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Introduction: Evaluating histopathology via machine learning has gained research and clinical interest,

and the performance of supervised learning tasks has been described in various areas of medicine. Un-

supervised learning of histological images has the advantage of reproducibility for labeling; however, the

relationship between unsupervised evaluation and clinical information remains unclear in nephrology.

Methods: We propose an unsupervised approach combining convolutional neural networks (CNNs) and a

visualization algorithm to cluster the histological images and calculate the score for patients. We applied

the approach to the entire images or patched images of the glomerulus of kidney biopsy samples stained

with hematoxylin and eosin obtained from 68 patients with immunoglobulin A nephropathy. We assessed

the relationship between the obtained scores and clinical variables of urinary occult blood, urinary protein,

serum creatinine (SCr), systolic blood pressure, and age.

Results: The glomeruli of the patients were classified into 12 distinct classes and 10 patches. The output of

the fine-tuned CNN, which we defined as the histological scores, had significant relationships with

assessed clinical variables. In addition, the clustering and visualization results suggested that the defined

clusters captured important findings when evaluating renal histopathology. For the score of the patch-

based cluster containing crescentic glomeruli, SCr (coefficient ¼ 0.09, P ¼ 0.019) had a significant

relationship.

Conclusion: The proposed approach could successfully extract features that were related to the clinical

variables from the kidney biopsy images along with the visualization for interpretability. The approach

could aid in the quantified evaluation of renal histopathology.
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M
achine learning algorithms, especially neural
network architecture–based convolutional neu-

ral networks (CNNs), have achieved breakthrough per-
formance in the classification of images to defined
classes1 and are applied in various research areas,
including medicine. Furthermore, they have gained
considerable attention in the fields of histology and pa-
thology, especially in neoplastic histopathology.2
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Generally, in deep learning for histopathological
images, supervised learning is performed wherein
people decide on labels.3,4 One of the problems with
this process is the occasional disagreement between and
within pathologists that makes it difficult to obtain the
correct labels to be used in the supervised learning
tasks. In addition, the labeling of thousands of images
is labor intensive. In unsupervised deep learning
evaluations, the labeling is automated and reproducible
because it is performed by a machine. Therefore,
defining the classification labels in an unsupervised
manner could be advantageous. However, it remains
unclear whether the information obtained in an unsu-
pervised manner is clinically meaningful in nephrology
practice. In the present study, we propose an approach
2445
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to assess the histological findings of biopsy specimens
in an unsupervised manner and visualize how deep
learning algorithms make these decisions.

In a recent study involving renal pathologies, Ginley
et al.5 extracted features from glomerular images, scored
them using CNN and recurrent neural networks, and
compared them to the findings of pathologists in diabetic
nephropathy. Another study showed the preliminary
results of classification and visualization of transplant
renal biopsy, discriminating the severity of T cell–
mediated rejection and antibody-mediated rejection.6

In addition, one study compared the performance
discriminating 7 major pathological findings among
CNNs and pathologists.7 However, the unsupervised
labeling and the association between yielded classifica-
tion labels and clinical variables have not been examined
in nephropathology. Thus,we applied our unsupervised
approach to the kidney slide images of patients with
immunoglobulinAnephropathy (IgAN) and evaluated if
the unsupervised extracted features could relate to
clinical information.
METHODS

Patient Selection and Covariate Assessment

We retrospectively obtained the available virtual slide
images of patients who underwent renal needle biopsy
and were diagnosed with IgAN based on findings
observed by optical microscopy and immunofluores-
cence staining between July 2012 and May 2018 at
Kyoto University Hospital. We excluded those with a
definite concurrent histological diagnosis of other dis-
eases, except for nephrosclerosis. Patients diagnosed
with hepatic IgAN were excluded. Patients who un-
derwent multiple biopsy procedures were included. All
patients provided written informed consent for the use
of specimens in the present study. The study protocol
was approved by the Ethics Committee on Human
Research of the Graduate School of Medicine, Kyoto
University (No. R643-2 and G562), and the study
adhered to the Declaration of Helsinki. We collected
basic patient demographics, including age, gender,
systolic blood pressure (SBP, in mm Hg), laboratory
tests comprising serum creatinine value (SCr, in mg/
dL), urinary protein excretion level (UPro, in g/day),
and the result of a urinary occult blood (UOB) test,
which was classified into 5 categories: � (negative),
�, þ, 2þ, and 3þ. These test values were obtained
during the stay for renal biopsy in the hospital or at an
outpatient visit before the renal biopsy procedure. If a
daily urinary protein excretion value was not available
during the respective hospital stay, the urinary protein
creatinine ratio value was examined. In addition, we
obtained the Oxford classification (MEST-C score)
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based on the definitions in pathological reports of
kidney biopsy specimens.8

