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Abstract: Chitosan is a kind of biodegradable natural polysaccharide, and it is a very promising
adsorber material for removing metal ions from aqueous solutions. In this study, chitosan-based
magnetic adsorbent CMC@Fe3O4 was synthesized by a one-step method using carboxymethyl
chitosan (CMC) and ferric salts under relatively mild conditions. The Fe3O4 microspheres were
formed and the core–shell structure of CMC@Fe3O4 was synthesized in the meantime, which was
well characterized via SEM/TEM, XRD, VSM, FT-IR, thermo gravimetric analysis (TGA), XPS,
size distribution, and zeta potential. The effects of initial arsenic concentration, pH, temperature,
contact time, and ionic strength on adsorption quantity of inorganic arsenic was studied through batch
adsorption experiments. The magnetic adsorbent CMC@Fe3O4 displayed satisfactory adsorption
performance for arsenic in water samples, up to 20.1 mg/g. The optimal conditions of the adsorption
process were pH 3.0, 30−50 ◦C, and a reaction time of 15 min. The adsorption process can be
well described by pseudo-second-order kinetic model, suggesting that chemisorption was main
rate-controlling step. The Langmuir adsorption model provided much higher correlation coefficient
than that of Freundlich adsorption model, indicating that the adsorption behavior is monolayer
adsorption on the surface of the magnetic adsorbents. The above results have demonstrated that
chitosan-based magnetic adsorbent CMC@Fe3O4 is suitable for the removal of inorganic arsenic
in water.

Keywords: chitosan; adsorption; magnetic adsorbents; inorganic arsenic

1. Introduction

Arsenic is one of the common components of the Earth’s crust and an important pol-
lutant in groundwater resources. At the same time, natural sources such as the dissolution
of arsenic-rich rocks, volcanic emissions, fossil fuels, and garbage burning would lead to
high arsenic content in water [1]. Arsenic is widely present in the water environment [2–4],
which is also due to the widespread use of arsenic products, such as pesticides, herbicides,
preservatives, etc. [5–7]. Exposure to elevated levels of arsenic, a class I human carcinogen,
has become a global concern, affecting millions population worldwide. The currently
recommended upper limit of arsenic in drinking water is 10 µg/L [8]. Arsenic exists in four
oxidation states of As (V), As (III), As (0), and As (–III) [9]. The toxicity of arsenic mainly
depends on its chemical form. Arsenic trivalent (As (III)) is the most toxic, followed by
arsenic pentavalent (As (V)), and organic arsenic is the least toxic. Arsenic can be absorbed
from groundwater by enrichment effect into soil and plants and eventually into the human
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body [10,11]. What is worse, long-term exposure to arsenic can result in chronic poisoning,
skin lesions, neurological and respiratory defects, and even several types of cancer [12].

In consideration of the adverse impacts of metal ions on the environment, a series of
treatment methods, such as chemical precipitation, ion-exchange, adsorption, membrane
filtration, coagulation–flocculation, flotation, and electrochemical methods, have been
proposed to remove metal ions from water samples [13]. Taking all the factors into con-
sideration, adsorption is the better choice because of its convenience, low cost, and high
efficiency [14]. Part of the heavy metal adsorbents, such as activated carbon [15], polymer
ligands [16], metal oxides [17], and other nanomaterials [18], have been applied to water
samples. However, some adsorbents still have low adsorption quantity, complicated pro-
duction process and long separation time. Therefore, the development of adsorbents with
high adsorption capacity is the key to capture metal ions effectively.

Chitosan is a deacetylated product of chitin which is widespread in the environment
and it is a biodegradable natural polysaccharide. It is recognized that chitosan has many
-OH and -NH2 groups, which have chelating effect on heavy metals under certain con-
ditions [19,20]. In addition, -OH and -NH2 groups have strong reactivity, and specific
groups can be introduced to enhance the adsorption of metal ions. The chelating prop-
erty of chitosan has been used to adsorb metal ions, such as Mn2+, Hg2+, Pd2+, Cu2+,
and Pb2+ [21,22].

