A , middle). 

Measurement of the height of the monolayers shows that the 

knockdown cells are 5.6  ±  0.37  μ m tall ( n  = 50), as opposed to 

13.47  ±  0.9  μ m ( n  = 50) for the control cells. 

 The formation of tight junctions between adjacent cells is 

an integral part of the normal process by which polarized mono-

layers of epithelial cells are formed ( Yeaman et al., 1999 ). The 

observed differences in F-actin distribution and in cell height 

membrane microdomains. This linking of integral membrane 

protein  “ pickets ”  to the actin  “ fence ”  not only generates mem-

brane microdomains, it also ensures proximity of the actin cyto-

skeleton to the region of the plasma membrane containing the 

membrane protein pickets, thereby intimately coupling the 

architecture of the cytoskeleton with that of the plasma mem-

brane. Consistent with this model is the fact that a growing 

number of integral membrane proteins have been shown to be 

linked to the actin cytoskeleton, often via a member of the 

ezrin-radixin-moesin (ERM) family of proteins ( Fanning and 

Anderson, 1999 ;  Bretscher et al., 2000 ). 

 We have previously suggested that CD317 resides in the 

plasma membrane with its GPI anchor in a membrane raft and 

its transmembrane domain outside of the raft (or at the interface 

of the raft and nonraft domains;  Kupzig et al., 2003 ). This would 

place the N-terminal cytosolic domain of CD317 in a suitable 

position to interact with the actin cytoskeleton. Therefore, we 

thought it appropriate to test whether CD317 does interact with 

the actin cytoskeleton. 

 In this study, we show that CD317 does interact, indi-

rectly, with the actin cytoskeleton and that it plays a critical role 

in the organization of the actin cytoskeleton in polarized epithe-

lial cells. 

 Results 
 CD317 localization in nonpolarized and 
polarized Caco-2 cells 
 We initially chose to determine the localization of CD317 in 

nonpolarized Caco-2 cells because we subsequently planned to 

investigate the possible role of CD317 in apical traffi cking in 

polarized epithelia. Caco-2 cells are a good model for such 

experiments because, when they are grown at confl uency on 

permeable fi lters for an extended duration ( � 2 wk), they differ-

entiate into highly polarized monolayers with attributes similar 

to those of intestinal epithelial cells ( Grasset et al., 1984 ). These 

include a tall, columnar morphology and tightly packed micro-

villi. Caco-2 cells can also be grown as nonpolarized cells on 

plastic or glass. We found that some CD317 is expressed at the 

surface of nonpolarized Caco-2 cells, but the majority is intra-

cellular, which is a distribution similar to that previously de-

scribed for rat, mouse, and human CD317 in nonpolarized cells 

( Kupzig et al., 2003 ;  Blasius et al., 2006 ;  Neil et al., 2008 ;  Van 

Damme et al., 2008 ). However, in fully polarized Caco-2 cells, 

the predominant localization of CD317 is at the apical plasma 

membrane ( Fig. 1 A ). 

 CD317 knockdown 
 The fact that CD317 is apically localized in polarized Caco-2 

cells suggested that it might play a role in the establishment 

or maintenance of the polarized phenotype. We chose to ad-

dress this possibility by knocking down expression of CD317 

using siRNA and then assaying whether this had any effect on 

the morphology of nonpolarized and polarized Caco-2 cells. 

CD317 expression was initially knocked down in nonpolarized 

Caco-2 cells using a plasmid-based siRNA expression system 

(see Materials and methods). Two different siRNA sequences 
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data suggested that tight junctions are still present, intact, and 

functional in the CD317 knockdown cells. As a further test of 

the integrity of the epithelial monolayer formed by CD317 

knockdown cells, apical surface proteins were biotinylated in 

control and CD317 knockdown cells. Tight junctions are imper-

meable to biotin ( Sargiacomo et al., 1989 ); so, if tight junctions 

are intact and functional, only apical membrane proteins should 

be biotinylated when the apical surface is labeled with biotin. 

between control cells and CD317 knockdown cells led us to 

question whether tight junctions were forming correctly in the 

CD317 knockdown cells. Several assays were performed to 

address this question. First, confl uent monolayers of CD317 

knockdown and control cells were grown on permeable mem-

brane supports. The transepithelial resistance was then mea-

sured and was consistently found to be 150 – 170 Ohm/cm 2  ( n   >  20) 

in both control and CD317 knockdown cell monolayers. These 

 Figure 1.    Localization of CD317 in polarized Caco-2 cells, its knockdown in Caco-2 cells, and the effect of knockdown on F-actin.  (A) Localization 
of CD317 in polarized Caco-2 cells. The top row shows XY images of CD317 (detected with an anti-CD317 antibody) and F-actin (Alexa Fluor 594 – 
phalloidin) localization as indicated. The second row shows an XZ section from the fi rst row. The third row shows XY images of CD317 and 
 � -catenin localization as indicated ( � -catenin is a marker of lateral membranes). The bottom row shows an XZ section from the third row. Panels on 
the right show merged images of the left and middle panels, with DAPI-stained nuclei on the right in the second row. (B) Immunoblot analysis (using 
an anti-CD317 antibody) of lysates from Caco-2 cells stably expressing CD317 siRNA or control GFP siRNA as indicated. The bands representing 
higher molecular weight proteins in the control siRNA lane correspond to glycosylated CD317. An immunoblot of  � -tubulin was used as a loading 
control. Molecular mass is indicated in kilodaltons. (C) Alexa Fluor 594 – phalloidin decoration of F-actin in nonpolarized CD317 knockdown cells 
(top) and control cells (bottom). Each image shows a colony of cells with DAPI-stained nuclei. The top panel is an XZ section from a fi eld of CD317 
knockdown cells. Bars, 10  μ m.   
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 Figure 2.    The effect of CD317 knockdown in polarized Caco-2 cells.  (A) Left panels are maximum intensity projection XY images showing Alexa Fluor 594 – 
phalloidin decoration of F-actin in polarized control and CD317 knockdown Caco-2 cells. Middle panels show XZ sections taken along the lines in left 
panels. Right panels show corresponding SEM images of the surface of control and CD317 knockdown cells. Arrows indicate the positions of the top (A) 
and bottom (B) of the cell monolayer. (B) ZO-1 labeling of tight junctions in polarized CD317 knockdown and control Caco-2 cells and biotin labeling of 
proteins in the apical membrane of polarized CD317 knockdown Caco-2 cells as indicated. Left panels are maximum intensity projection XY images, and 
right panels are XZ sections taken along the lines in the left panels. Arrows indicate the positions of the top (A) and bottom (B) of the cell monolayer. 
(C) Detection of  � -catenin in the lateral membranes and sucrase-isomaltase in the apical membrane of polarized CD317 knockdown Caco-2 cells. XZ sections 
derived from maximum intensity projection XY images are presented. The right panel is a merge of the left and middle images. Bars, 10  μ m.   
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MLC in CD317 knockdown cells is  > 10-fold that detected in 

control cells (control cells were untransfected Caco-2 cells, 

lamin A/C knockdown Caco-2 cells, or CD317 knockdown 

Caco-2 cells rescued by expression of rat CD317;  Fig. 3 B  and 

Fig. S2 A, available at http://www.jcb.org/cgi/content/full/

jcb.200804154/DC1). These biochemical data are consistent 

with the observed phenotype and implicate CD317 in aspects 

of the regulation of Rac and Rho function in Caco-2 cells. 