Extraction of Images and Preprocessing

All renal biopsy specimens were scanned with a
NanoZoomer-2.0HT whole-slide imager, digital pathol-
ogy slide scanner, and the software NDP.scan 3.1.7
(Hamamatsu Photonics, Hamamatsu City, Japan), using
a �40 lens (0.23 mm/pixel). The quality of all the im-
ages was checked manually after scanning; if the slides
were out of focus, new scans were performed. We
stained slides with hematoxylin and eosin (H&E),
which is the basic and most commonly used staining
protocol. The whole-slide images were stored in NDPI
format, and we used OpenSlide9 to extract the PNG
images from those files. We obtained the images with
the highest resolution. The positions of glomeruli were
manually annotated by a nephrologist in the images
with lower resolutions and then cropped out from the
highest-resolution images. Extracted glomeruli images
underwent stain normalization via the method
described by Macenko et al.10 The method assumes that
every pixel in the image is the linear combination of 2
stain vectors (H&E). The image was first converted to
their optical density (OD) values, and OD below the
specified threshold was removed. Subsequently, sin-
gular value decomposition was calculated, the eigen-
vectors were obtained, and the plane from the
eigenvectors corresponding to the 2 largest singular
values was formed. All the OD value was then trans-
formed onto this plane and normalized. Finally, stain-
ing intensity was corrected. The detailed method is
described in their original article.10 Subsequently, the
white areas on the edges in the glomerulus images were
removed by the custom function, and in addition,
glomerulus images with the proportion of white
regions $0.2 were removed. For the experiment on the
entire glomerulus images, the images were resized to a
width of 331 and a height of 331, which is the default
input shape for the CNN. These filtered images were
used for clustering and training analysis of the CNN,
and all the images after the normalization were used for
the assessment of the relationship with clinical traits.

Feature Extraction and Dimension Reduction

We used Neural Architecture Search Network (NAS-
Net),11 implemented in keras (NASNet-Large),12 to
extract the features. The NASNet searched for the
model architecture directly and achieved state-of-the-
art performance regarding the classification of Image-
Net, which consisted of >14 million images.13 Weights
pretrained with ImageNet on keras implementation
were used, and the output of the final concatenation
layer was averaged by the global average pooling,
Kidney International Reports (2021) 6, 2445–2454
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which yielded 4032 feature vectors obtained per
glomerulus image. These vectors were subsequently
processed by uniform manifold approximation and
projection (UMAP), which is a popular nonlinear
dimension reduction algorithm officially implemented
in Python library umap-learn.14

Model-based Clustering

We clustered the output of UMAP using mclust, a
model-based clustering library using parameterized
finite Gaussian mixture models (GMMs) with various
covariance structures.15 The models were fitted with
components of 1 to 20. The model with the best
Bayesian information criterion was selected, and the
optimal number of clusters was determined. All other
parameters were set to the default, and all the co-
variances available in mclust were tested. The
glomeruli were labeled according to the highest prob-
abilities of belonging to the clusters.