In the present work, carboxymethyl chitosan (CMC) was modified to form a kind of
magnetic adsorbent CMC@Fe3O4 via a one-step method under relatively mild conditions.
In 2018, Chen et al. used a two-step synthesis method to prepare a kind of magnetic
adsorbent functionalized with EDTA, which could capture anionic dye and heavy metals in
complex wastewater [23]. In 2020, Lian et al. prepared a magnetic chitosan oligosaccharide
and carboxymethyl cellulose nanocomposite adsorbent for Pb (II) adsorption by two-step
method [24]. In comparison to other synthetic methods, the present work provided the
possibility of preparing magnetic adsorbents by one-step method under relatively mild
conditions. Without the steps of preparation, purification, preservation, and dispersion of
Fe3O4 nanoparticles, the magnetic adsorbents could be synthesized in a relatively short
period of time. The magnetic adsorbent CMC@Fe3O4 was characterized via SEM/TEM,
XRD, VSM, FT-IR, TGA, XPS, size distribution, and zeta potential. Finally, the effects of
adsorbent concentration, pH, temperature, contact time, and ionic strength were tested
and the adsorption properties of the magnetic adsorbent CMC@Fe3O4 were evaluated by
atomic fluorescence spectrometer.

2. Experimental Section
2.1. Materials and Reagents

Carboxymethyl chitosan (CMC) was bought from Shanghai Yuanye Biological Tech-
nology Co., Ltd. (Shanghai, China), and it has a degree of substitution of ≥80%. Ferric
chloride (FeCl3·6H2O, 99%) and ammonia solution (25%, v/v) were purchased from Tian-
jin Damao Chemical Reagent Factory. Anhydrous sodium sulfite (Na2SO3, 98.0%) and
glutaraldehyde (50% in H2O) were bought from Aladdin. A standard solution of arsenic
(1000 g/L in 1 mol/L HNO3) was bought from National Nonferrous Metal and Electronic
Materials Analysis and Testing Center. All reagents were used as received.

2.2. Synthesis of the Magnetic Adsorbent CMC@Fe3O4

The preparation of the magnetic adsorbent CMC@Fe3O4 was carried out according to
previous literature with some improvements [25]. As shown in Scheme 1, 2.0 g CMC was
dissolved in 200 mL ultrapure water under nitrogen gas with vigorous stirring at 60 ◦C.
Five grams FeCl3·6H2O was dissolved in 30 mL ultrapure water and 0.72 g Na2SO3 was
dissolved in 10 mL water. Then, these two solutions were mixed and poured into a separa-
tory funnel. The mixed solution was added to the three-necked flask through funnel and
stirred for 5 min. Then, 100 mL 12% NH3·H2O was dropwise added to the mixed solution
through funnel. The color of the bulk solution changed from orange to black immediately.
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After stirring for 20 min, 20 mL 25% glutaraldehyde was added into the mixed solution
without heating. The reaction pH for CMC@Fe3O4 synthesis was about 12. The reaction
was finished after stirring for another 3 h at 450 r/min. The magnetic precipitates were
separated by centrifugation and the supernatant was removed by magnetic separation.
Finally, the magnetic precipitates were washed several times with ultrapure water and the
magnetic adsorbent CMC@Fe3O4 was obtained after freeze drying treatment.
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Scheme 1. Synthesis scheme of the magnetic adsorbent CMC@Fe3O4.

2.3. Adsorption Experiments

The effects of initial adsorbent concentration, pH, temperature, contact time, and ionic
strength on the adsorption quantity were studied through batch adsorption experiments
(Scheme 2). In a typical test, 50 mg magnetic adsorbent CMC@Fe3O4 was added into an
arsenic solution with a concentration ranging from 2 mg/L to 90 mg/L. After oscillating in
water bath for a period of time, the adsorbents were separated by a piece of magnet and
the reducing agent was added to the supernatant to a constant volume of 5 mL and then
taken to test the remaining arsenic concentration by atomic fluorescence spectrophotometer.
The concentration results were calculated to obtain the adsorption quantity of arsenic.
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Scheme 2. Adsorption experiments.