However, they do not provide direct evidence that there is an 

increase in the level of active Rac in CD317 knockdown cells. 

To address this directly, we performed a pull-down assay for 

active Rac (see Materials and methods) using lysate from po-

larized Caco-2 cells (control lamin A/C knockdown, CD317 

knockdown, and rescued CD317 knockdown). This demon-

strated an increase in the amount of active Rac in CD317 knock-

down cells compared with that in either control or rescued 

cells, with levels of active Rac being barely detectable in the 

control and rescued cells ( Fig. 3 C  and Fig. S2 B). Thus, there 

is an increase in the level of active Rac in polarized Caco-2 

CD317 knockdown cells. 

 Ezrin is mislocalized in CD317 
knockdown cells 
 Given that knocking down expression of CD317 in polarized 

Caco-2 cells leads to a loss of apical microvilli and a change in 

the regulation of Rho activity, we speculated that ERM proteins 

might be mislocalized in CD317 knockdown cells. Members of 

the ERM family of closely related proteins function as cross-

linkers between the plasma membrane and actin fi laments 

( Bretscher et al., 2000 ,  2002 ), and such cross-links are funda-

mental to the making and maintenance of microvilli ( Yonemura 

et al., 1999 ;  Saotome et al., 2004 ;  Hanono et al., 2006 ). Soluble 

ERM proteins in the cytosol are inactive in terms of their cross-

linking activity ( Pearson et al., 2000 ), but when ERM proteins 

are activated (involving phosphorylation), they undergo a con-

formational change that allows them to interact with both actin 

and, directly or indirectly, with the cytosolic domains of spe-

cifi c integral membrane proteins ( Bretscher et al., 2000 ,  2002 ). 

Rho activity has also been implicated in the activation of ERM 

proteins ( Bretscher et al., 2000 ). Because ezrin is normally en-

riched in apical microvilli in polarized epithelial cells, where it 

plays a critical role in coupling the actin cytoskeleton to the 

plasma membrane ( Bretscher, 1983 ;  Berryman, 1993 ), we rea-

soned that it would be mislocalized in CD317 knockdown cells 

lacking apical microvilli. As expected, we observed that ezrin 

localizes to the apical membrane in control polarized Caco-2 

cells where there is some colocalization with F-actin ( Fig. 3 D , 

top). However, in CD317 knockdown cells, this is not the case 

( Fig. 3 D , bottom). It is noteworthy that phosphorylation of 

ezrin is raised threefold in knockdown cells compared with 

control cells (both lamin A/C knockdown and rescued CD317 

knockdown;  Fig. 3 E  and Fig. S3 B, available at http://www.jcb

.org/cgi/content/full/jcb.200804154/DC1), implying that the block 

on the formation of microvilli is not at the level of ezrin activa-

tion. These data also demonstrate that reexpression of CD317 in 

the knockdown cells restores the level of ezrin phosphorylation 

to that seen in control cells. 

This was what we observed in both control and knockdown cells 

( Fig. 2 B ). In addition, immunolabeling of ZO-1, a component 

of tight junctions ( Stevenson et al., 1986 ), clearly shows that it 

is present (and appropriately localized) in the knockdown cells 

( Fig. 2 B ). Thus, tight junctions appear to be present and func-

tional in monolayers of the polarized CD317 knockdown cells 

despite the major rearrangements in the actin cytoskeleton. 

Furthermore, markers of the lateral membrane ( � -catenin;  Toye 

et al., 2008 ) and apical membrane (sucrase-isomaltase;  Hauri, 

1985 ) are correctly localized in CD317 knockdown polarized 

cell monolayers ( Fig. 2 C ). 

 The knockdown phenotype can be rescued 
by expression of rat CD317 
 To show that the effect on the actin cytoskeleton arising as a re-

sult of the expression of CD317 siRNA is caused by the reduced 

expression of CD317 (and not caused by an off-target effect), 

we chose to attempt to rescue the normal phenotype by expression 

of the rat orthologue of human CD317 in the CD317 knock-

down Caco-2 cells. Rat CD317-GFP is effi ciently expressed 

and targeted to the apical membrane in polarized Caco-2 CD317 

knockdown cells (Fig. S1, B and C). We observed that CD317 

knockdown cells stably expressing rat CD317-GFP and polar-

ized on permeable membrane supports have the same distribu-

tion of F-actin as that observed in control cells (i.e., bundles of 

basally localized F-actin are lost, and the F-actin is predomi-

nantly apically localized; Fig. S1 C). 

 The effects of CD317 knockdown are 
dependent on Rac and Rho 
 Activation of the small GTPases Rho and Rac leads to the 

formation of actin bundles/fi bers, although the Rac-induced 

fi bers are also Rho dependent ( Ridley and Hall, 1992 ;  Ridley 

et al., 1992 ). Therefore, we hypothesized that the actin bun-

dles observed in CD317 knockdown cells might arise as a re-

sult of Rac and/or Rho activity and reasoned that if this were 

the case, transient expression of dominant-negative Rac in the 

CD317 knockdown cells should abrogate the knockdown pheno-

type (i.e., the actin bundles observed in the knockdown cells 

should be lost). This is what we observed; transient expression 

of a dominant-negative myc-tagged Rac mutant (Rac T17N) 

inhibits the formation of the characteristic F-actin structures 

seen in the CD317 knockdown cells (76.75% of cells express-

ing Rac T17N had reduced or no actin bundles;  n  = 83;  Fig. 3 A ), 

whereas transient expression of a dominant-negative cdc42 

mutant does not (77% of cells expressing dominant-negative 

cdc42 showed no change in the degree of actin bundling;  n  = 23; 

 Fig. 3 A ). Furthermore, as would be expected, incubation of 

CD317 knockdown cells in the presence of 1  μ M of the Rho 

kinase (ROCK) inhibitor Y-27632 for 30 min also leads to loss 

of these structures ( Fig. 3 A ). 