Fine-tuning of the CNN and Calculation

of Scores

We subsequently fine-tuned NASNet for the multiclass
classification of defined clusters to produce scores
robust to the rotation of the glomerulus images and
visualize the rationale behind the prediction. We used
keras 2.3.1 with tensorflow16 1.15 or 2.2.0 backend to
train a model. We constructed a new model using
layers of NASNet, from the input layer to the last
concatenation layer, and a subsequent global average
pooling layer, a dropout layer, and a dense layer with
softmax as an activation function. We set the last 10
convolutional layers and the last dense layer to be
trainable and set all the other layers to be untrainable.
The preprocessed images were split into training and
test datasets in a ratio of 8 to 2. Subsequently, the
remaining training data were split into training and
validation data by the ratio of 8 to 2 for use in the
training process, with the stratification of the classes
and the fixed seed. We split by stratification of classes,
not partitioning by the patients, to preserve class dis-
tribution across the dataset. When training, the orig-
inal images and centered zoomed images were
augmented to horizontal, vertical flip, and rotation of
90�, 180�, and 270�, yielding 16 images from 1 raw
image. The test and validation images were not
augmented. In addition, because there was an imbal-
ance of images between classes, class weights were set
when training. The callback function performed early
stopping when validation loss did not improve,
reducing the learning rate on the plateau, and saving
weights with the best validation loss were used during
the training. We used categorical cross-entropy as the
loss function and Adam as the optimizer.17 The
Kidney International Reports (2021) 6, 2445–2454
performance was assessed using the area under the
receiver operating characteristic curves (AUROCs) with
the unaugmented test dataset as input. This was a
multiclass classification problem and performance was
assessed with a 1-vs-1 pairwise comparison18 and 1-vs-
rest comparison with the prevalence weighted average.

Calculation of Histological Scores

The output values of the final layer were calculated
using all the images after H&E normalization. The
activation function of the last layer was softmax; thus,
the scores per glomeruli were summed to 1. The
calculated scores served as the histological scores of the
respective glomerulus, and the mean scores of all
glomerulus images from the slide images of the patient
served as the histological scores of the respective
patient.

Visualization of the Reason Behind

the Prediction

We used score-weighted class activation mapping
(Score-CAM) to visualize and highlight the important
regions in the images for predicting the respective
class.19 Because multiple convolutional layers were
batch-normalized and concatenated to 1 layer in the
last cell of NASNet, we visualized Score-CAM by
obtaining the activation map corresponding to the
output of the activation function of the final concate-
nation layer. In addition, guided backpropagation20

was calculated and multiplied with Score-CAM values
to obtain guided Score-CAM to visualize the rationale
at higher resolution, and the results of gradient-
weighted class activation mapping (Grad-CAM) were
visualized.21

Patch-based Analysis

We subsequently conducted the patch-based analysis
of each glomerulus image to assess the applicability of
the proposed approach for the higher resolution. The
patch-based analysis referred to the same workflow
applied to the image patches with the width and height
of 96 pixels, equally divided into 16 sections from 1
glomerulus image. The patches were filtered before-
hand in the same manner as the whole glomerulus
images. The convolutional autoencoder with 6 con-
volutional layers was trained with the extracted
patches as input. Subsequently, the output vectors of
the encoder were clustered by GMMs, and the encoder
was retrained with the defined clusters as same as the
whole glomerulus images. In the patch-based analysis,
the augmentation was not performed. The scores for
each patch were obtained by the output of the
retrained encoder, and the scores of all the patches
were summed to calculate the glomerulus score. These
2447



Table 1. Clinical and pathological characteristics of the included
patients
Clinical values IgAN (n [ 68)

Age, yr, mean (SD) 42.28 (18.75)

Serum creatinine, mg/dL, mean (SD) 0.97 (0.53)

Urinary protein, g/day or protein/creatinine ratio, mean (SD) 1.37 (1.92)

Systolic blood pressure, mm Hg, mean (SD) 124.13 (17.23)

Male gender, n (%) 27 (39.7)

Urinary occult blood, n (%)

� 4 (5.9)

� 5 (7.4)

1þ 3 (4.4)

2þ 28 (41.2)

3þ 28 (41.2)

M ¼ 1, n (%) 28 (41.2)

E ¼ 1, n (%) 9 (13.2)

S ¼ 1, n (%) 52 (76.5)

T, n (%)

0 57 (83.8)

1 9 (13.2)

2 2 (2.9)

C, n (%)

0 30 (44.1)

1 37 (54.4)

2 1 (1.5)

C, cellular or fibrocellular crescents; E, endocapillary hypercellularity; IgAN, IgA ne-
phropathy; M, mesangial hypercellularity; S, segmental glomerulosclerosis; SD, stan-
dard deviation; T, interstitial fibrosis/tubular atrophy.
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glomerulus scores were averaged to obtain the histo-
logical score for the respective patient. The visualiza-
tion was obtained by Score-CAM applied for the final
layer of the encoder.

Comparison of the Scores in the Patient With

Multiple Biopsy Specimens

To assess whether these scores reflect disease progres-
sion or regression in the multiple biopsy speciemens
obtained from the same patient, we calculated the
scores for 2 biopsy specimens from a patient and
assessed the relationship between pathological assess-
ment and the changes in the histological scores.

Statistical Analysis

The relationships between continuous variables and his-
tological scores were modeled by linear regression
models, and we tested the null hypothesis that the coef-
ficient of the histological scores equals 0. The P values
obtained via linear models were corrected using the
Bonferroni procedure. The relationshipbetweenUOB and
histological scores was assessed via one-way analysis of
variance, with adjustment using Dunnett’s method22

with the control category as the negative category, per-
formedvia R librarymultcomp.The relationship between
the clinical variables of SBP, SCr, andUPro and theMEST-
C classification category was assessed by the same
methods as the UOB. Adjusted P values < 0.05 were
considered statistically significant. Data preprocessing
was performed by pandas or tidyverse.23,24 The splitting
of training, validation, and test data, the calculation of
AUROC scores, and the clustering of patches were per-
formed via the respective functions in scikit-learn.25 The
figureswere generated using the R libraries ggplot226 and
firatheme.27 The visualized significant clusters identified
by the algorithm with both the patched and the whole
glomerulus images were evaluated first by 3 nephrolo-
gists, and the findings were validated by a board-
certificated pathologist.

DATA AVAILABILITY

We cannot share the raw slide images because that will
potentially breach patient privacy. However, we share
the model and weights file used in the study for con-
volutional autoencoder and NASNet implemented in
keras, which can be used to test the glomeruli images
from other institutions after the normalization of stain-
ing (https://github.com/noriakis/glomerulus-clustering).

RESULTS

Patient Demographics

The demographic information of 68 patients who un-
derwent biopsy procedures at Kyoto University Hos-
pital is summarized in Table 1. The resolution of the
2448
slide images was 54,332 � 36,469 in width and 58,522 �
14,353 in height (mean � SD). Overall, 2144 images of
glomeruli were obtained from the H&E staining–
normalized slide images. The mean number of glomeruli
per slide was 31.5 � 16.8 (mean � SD; minimum 6,
maximum 73). After preprocessing, 1319 images were
obtained for the downstream analysis of clustering and
training of the CNN. Note that all the images were used in
the calculation of histological scores.
The Presentation of Workflow and Performance

Assessment

The overall proposed workflow with the selected steps
is shown in Figure 1. The complete listing of all the
steps is shown in Supplementary Text S1. We first used
NASNet to extract the features from the preprocessed
and filtered glomeruli images. UMAP was performed on
the obtained feature vectors, and using the resulting
vectors as inputs the optimal number of clusters was
determined by GMMs by Bayesian information crite-
rion. The model with 12 components, with the VVE
(ellipsoidal, equal orientation) covariance had the best
Bayesian information criterion value; therefore, the
number of clusters was determined accordingly. Com-
ponents 1, 2, and 3 of the UMAP results are shown in
Supplementary Figure S1. The number of images in
each cluster were 76, 117, 146, 137, 102, 95, 25, 251, 68,
99, 90, and 113, respectively. Using the defined cluster
Kidney International Reports (2021) 6, 2445–2454
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Figure 1. Overall workflow. The overall workflow of the proposed methods is visualized.