 Further consequences of Rho activation are the phos-

phorylation on Ser19 of myosin light chain (MLC) by ROCK 

( Amano et al., 1996 ) and inactivation of MLC phosphatase 

( Tapon and Hall, 1997 ). Changes in the Ser19 phosphorylation 

status of MLC can thus be used as a biochemical readout of Rho 

activation. We observed that the amount of Ser19-phosphorylated 
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 Figure 3.    CD317 knockdown leads to activation of Rac.  (A) Alexa Fluor 594 – phalloidin decoration of F-actin in nonpolarized CD317 knockdown Caco-2 
cells transiently expressing either dominant-negative myc-tagged Rac or dominant-negative myc-tagged cdc42 as indicated (x = transfected cells) or 
after incubation of cells with the ROCK inhibitor Y-27632 as indicated. (B) Immunoblot analysis of phosphorylated Ser19 of MLC (MLCP) in lysates from 
CD317 knockdown, CD317 rescue, and control Caco-2 cells. An immunoblot of  � -tubulin was used as a loading control. (C) Results of pull-down assay 
for active Rac showing an immunoblot of Rac detected with an anti-Rac antibody. The left lane of each pair shows the total amount of Rac present in 10% 
of the lysate used in the assay. The right lane of each pair shows the active Rac isolated in the pull-down in each case. Lysates were from the indicated 
polarized Caco-2 cells. Lysates from PMA-treated cells were used as a positive control for the presence of active Rac. (D) Ezrin and F-actin localization in 
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CD317 – RICH2 interaction was surface plasmon resonance. 

The biotinylated synthetic peptide corresponding to the cyto-

solic N terminus of CD317 was immobilized on a streptavidin-

coated gold chip, and the GST-RICH2 fusion protein passed 

over the chip at different concentrations. The GST-RICH2 fu-

sion protein can be seen to bind to the immobilized CD317 

peptide in a dose-responsive manner ( Fig. 4 C ). Thus, all three 

techniques confi rmed that RICH2 interacts with the cytosolic 

domain of CD317, and experiments using the GST-RICH2 fu-

sion demonstrate that the C-terminal 87 amino acids of RICH2 

are involved in that interaction. 

 RICH2 was originally identifi ed as a homologue of 

RICH1 (also known as Nadrin [ Harada et al., 2000 ] and ARH-

GAP17 [ Katoh and Katoh, 2004 ];  Richnau and Aspenstrom, 

2001 ). RICH2, different isoforms of RICH1, and related pro-

teins share two conserved domains, namely an N-terminal 

BAR domain and a Rho/Rac/cdc42 GAP domain ( Richnau 

and Aspenstrom, 2001 ;  Furuta et al., 2002 ). These domains 

are followed by a variable (in sequence and length) region 

( Fig. 4 D ). However, RICH2 and isoforms 1 and 2 of RICH1 

do share the same C-terminal sequence Glu-Ser-Thr-Ala-Leu 

(ESTAL), which conforms to a PSD-95/DlgA/ZO-1 – like (PDZ) 

domain – binding motif ( Songyang et al., 1993 ) and has been 

implicated in binding to the protein EBP50 (ERM-binding phos-

phoprotein 50; also known as NHERF1 [Na + /H +  exchanger 

regulatory factor 1];  Reczek and Bretscher, 2001 ). EBP50 

( Weinman et al., 1995 ) is a PDZ domain – containing adapter 

that has been shown to link ERM proteins with the cytosolic 

domains of specifi c integral membrane proteins ( Bretscher et al., 

2000 ). In this case, RICH2 appears to provide a physical link 

between the cytosolic domain of CD317 and EBP50 and thus 

to ezrin and the actin cytoskeleton. We reasoned that if this 

were the case, it should be possible to coimmunoprecipitate 

EBP50 with CD317. We immunoprecipitated CD317 from ly-

sate from polarized Caco-2 cells (control or CD317 knockdown) 

and immunoblotted the immunoprecipitates using an anti-EBP50 

antibody. EBP50 was detectable in the immunoprecipitate from 

control cells but not in that from CD317 knockdown cells 

( Fig. 4 E  and Fig. S2 C). 

 RICH2 also appears to provide a potential link between 

CD317 and regulation of Rac and Rho because the central puta-

tive GAP domain has been shown to have Rac GAP activity in 

vitro ( Richnau and Aspenstrom, 2001 ). 

 The BAR domain of RICH2 has been shown to bind mem-

branes and to be capable of inducing membrane tubulation 

( Richnau et al., 2004 ). Consistent with this in vitro observation, 

we found RICH2 to be present in the membrane fraction from 

Caco-2 cells after the separation of membrane and cytosol frac-

tions ( Fig. 4 F ). This was also the case for RICH2 in CD317 

knockdown Caco-2 cells (unpublished data); thus, CD317 is not 

required for the membrane association of RICH2. 

 CD317 interacts with RICH2, a protein 
with both a Bin/amphiphysin/Rvs (BAR) 
and Rho GTPase-activating protein (GAP) 
domain 
 Having shown that knockdown of CD317 expression leads to a 

change in organization of the actin cytoskeleton and a concom-

itant change in localization of ezrin and having implicated 

Rac and Rho activity in this phenotype, we reasoned that there 

might be some physical link between CD317 and ezrin and/or 

Rac and/or Rho or possibly with the actin cytoskeleton itself. 

Therefore, we chose to screen for proteins that interact with the 

cytosolic domain of CD317. Our chosen strategy was to use 

a synthetic peptide, corresponding to the cytosolic domain 

of CD317 and tethered to a matrix support at its C terminus, 

to screen a bacteriophage display library (see Materials and 

methods). The rationale for screening a bacteriophage display 

library rather than a yeast two-hybrid library was that we 

reasoned that any interaction with the cytosolic domain of 

CD317 might require the free N terminus of CD317; this would 

be blocked by fusion to the yeast partner protein in any yeast 

two-hybrid bait construct but would remain exposed in the 

C-terminally tethered peptide that was used to screen the bac-

teriophage display library. The screen identifi ed 19 sequences 

encoding potential interactors. This included several proteins 

we considered to be improbable genuine interactors with CD317 

(e.g., hypothetical proteins and ribosomal proteins; Fig. S2 D). 