Table 2. Statistically significant clusters and their associated
variables

Clinical valuesa
Significant
clusterb

Age 3

Systolic blood pressure 3, 4, and 10

Serum creatinine 3, 8, 10, and
11

Urinary protein excretion 3, 10, and 11

Urinary occult blood (significant in �, þ, 2þ, and 3þ compared with
the negative [�] category)

6

aClinical values tested.
bThe cluster in which the score is significantly associated with corresponding clinical
values after the adjustment of P values.
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labels as the correct label, we performed fine-tuning of
NASNet using the weights trained with ImageNet. The
proportion of images of each patient in the training,
test, and validation datasets are presented in
Supplementary Table S1. The training was performed
with 13,504 augmented images. Using the unaug-
mented test dataset, the 1-vs-1 weighted AUROC
average was 0.921, and the 1-vs-rest weighted AUROC
average was 0.918. The highest 1-vs-rest AUROC was
obtained in cluster 10 (AUROC 0.998) and the lowest
was in cluster 5 (AUROC 0.839). Using the weights
obtained, we calculated histological scores for all pa-
tients using all the glomerulus images. The represen-
tative glomeruli for each cluster are presented in
Supplementary Figure S2.

Relationship Between Clinical Variables and

Histological Scores

The score of cluster 2 was the highest among all the
categories (0.168 � 0.081). The overall relationships
between the histological scores and clinical variables,
including age, SBP, SCr, UPro, and the result of UOB
test are summarized in Table 2 and Figure 2. The score
of cluster 6 was significantly related to UOB, in the way
that the negative category had the highest values
compared with the other categories. The cluster was
presumed to be the clusters containing the glomerulus
with normal or minor abnormalities. The score of
cluster 10 was significantly associated with SBP, SCr,
and UPro, with higher scores indicating higher values.
Cluster 11 had a significant relationship between SCr
and UPro. The statistical summaries including the co-
efficients, P values, and R2 values of the linear models
are presented in Supplementary Tables S2 and S3. For
comparison, we assessed the relationship between the
Kidney International Reports (2021) 6, 2445–2454
Oxford MEST-C score and clinical variables. For this
assessment, the patient with C2 scoring was excluded
beforehand. As a result, SCr was significantly associ-
ated with M score (coefficient ¼ 0.288, P ¼ 0.027). SBP
and UPro had no significant relationship with the
MEST-C score in the current cohort.

Visualization of the Rationale Behind

the Prediction

We obtained Score-CAM and guided Score-CAM, along
with Grad-CAM and guided Grad-CAM of glomeruli
having the highest 5 probabilities of classification of the
respective cluster, which served as the rationale for the
prediction of each cluster. We present the results of
clusters 6, 10, and 11 in Figure 3. Cluster 6 contained
glomeruli with mostly minor abnormalities. Cluster 10
contained sclerotic glomeruli. Cluster 11 contained
glomeruli with mesangial matrix expansion and mesan-
gial cell proliferation. In addition, the crescentic
glomeruli or glomeruli with suspected adhesion and
fibrosis were included. Grad-CAM and Score-CAM
seemed to correctly point out the structure inside the
2449



Figure 2. Relationship between histological scores and clinical variables. The box plot (urinary occult blood) and line plots (age, systolic blood
pressure, serum creatinine, and urinary protein excretion) show the relationship between histological scores and clinical variables. The x axes
represent clinical variables, and the y axes represent histological scores. Statistically significant clusters are presented with an asterisk and red
background.
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glomeruli, with attention split to various positions. The
guided Grad-CAM and Score-CAM of cluster 6 seemed to
indicate that white pixel regions in the images got high
attention. In the case of glomerular pathology such as the
Figure 3. Visualization results of the rationale behind the prediction of e
weighted class activation mapping, and the results obtained by multiplic
(middle), and 11 (right) are shown.