However, one protein identifi ed as a candidate interactor was 

RICH2 ( Richnau and Aspenstrom, 2001 ). Several features of 

RICH2 (see the next paragraph) suggested that it might be a 

genuine interactor with the CD317 cytosolic domain. There-

fore, we used three further techniques to confi rm the CD317 –

 RICH2 interaction. The fi rst was a pull-down assay in which a 

synthetic peptide, biotinylated at its C terminus and corre-

sponding to the entire cytosolic N terminus of CD317, was im-

mobilized on streptavidin-coated beads and used to isolate a 

fusion protein of the C-terminal 87 amino acids of RICH2 

fused to GST ( Fig. 4 A ). Biotin-coated beads did not bind the 

GST-RICH2 fusion ( Fig. 4 A ), and GST did not bind to the 

beads coated with the CD317 peptide. The second technique 

was coimmunoprecipitation. In initial experiments, CD317-

GFP was immunoprecipitated using an anti-GFP antibody from 

COS cells expressing CD317-GFP and RICH2-RFP, and the 

immunoprecipitated material was probed with an antibody to 

RICH2 ( Fig. 4 B , top). In subsequent experiments, endogenous 

CD317 was immunoprecipitated from polarized Caco-2 cells 

(or CD317 knockdown Caco-2 cells), and the immunoprecipi-

tated material was probed with an antibody to RICH2 ( Fig. 4 B , 

bottom). RICH2 was detected in material isolated from control 

cells but not from that isolated from the CD317 knockdown 

cells, demonstrating that endogenous RICH2 interacts with 

endogenous CD317. The third technique used to confi rm the 

polarized control (top) and CD317 knockdown (bottom) Caco-2 cells. The left pair of images shows XY sections of the apical surface of the cell monolayer, 
and the remaining images represent XZ sections of the monolayer. The basal F-actin image (bottom left) shows an XY section of F-actin in the basal region 
of the polarized CD317 knockdown Caco-2 cells. (E) Immunoblot analysis of C-terminal Thr phosphorylation of ezrin in the indicated Caco-2 cell lysates. 
Immunoblot of total ezrin was used as a loading control. Black lines indicate that intervening lanes have been spliced out. (B, C, and E) Molecular mass 
is indicated in kilodaltons. Bars, 10  μ m.   
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 Figure 4.    CD317 interacts with RICH2.  (A) Immunoblot probed with an anti-RICH2 polyclonal antibody showing the results of a pull-down assay 
between a GST-RICH2 fusion protein and a synthetic peptide corresponding to the entire cytosolic N terminus of CD317. Lysate = 10% of total 
 E. coli  lysate used in the pull-down; Biotin eluate = GST-RICH2 eluted from biotin-coated beads; CD317 eluate = GST-RICH2 eluted from CD317 
peptide-coated beads. (B, top) Immunoblot (using an anti-RICH2 antibody) of immunoprecipitates (using the indicated antibodies) from lysate of 
COS cells expressing CD317-GFP and RICH2-RFP (R26.4C antibody detects ZO-1 and was used as a control). (bottom) Immunoblot (using an anti-
RICH2 antibody) of immunoprecipitates (generated using an anti-CD317 antibody) of lysate from polarized control Caco-2 cells or polarized CD317 
knockdown Caco-2 cells as indicated. (C) Surface plasmon resonance data from an experiment in which the indicated concentrations of GST-RICH2 
were fl owed over a streptavidin-coated surface (fl ow channel) to which biotinylated CD317 N-terminal peptide had been attached. GST-RICH2 at 
the indicated concentrations was added at 160 s and stopped being added at 320 s. Data represent the binding of GST-RICH2 minus binding to 
a biotin-blocked control fl ow channel linked in series to the test channel. (D) Cartoon of the domain organization of RICH2. The region of RICH2 
indicated as binding to CD317 was identifi ed because this was the region detected in the initial bacteriophage display screen. The C terminus of 
RICH2 is a PDZ domain – binding motif, ESTAL. (E) Immunoblot (using an anti-EBP50 antibody) of material immunoprecipitated from lysates of polar-
ized control Caco-2 cells and polarized CD317 knockdown Caco-2 cells (CD317 siRNA) using an anti-CD317 antibody. The top band present in 
both lanes corresponds to the heavy chain of the anti-CD317 antibody used in the immunoprecipitation. (F) Immunoblot analysis of membrane and 
cytosol fractions from Caco-2 cells using antibodies to RICH2 and the integral membrane protein CD99 as indicated. (A, B, E, and F) Molecular 
mass is indicated in kilodaltons.   
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 RICH2 knockdown affects the localization 
of CD317 
 We considered that RICH2 might play a role in tethering CD317 

at the apical membrane of polarized Caco-2 cells in much the 

same way that EBP50 and ezrin have been shown to tether the 

cystic fi brosis transmembrane conductance regulator in the api-

cal membrane of polarized epithelial cells ( Haggie et al., 2006 ). 

Therefore, we performed immunofl uorescence analysis of the 

localization of endogenous CD317 in polarized RICH2 knock-

down Caco-2 cells. Initial observations of XY images of methanol-

fi xed cells suggested that the majority of CD317 was still in the 

apical membrane in the RICH2 knockdown cells, but some 

appeared to be intracellular ( Fig. 6 , top left, arrows). Immuno-

fl uorescence analysis of PFA-fi xed (nonpermeabilized) cells 

showed that CD317 is present at the apical plasma membrane 

( Fig. 6 , second row). However, XZ images from methanol-fi xed 

(permeabilized) polarized control and RICH2 knockdown cells 

( Fig. 6 , third and fourth rows) clearly demonstrate an intracel-

lular population of CD317 molecules in the RICH2 knockdown 

cells, which is a population of CD317 molecules that is not 

readily detectable in the control cells. This result implies that 

RICH2 is required to tether CD317 in the apical membrane. 

 Discussion 
 We have shown that knocking down expression of CD317 in 

Caco-2 cells does not prevent those cells from forming a polar-

ized monolayer. Monolayers of CD317 knockdown Caco-2 cells 

have intact tight junctions and show appropriate localization of 

integral membrane protein markers of both apical and basolateral 

membranes. In these regards, they are no different than mono-

layers of polarized control cells. However, monolayers of CD317 

knockdown Caco-2 cells do show signifi cant differences to con-

trol cells when it comes to organization of the actin cytoskeleton. 

The knockdown cells show an almost complete loss of the well-

defi ned and dense apical actin network. This network is of funda-

mental importance as the platform for the actin fi bers that provide 

the mechanical support for the apical microvilli of polarized epi-

thelial cells. We have also identifi ed RICH2 as a membrane pro-

tein that interacts directly with the cytosolic domain of CD317 

and can interact, via EBP50 and ezrin, with the actin cytoskeleton. 

The fact that knocking down expression of RICH2 has the same 

effects as knocking down expression of CD317 is consistent with 

RICH2 being part of the link between CD317 and the actin cyto-

skeleton. Thus, CD317 would seem to be acting like a  “ coat 

hanger ”  in the apical membrane of polarized cells with the actin 

cytoskeleton tethered to it via the RICH2/EBP50/ezrin linkage. 

 Clearly, CD317 is not simply acting as a coat hanger in 

the apical membrane; its presence in the apical membrane also 

has an effect on the activities of Rac and Rho. Therefore, it is 

noteworthy that RICH2 possesses a Rac GAP domain. This 

domain appears to be functional as a Rac GAP in cells because 

elevated expression of RICH2 leads to a loss of Rac-induced 

membrane ruffl es, whereas a point mutation previously shown 

to block Rac GAP activity ( Richnau and Aspenstrom, 2001 ) 

prevents RICH2 from having this effect. Furthermore, there are 

increased levels of active Rac in RICH2 knockdown cells. Thus, 

 RICH2 knockdown in Caco-2 cells leads to 
a similar phenotype to that arising after 
CD317 knockdown 
 We reasoned that if RICH2 does provide a functional link be-

tween CD317, Rac/Rho, and the actin cytoskeleton, knockdown 

of RICH2 expression should phenocopy knockdown of CD317 

expression in Caco-2 cells. To test this hypothesis, the expression 

of RICH2 was knocked down in Caco-2 cells using the same 

plasmid-based method that was used to knock down expression 

of CD317 in these cells. Immunoblot analysis of lysate from con-

trol and RICH2 knockdown cells demonstrated that RICH2 lev-

els in knockdown cells had been reduced to  < 20% of those 

detected in control cells ( Fig. 5 A  and Fig. S3 A). The stably 

transfected RICH2 knockdown Caco-2 cells were then grown to 

confl uence to generate polarized monolayers. These polarized 

RICH2 knockdown cells phenocopy the polarized CD317 knock-

down cells (i.e., a loss of apical F-actin, the presence of distinct 

bundles of F-actin at the basal membrane, a decrease in the 

amount of apically localized ezrin [ Fig. 5 B ], a loss of apical 

microvilli [ Fig. 5 C ], and reduced cell height but no loss of trans-

epithelial resistance or of tight junctions or any change in the 

distribution of apical and basolateral marker proteins [not de-

picted]). Lamin A/C knockdown cells were used as a control in 

these experiments and showed a wild-type phenotype with re-

spect to actin organization, microvilli formation, ezrin localiza-

tion, and cell height. Knocking down expression of RICH2 also 

led to an increase in the level of active Rac in polarized Caco-2 

cells ( Fig. 5 D  and Fig. S2 B), an  � 10-fold increase in phosphory-

lation of MLC ( Fig. 5 E  and Fig. S2 A), and an approximately 

threefold increase in phosphorylated ezrin (when compared with 

the situation in control cells;  Fig. 5 F  and Fig. S3 B), closely par-

alleling what occurs when CD317 expression is knocked down. 

 The fact that RICH2 knockdown cells are phenocopies of 

CD317 knockdown cells is consistent with the two proteins act-

ing on the same pathway, whereas the increase in MLC phos-

phorylation observed in RICH2 and CD317 knockdown cells is 

indicative of Rac and Rho activation in these cells. Rac and Rho 

activities have previously been shown to be required for produc-

tion of actin-dependent ruffl es ( Hall, 1998 ). Therefore, we rea-

soned that if the putative Rac GAP domain in RICH2 is indeed 

functioning as a Rac GAP in vivo (as it has been shown to be in 

vitro;  Richnau and Aspenstrom, 2001 ), elevated expression of 

RICH2 might lead to a reduction in active Rac within cells, 

which would, in turn, lead to a reduction in actin-dependent ruf-

fl es. To test this hypothesis, we expressed an RFP-tagged form 

of RICH2 (RICH2-RFP) in COS cells and assayed ruffl e forma-

tion in these and in control, nontransfected cells. Over 90% of 

control cells exhibited ruffl es, whereas  < 20% of cells express-

ing RICH2-RFP did so. An R288A mutation in the Rac GAP 

domain of RICH1 has previously been shown to destroy GAP 

activity in that protein ( Richnau and Aspenstrom, 2001 ). There-

fore, we generated the corresponding mutation (R291A) in 

RICH2-RFP and expressed the mutant protein in Caco-2 cells. 

Cells expressing R291A RICH2-RFP behaved as control cells, 

demonstrating that the Rac GAP activity of RICH2 is required 

to inhibit ruffl e formation, which is a result consistent with the 

Rac GAP domain of RICH2 working as a Rac GAP in vivo. 
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 Figure 5.    Effects of RICH2 knockdown.  (A) Immunoblot analyses (using antibodies to RICH2 and lamin A/C) of lysates from Caco-2 cells in which either 
RICH2 or lamin A/C levels (as indicated) have been knocked down. An immunoblot of  � -tubulin was used as a loading control. (B) Ezrin and F-actin 
localization in fi lter-grown polarized RICH2 knockdown Caco-2 cells. The actin basal panel shows an XY optical section of actin at the basal surface, and 
the actin apical panel shows the same at the apical surface of polarized RICH2 knockdown Caco-2 cells. The panel to the right of the actin apical image 
shows an XZ section of the same cells, highlighting the fact that F-actin is present at the basal membrane. (C) SEM of the apical surface of fi lter-grown 
polarized RICH2 and lamin A/C knockdown Caco-2 cells. (D) Results of pull-down assay for active Rac showing an immunoblot with Rac detected with an 
anti-Rac antibody. The left lane of each pair shows the total amount of Rac present in 10% of the lysate used in the assay. The right lane of each pair shows 
the active Rac isolated in the pull-down. Lysates were from the indicated polarized Caco-2 cells. Lysates from PMA-treated cells were used as a positive 
control for the presence of active Rac. (E) Immunoblot analysis of phosphorylated Ser19 of MLC (MLCP) in lysates from RICH2 knockdown or control lamin 
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posed by  Kusumi et al. (2005)  linking through to the underlying 

fence of the actin cytoskeleton. Indeed, if CD317 is arranged as 

previously suggested ( Kupzig et al., 2003 ), with the GPI anchor 

in a membrane raft and the transmembrane domain lying out-

side of the raft (or at the interface of raft and nonraft mem-

brane), it might be considered to constitute a  “ tethered picket, ”  

with the GPI anchor being the tether holding the protein in the 

membrane raft. CD317 would thereby provide a mechanical 

link between membrane rafts and the actin cytoskeleton, a role 

not dissimilar to that previously proposed for the tetraspanin 

protein CD82 in T lymphocytes ( Delaguillaumie et al., 2004 ). 

The recent designation of CD317 as tetherin, albeit for a totally 

different reason ( Neil et al., 2008 ), would therefore seem en-

tirely appropriate. Such a role for CD317/tetherin would be 

consistent with the observation that when GPI-anchored pro-

teins arrive at the apical plasma membrane they are transiently 

immobilized ( Hannan et al., 1993 ). 