2450
present study, the white areas are likely to be Bowman’s
space or capillary lumen. However, in the other clusters,
specific regions such as the regions of the mesangial ma-
trix expansion did not get specific high attention.
ach class. The score-weighted class activation mapping, gradient-
ation with guided backpropagation are shown. Clusters 6 (left), 10

Kidney International Reports (2021) 6, 2445–2454



Figure 4. The result summary of the patch-based analysis. The results of the patch-based analysis are shown. The left panel shows the
clustered patches and the rationale behind the clustering visualized by score-weighted class activation mapping. The number of patches in the
class, along with the clinical variables that had a significant relationship with the score of the patch class, are shown. The right panel shows
the rationale for the patches of the glomeruli with the highest scores of the respective cluster of patches. The predicted cluster of each patch is
shown in the upper left corner with the prediction probability.
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The Result of the Patch-based Analysis

We conducted additional analysis for the equally
divided patches using the same workflow to assess the
applicability of the approach for the higher resolution.
Overall, 23,168 patches extracted from the glomerulus
images were analyzed. The results were summarized in
Figure 4. The score of patch cluster 1 had a significant
relationships with SCr (coefficient ¼ 0.09, P ¼ 0.019),
Kidney International Reports (2021) 6, 2445–2454
and the score of cluster 3 with SCr (coefficient ¼ 0.249,
P < 0.001), SBP (coefficient ¼ 5.71, P ¼ 0.013), and
UPro (coefficient ¼ 0.714, P ¼ 0.003). Cluster 7 had a
significant relationship with SCr (coefficient ¼ �0.145,
P ¼ 0.039). In addition, cluster 10 had a significant
relationship with UOB (comparison between negative
and �, 2þ, and 3þ). All the statistical summaries
including the coefficients, P values, and R2 values of
2451
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the linear models are presented in Supplementary
Tables S4 and S5.

The visualization results suggested that cluster 1
contained crescentic glomeruli. Cluster 3 contained
sclerotic glomeruli. Cluster 7 contained glomeruli with
mild mesangial matrix expansion and mesangial cell
proliferation. The visualization results of Score-CAM
suggested that the model gave high attention to cells
with mesangial matrix, sclerotic regions, and white
regions, such as Bowman’s space or capillary lumen, in
clusters 1, 3, and 7, respectively.

Using the patch-based scores as input, we performed
the additional analysis comparing the multiple subse-
quent biopsy specimens of 1 patient. The patient was
diagnosed with IgAN after the first biopsy procedure
and went through the second biopsy procedure after the
Pozzi protocol. The third biopsy specimen was obtained
as UPro increased. We performed the analysis on the
available virtual slides of the second and third biopsy
specimens. The clinical and pathological findings of the
second and third biopsy specimens of the respective
patients are shown in Supplementary Table S6. As a
result, the score of the third biopsy specimen was
higher in clusters 1 and 3, which indicated that the
proportion of sclerotic and crescentic glomeruli
increased. Contrarily, the scores of cluster 10, which
gave high attention to mostly the white regions,
decreased. This indication matched the pathological re-
ports of the respective biopsy procedures. A summary
of the comparison is shown in Supplementary Figure S3.
DISCUSSION

In the present study, we proposed an unsupervised
approach to quantitatively assess histological findings
and evaluated their relationship with clinical informa-
tion. In addition, the reason behind the definition of
classes was visualized. As a result, the histological
scores obtained by unsupervised clustering of the
glomerulus image features extracted from the CNN
model had significant relationships with the important
clinical measurements in patients with IgAN.

Various studies have used machine learning to
evaluate renal histopathology. Their main objective is
to segment various structures present in the slide im-
ages, such as the glomeruli,28 or to detect the glomeruli
from the images,29 or to extract novel pathological
findings from the glomeruli,30 or to associate defined
glomerular features with some pathological findings or
clinical variables.5,31 Our study falls into the last
category. One study used manually constructed fea-
tures of the glomerulus images to detect proliferative
lesions in the glomerulus, without using deep
learning.32 Compared with the study conducted by
2452
Ginley et al.5 that used handcrafted features combined
with CNN, our approach consisted of no previous
knowledge, such as glomerular components, to feed
into the network. Rather, we allowed the CNN and
clustering algorithm to decide the class of the glomeruli
images and patches. This can be advantageous in the
sense that we can evaluate how the CNN assesses and
classify the glomerular image regardless of the existing
knowledge. Conversely, this can also be problematic
because the resolution did not reach the expertise of
pathologists, thus limiting the use of our model in the
clinical setting because of low interpretability.