 We have recently shown that, in nonpolarized cells, CD317 

constitutively cycles between the cell surface and an intracellu-

lar compartment. Internalization from the cell surface is clathrin 

mediated and is dependent on the AP2 adapter complex; indeed, 

the cytosolic domain of CD317 interacts directly with the  � 2 

subunit of the AP2 adapter complex via an atypical dual tyrosine 

motif ( Rollason et al., 2007 ). Furthermore, the cytosolic domain 

of CD317 also interacts directly with the  � 1A subunit of the 

AP1 adapter complex, and this interaction is required to deliver 

the protein back to the TGN from an endocytic compartment 

( Rollason et al., 2007 ). An AP1 complex (AP1B), in which the 

 � 1A subunit is replaced by a  � 1B subunit, is specifi cally ex-

pressed in epithelial cells and has been shown to play a role in 

the delivery of cargo to the basolateral surface of polarized epi-

thelial cells ( Gravotta et al., 2007 ). This process is dependent on 

AP1B recognizing a motif, which is often Tyr based, in the 

cytosolic domain of cargo integral membrane proteins ( Gravotta 

et al., 2007 ;  F ö lsch, 2008 ). However, adapters other than AP1B 

may also play a role in the recruitment of clathrin during the 

formation of transport intermediates involved in delivering pro-

teins to the basolateral membrane ( Deborde et al., 2008 ). Thus, 

because the cytosolic domain of CD317 possesses a Tyr motif 

that is recognized by AP1A in nonpolarized cells, one might 

have anticipated that it would be recognized by AP1B in polar-

ized epithelial cells, leading to the delivery of CD317 to the 

basolateral surface of those cells. We have found no evidence for 

this, although it is of course possible that newly synthesized 

CD317 is initially delivered to the basolateral membrane before 

delivery to the apical membrane as has been shown to occur for 

some GPI-anchored proteins and some integral membrane pro-

teins (for review see  Rodriguez-Boulan and M ü sch, 2005 ). 

 RICH2 interacts with the same region of the CD317 cyto-

solic domain that is recognized by  � 1 and  � 2. The interaction 

between the cytosolic domain of CD317 and RICH2 at the api-

cal surface of polarized epithelial cells presumably masks the 

in the case of polarized cells, one might speculate that the Rac 

GAP domain of RICH2 would lead to inactivation of any Rac 

molecules at the inner leafl et of the apical plasma membrane, 

thereby ensuring no Rac-dependent remodeling of the actin cyto-

skeleton at that location. It is noteworthy that the expression 

of constitutively active Rac has been shown to mediate the dis-

integration of microvilli in chemokine-activated T lymphocytes 

( Nijhara et al., 2004 ). Therefore, the inactivation of Rac by the 

RICH2 GAP domain would help to maintain integrity of the corti-

cal actin network beneath the apical plasma membrane and would 

help to ensure retention of the actin fi bers that give the mechanical 

support for the apical microvilli of polarized epithelial cells. 

 Others have shown that RICH1 can form a complex with 

a protein designated angiomotin and that this complex is impor-

tant for the formation, maintenance, stability, and integrity of 

tight junctions in epithelial cells ( Wells et al., 2006 ). Whereas 

we observed that tight junctions remain functional and intact 

after knockdown of RICH2 expression, knockdown of RICH1 

expression led to a complete loss of tight junctions. Thus, RICH1 

and RICH2 appear to play complementary roles in the estab-

lishment and maintenance of epithelial cell polarity. 

 Another cytosolic protein, EPI64 (EBP50-PDZ interactor 

of 64 kD), which binds EBP50 via a C-terminal DTYL motif 

and thereby links to the actin cytoskeleton via ezrin, plays a 

critical role in regulating the organization and structure of sub-

domains within epithelial microvilli ( Hanono et al., 2006 ). 

Unlike RICH1 and RICH2, EP164 does not possess a BAR do-

main or a Rac/Rho/cdc42 GAP domain but has been shown to 

be a GAP for Rab27A ( Itoh and Fukuda, 2006 ) and to bind Arf6-

GTP, possibly protecting Arf6-GTP from inactivation by a GAP 

( Hanono et al., 2006 ). However, it is unclear how EP164 links 

to the plasma membrane. What is clear is that there is a growing 

number of partners for EBP50 that possess a GAP domain and 

one or more other protein or lipid interaction domain. There-

fore, such proteins can provide part of a larger mechanical scaf-

fold to localize specialized regions of the actin cytoskeleton 

while at the same time regulating the activity of specifi c small 

G proteins that play a role in traffi cking pathways and/or the 

regulation of the local organization of the actin cytoskeleton. 

 The apical membranes of polarized epithelial cells are 

sphingolipid and cholesterol rich ( Schuck and Simons, 2004 ). 

Given its previously demonstrated localization to membrane 

rafts, its possession of a GPI anchor, and the fact that it is 

N-glycosylated ( Kupzig et al., 2003 ), it is perhaps not surprising 

that CD317 is localized to the apical membrane of polarized 

epithelial cells. However, clustering of GPI-anchored proteins 

may well be the most critical event in their apical delivery and 

localization ( Hannan et al., 1993 ;  Paladino et al., 2004 ; for re-

view see  Rodriguez-Boulan and M ü sch, 2005 ). Whether CD317 

plays any role in organizing membrane rafts in the apical mem-

brane of polarized epithelial cells is unclear, but it is clear that 

CD317 has the potential to function as the type of picket pro-

knockdown Caco-2 cells. An immunoblot of  � -tubulin was used as a loading control. (F) Immunoblot analysis of C-terminal Thr phosphorylation of ezrin in 
the indicated Caco-2 cell lysates. An immunoblot of total ezrin was used as a loading control. (D and E) Black lines indicate that intervening lanes have 
been spliced out. (A and D – F) Molecular mass is indicated in kilodaltons. Bars: (B) 10  μ m; (C) 2  μ m.   
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 Figure 6.    RICH2 knockdown leads to a change in the localization of CD317.  Localization of CD317 in polarized RICH2 knockdown Caco-2 cells. The top 
row shows maximum intensity projection XY images of CD317 and  � -catenin, as indicated, in methanol-fi xed cells. Arrows indicate potential intracellular 
populations of CD317 molecules. The second row shows detection of CD317 in PFA-fi xed (nonpermeabilized) cells (XZ sections); the right panel shows 
DAPI-stained nuclei in addition to the apical CD317. The third and fourth rows present XZ sections from methanol-fi xed (permeabilized) cells showing 
CD317 and  � -catenin localization in RICH2 knockdown and control polarized Caco-2 cells as indicated. Bars, 10  μ m.   
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relevant Alexa Fluor 594 –  or Alexa Fluor 488 – conjugated secondary anti-
body for 0.5 h. Fixed cells were imaged using a confocal laser-scanning 
microscope (TCS-NT; Leica) equipped with a Kr/Ar laser (488-, 594-, and 
647-nm lines) attached to an upright epifl uorescence microscope (DMRBE; 
Leica). All images were collected using a 63 ×  NA 1.4 oil immersion objec-
tive and processed with Leica and Photoshop (Adobe) software. 

 SEM 
 Images were captured as follows. Transwell tissue culture inserts were 
washed in PBS and fi xed in 2% glutaraldehyde (in PBS) at 40 ° C for at least 
16 h. After dehydration through graded ethanol solutions (20 min each in 
25, 50, 75, and 100% absolute alcohol). 100 – 150  μ l hexamethyldisila-
zane (Sigma-Aldrich) was added into each insert and allowed to evapo-
rate ( � 2 h) in a fume hood. The Transwell membranes were then removed 
using a scalpel and attached to 12-mm-diameter aluminum SEM stubs 
(Agar Scientifi c) using 12-mm-diameter adhesive carbon tabs. The mem-
branes were then gold coated using a sputter coater. The specimens were 
examined using a scanning electron microscope (501B; Philips), and digi-
tal images were acquired on line by analogue to digital conversion using 
SEM software provided by A. Gebert (Medical School of Hanover, Hanover, 
Germany;  Gebert and Preiss, 1998 ). 

 Activated Rac assay 
 Cells were grown and polarized in 10-cm dishes, washed on ice with PBS, 
and scraped into lysis buffer (50 mM Tris, pH 7.2, 500 mM NaCl, 10 mM 
MgCl 2 , 1% Triton X-100, protease inhibitor cocktail [Roche], and 0.1 mM 
PMSF). Sepharose beads coupled to a GST – p21-activated kinase – CRIB 
(i.e., the Rac1/Cdc42-binding domain of p21-activated kinase;  Bagrodia 
et al., 1995 ) fusion protein were made, and pull-down assays were per-
formed as previously described ( Benard and Bokoch, 2002 ). Proteins were 
separated by SDS-PAGE, transferred to polyvinylidene fl uoride, and probed 
with an anti-Rac1 antibody. 

 Membrane and whole cell preparations 
 Cells were polarized on permeable membranes for 14 d and then treated 
with nonpenetrating biotinylation reagent EZ-link Sulfo-NHS-biotin (Thermo 
Fisher Scientifi c) at 4 ° C for 30 min on the apical surface. Cells were then 
fi xed and labeled with streptavidin-FITC. Membrane and cytosol fractions 
were separated by ultracentrifugation (1,000 rpm in a bench-top centri-
fuge [Eppendorf] at 4 ° C for 5 min followed by 20 min at 100,000  g  in an 
ultracentrifuge [Sorvall]) after cell lysis in a cell cracker (Isobiotec) in hypo-
tonic lysis buffer (10 mM Tris-HCl, pH 7.4, and 10 mM EDTA) with pro-
tease inhibitors (Roche). The fractions were probed by immunoblotting with 
antibodies to RICH2 and CD99. Proteins were separated on 12 or 15% 
gels, transferred to polyvinylidene fl uoride or nitrocellulose, and incubated 
with primary antibody. Bound primary antibody was detected with HRP-
conjugated secondary antibody and chemiluminescence (Roche). 

 Protein interactions 
 Bacteriophage display screen.   The bacteriophage display library used was a 
gift from S. Conner and S. Schmid (The Scripps Research Institute, La Jolla, 
CA). It was constructed using cDNA generated from mRNA isolated from 
rat brain and screened according to published procedures ( Conner and 
Schmid, 2002 ). All peptides were synthesized by G. Bloomberg at the 
University of Bristol ’ s core facility using Fmoc/t-Bu methodology on an auto-
matic peptide synthesizer (Pioneer; Applied Biosystems). Peptides were 
dissolved in buffer (100 mM Tris-HCl and 100 mM NaCl, pH 7.2) at 
2 mg/ml. The bait fusion peptide of the whole rat CD317 cytosolic N termi-
nus was tagged with a hexahistidine sequence at the C terminus:  1 MAPS-
FYHYLPVAMDERWEPKGWSIRR 27 -H 6  CD317-Ntm-His. 

 Peptides were also synthesized to preabsorb the phage library be-
fore binding to CD317 to limit nonspecifi c interactions. The C-terminal 27 
amino acids of rat TGN38 were synthesized and fused to a hexahistidine 
tag, and this peptide was used in the fi rst-round phage display screen: 
H 6 - 

314 AFALEGKRSKVTRRPKASDYQRLNLKL 340  TGN38-Ctm-His. 
 Peptides were immobilized on Talon Metal Affi nity Resin matrix 

(Clontech Laboratories, Inc.). 5  μ l of the phage library was preabsorbed 
with beads coated with 445  μ l TGN38-Ctm-His PBS containing 50  μ l of 
10 ×  panning buffer (5% [wt/vol] BSA, 250  μ g/ml sheared salmon sperm 
DNA, 5% [wt/vol] NP-40, 250  μ g/ml heparin, and 0.05% sodium azide, 
pH 7.4) for 1 h at room temperature with agitation (modifi ed from  Conner 
and Schmid, 2002 ). Beads were pelleted, and the supernatant was col-
lected. Approximately 500  μ l of the preabsorbed phage library was then 
incubated for 1 h at room temperature with the immobilized CD317 bait 
peptide. The CD317-coated beads with bound phage were incubated with 

 � 1/ � 2-binding site on CD317, thereby preventing its internal-

ization. This is consistent with our observation that CD317 is 

ineffi ciently internalized in polarized Caco-2 cells and that no 

intracellular pool of CD317 can be detected in polarized Caco-2 

cells. It is also consistent with our observation that an intra-

cellular pool of CD317 can be detected in RICH2 knockdown 

cells (this may well be because, in the absence of RICH2,  � 2 

can bind to the cytosolic domain of CD317 and bring about endo-

cytosis of CD317). 

 CD317 clearly plays a critical role in the organization of the 

cytoskeleton in polarized epithelial cells. It will be interesting to 

see whether it plays a similar role in other cell types, notably B 

lymphocytes and other cells of the immune system in which it has 

been shown to be expressed and in which its level of expression 

is regulated by interferon- �  ( Goto et al., 1994 ;  Ishikawa et al., 

1995 ;  Ohtomo et al., 1999 ;  Blasius et al., 2006 ). 