The CNN could discriminate between the defined
clusters of the glomeruli images according to the AUROC.
This is an expected result because the correct labels were
defined using feature vectors extracted by the same CNN.
We used Score-CAMwhich is a newly developed method
to visualize the rationale in CNN architecture that is re-
ported to represent better localization compared with the
popular Grad-CAM or Grad-CAMþþ.33 The clustering
results suggested that the proposed model captured some
of the important pathological findings and normal find-
ings of IgAN.However, as discussed above, the activation
map could not localize the specific pathological changes in
the structural components inside the glomeruli, such as
adhesion, crescent formation, or mesangial proliferation;
rather focusing vaguely in the experiment on the entire
glomerulus images.We speculated that one of the reasons
for these results is that the H&E stain used in this study
was originally difficult to evaluate these findings,
compared with periodic acid–Schiff or periodic acid
methenamine silver stain.Onthepatch-basedanalysis,we
found that the proposed approach could correctly give
high attention to the structure in the images like cellular
components, sclerotic regions, crescentic regions, or
capillary lumen, compared with the results that the
analysis with the entire glomerulus images as input failed
to capture these findings precisely. This suggested that
the calculated scores based on the proposed approach
could be interpreted by physicians to some extent.

In previous studies investigating the correlation of
MEST-C score8 and clinical variables, C-score was asso-
ciated with SCr and UOB, and S-score with hyperten-
sion.34 In addition, global glomerulosclerosis was
associated with lower estimated glomerular filtration
rate, UPro, SCr, and higher incidence of arterial hyper-
tension,35 and crescentic formation was reported to be
associated with estimated glomerular filtration rate and
proteinuria.36 We also investigated the relationship be-
tween the MEST-C scoring and clinical variables. In our
study, the scores reported to be related to clinical vari-
ables such as C were not associated with any clinical
variables. This is suspected to be the nature of the
investigated population from the university hospital,
Kidney International Reports (2021) 6, 2445–2454
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where the severe disease patients tend to admit.
Compared with MEST-C scoring, our proposed score
could relate to UPro, and the other variables of SBP and
UOB as well. In addition, our system is capable of
evaluating glomeruli more quantitatively.

The advantage of this study is that we successfully
developed a histological assessment workflow, and
confirm the calculated scores to relate with clinical
indicators in the patients with IgAN, especially UPro
and SCr, by examining glomerular image features in an
unsupervised manner, independent of nephrologists
and pathologists. The weights of this model are pub-
licly available, and thus these could contribute to the
standardization of histological assessment. In addition,
the CNNs used in the study are replaceable and can
easily scale as the new models develop in the future.
Moreover, there is a possibility that disease progres-
sion could be evaluated quantitatively in the subse-
quent biopsy specimen in the same patient; however,
testing with more patients with the subsequent biopsy
specimen is desired. The major limitation of the study
was that we could not assess the relationship between
histological scores and prognostic information of pa-
tients because the observation period was short. In
addition, because it involves unsupervised clustering,
the results are expected to vary with parameter ad-
justments. For example, if the number of neighbors in
UMAP is reduced in the experiment of the entire
glomerulus images as input, the images will split into
many more clusters, and it depends on the number of
available training images. In addition, the evaluation of
the clustering and visualization results remained sub-
jective. Although the association was statistically sig-
nificant, the R2 values for the linear models were low.
This is presumed to be partially because of the vari-
abilities of clinical variables assessed, especially for
UOB, which was assessed by dipstick, and UPro, in
which the daily urinary protein and urinary creatinine
ratio were used.

In summary, we proposed an unsupervised
approach to quantitatively evaluate histological find-
ings along with providing the rationale for the evalu-
ation and applied it to the kidney histological images.
The obtained scores were related to important clinical
variables in patients with IgAN and could be
applied to other glomerular diseases or conditions that
require evaluation of specific structures inside the slide
images.
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