 Materials and methods 
 Strains and culture conditions 
 Caco-2 and COS cells were maintained in DME (Invitrogen), 10% fetal 
calf serum, and 1% penicillin/streptomycin in a 5% CO 2  atmosphere at 
37 ° C. Cells were polarized either by seeding at high density on cover-
slips or by seeding onto permeable fi lters (Thermo Fisher Scientifi c) and 
culturing for 14 d. 

 Plasmids and antibodies 
 Hairpin siRNA sequences 5 � -CCAGGTCTTAAGCGTGAGA-3 �  and 5 � -TCG-
CGGACAAGAAGTACTA-3 �  (corresponding to base pairs 432 – 450 and 
452 – 470 of the human CD317 sequence, respectively), 5 � -CAACATCC-
GATACTTGATA-3 �  and 5 � -TGCCAACTACAGCTCAATG-3 �  (corresponding 
to base pairs 1,115 – 1,133 and 1,385 – 1,403 of the human RICH2 
[KIAA0672] sequence, respectively), 5 � -CTGGACTTCCAGAAGAACA-3 �  
(corresponding to base pairs 807 – 825 of the lamin A/C human sequence; 
 Denti et al., 2004 ), and the control 5-GGTTATGTACAGGAACGCA-3 �  
(corresponding to the cycle 3 GFP [Invitrogen] sequence) were cloned into 
the pSilencer Hygro vector (Applied Biosystems). The rat CD317-GFP has 
been described previously ( Kupzig et al., 2003 ), as have the dominant-
negative RacN17 and cdc42N17 constructs, which were provided by 
G. Cory (University of Bristol, Bristol, England, UK;  Coso et al., 1995 ). The 
RICH2-RFP construct was made by replacing the sequence between base 
pairs 1,331 and 2,190 of RICH2 with monomeric RFP. The A291 mutant 
was generated using the QuikChange Site-Directed Mutagenesis kit (Agi-
lent Technologies) to change R291 for Ala. The CD317 antibodies used 
were HM1.24 mouse monoclonal antibody (a gift from Chugai Pharma-
ceutical Co. Ltd;  Goto et al., 1994 ) and the rabbit polyclonal BST-2 anti-
body (Abcam). Other antibodies used were mouse monoclonal antibodies 
to ezrin (Cell Signaling Technology), myc-9E10 (Sigma-Aldrich),  � -tubulin 
(Sigma-Aldrich), Rac (BD), ZO-1 (Invitrogen),  � -actin (Sigma-Aldrich), 
CD99 ( Levy et al., 1979 ), GFP (Clontech Laboratories, Inc.), and sucrase-
isomaltase (a gift from H.-P. Hauri, University of Basel, Basel, Switzerland) 
and rabbit polyclonal antibodies to  � -catenin (Abcam), EBP50 (Abcam), 
phospho – MLC 2 (Ser19; Cell Signaling Technologies), phospho-ERM (Cell 
Signaling Technologies), Na + /K +  exchanger (Millipore), and RICH2RhoGap 
(in house). For immunofl uorescence, the secondary antibodies used were 
goat anti – rabbit or mouse Alexa Fluor 488 or Alexa Fluor 594 (Invitrogen) 
where appropriate. For immunoblotting, the secondary antibodies used 
were anti – mouse or rabbit HRP linked (Dako). F-actin was labeled with 
Alexa Fluor 594 – phalloidin (Invitrogen), and biotin was labeled with anti-
biotin-FITC (Vector Laboratories). 

 Immunofl uorescence and confocal microscopy 
 Cells were fi xed either with methanol or 3.7% PFA, permeabilized with 
0.1% Triton X-100, and blocked in 3% BSA/PBS for 1 h. Caco-2 cells were 
transfected using FuGene (Roche). Clones stably expressing the siRNA 
were selected with 200  μ g/ml hygromycin (Roche), and cells stably ex-
pressing siRNA and CD317-GFP were selected with 400  μ g G418 (neo-
mycin) as well. Dual immunolabeling was performed by incubating with 
the primary antibody for 1 h, washing with PBS, and incubating with the 
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tein; this antibody was donated by D. Goodenough [Harvard Medical 
School, Boston, MA];  Stevenson et al., 1986 ), or no antibody at all. The 
beads were then pelleted from solution by centrifuging at 150  g  for 40 s 
in a bench-top microfuge. Eluted proteins were then separated by SDS-
PAGE and transferred to nitrocellulose membrane for immunoblotting with 
the RICH2 antibody. 

 For coimmunoprecipitation of endogenous protein, CD317 knock-
down and control cells were grown and polarized in 75-cm 2  tissue culture 
fl asks. Cells were washed with ice-cold PBS and then scraped into 2 ml of 
immunoprecipitation buffer (either 150 mM NaCl, 20 mM Tris, pH 7.5, 
10% glycerol, 2% NP-40, 10 mM orthovanadate, protease inhibitor cock-
tail [Roche], and 200 mM PMSF or 150 mM NaCl, 20 mM Tris, pH 7.5, 
10% glycerol, 1% Triton X-100, 10 mM orthovanadate, protease inhibitor 
cocktail [Roche], and 200 mM PMSF). All reactions were kept on ice. 
Lysates were centrifuged at 1,000  g  for 5 min. The lysates were cleared with 
protein G – Sepharose beads and BSA to 1% for 1 h. The beads were then 
pelleted at 1,000  g  for 1 min, and the lysates were incubated with protein 
G – Sepharose beads coupled to 5  μ g of the HM1.24 monoclonal antibody 
for 4 h. The beads were washed four times with immunoprecipitation buf-
fer, and proteins were eluted by boiling for either 2 min (for the RICH2 
antibody) or 10 min (for the EBP50 antibody). Proteins were separated, 
transferred to nitrocellulose, and probed with either the RICH2 or EBP50 
rabbit polyclonal antibody. 

 Ruffl e assays 
 COS cells were transfected with pRICH2-RFP, pRICH2-A291-RFP, or pEGFP. 
To induce ruffl ing, 100  μ g/ml PMA was added to media for 5 min. Cover-
slips were washed with PBS, fi xed, and stained with Alexa Fluor 594 –  or 
Alexa Fluor 488 – phalloidin, and cells were scored +/ �  for ruffl ing. 

 Online supplemental material 
 Fig. S1 shows that a second CD317 siRNA has the same effect on F-actin 
distribution in polarized cells as the fi rst and that the phenotype can be res-
cued by expression of rat CD317. Fig. S2 shows that other CD317 and 
RICH2 siRNAs have the same biochemical effects as those used in the main 
paper. Fig. S3 shows that other CD317 and RICH2 siRNAs have the same 
effects on actin organization and ERM phosphorylation as those used in 
the main paper. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200804154/DC1. 
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