2.4. Characterization of Magnetic Adsorbents

The magnetic adsorbent CMC@Fe3O4 was characterized via scanning electron micro-
scope (SEM)/transmission electron microscope (TEM), X-ray diffraction (XRD), Vibrating
sample magnetometer (VSM), Fourier transform infrared spectroscopy (FT-IR), Thermo
gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), size distribution,
and zeta potential. The FT-IR spectra of magnetic adsorbents were recorded by using
an IRAffinity-1 spectrometer (Shimadzu, Kyoto, Japan). The typical XRD patterns were
acquired on a Bruker D8 Advance X-ray diffractometer (Bruker Inc., Karlsruhe, Germany).
The SEM images were obtained using Zeiss Sigma 500 (Carl Zeiss Co., Oberkochen, Ger-
many). The TEM images were recorded by using a FEI Tecnai G20 microscope (FEI Co.,
Hillsboro, OH, USA). The XPS spectra of the adsorbents were performed by using a Thermo
Fisher Scientific K-Alpha X-ray photoelectron spectroscopy apparatus. The magnetiza-
tion curves were measured by utilizing a MPMS XL-5 vibrating sample magnetometer
(Quantum Design, Inc., San Diego, CA, USA). TGA analysis was conducted via a Mettler
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Thermo Gravimetric instrument (Mettler Toledo Group., Columbus, OH, USA) under a
N2 atmosphere. Malvern 3600 Zetasizer (Malvern Instruments Ltd., Melvin city, UK) was
applied to determine size distribution and zeta potential of the magnetic adsorbents.

2.5. Chemical Analysis

An AFS series atomic fluorescence spectrometer (Beijing Haiguang Instrument Ltd.,
Beijing, China) was used to measure the concentrations of arsenic in water samples. The ar-
senic high-intensity hollow cathode lamp was employed as the radiation sources. The in-
strument working conditions are listed in Table 1.

Table 1. Parameters and operating conditions of atomic fluorescence spectrometer.

Parameters Settings

Lamp current 60 mA

High negative voltage of photomultiplier 260 V

Carrier argon flow rate 300 mL/min

Shield gas flow rate 800 mL/min

HCl carrier solution 5%, v/v

3. Results and Discussion
3.1. Characterization of Magnetic Adsorbents

The microstructure of the magnetic adsorbent CMC@Fe3O4 is shown in Figure 1a–c.
The size of Fe3O4 magnetic nanoparticles is between 20 nm and 40 nm. Different spherical
shape and irregular shape can be clearly seen under SEM, which could be speculated
that organic phase has been coated on the Fe3O4 magnetic nanoparticles [22]. Because
of magnetism, most of the adsorbent nanoparticles aggregate together. Simultaneously,
the energy-dispersive spectroscopy (EDS) spectra were recorded to testify the composition
of the magnetic adsorbents. Figure 1c shows that elements including C (15.0%), O (18.7%),
and Fe (66.3%) are evenly distributed on the magnetic adsorbent CMC@Fe3O4.
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The TEM images of the magnetic adsorbent CMC@Fe3O4 are shown in Figure 1d,e.
The diameter of CMC@Fe3O4 is around 20 nm. The spherical shape can be clearly seen,
which is consistent with the SEM results. There are dark particles coated in a large area
of light gray material [23]. Combined with the SEM results, it can be concluded that the
Fe3O4 nanoparticles are successfully encapsulated in carboxymethyl chitosan, which is
consistent with the previous work [25].

In the XRD pattern of Fe3O4 (Figure 2a), six characteristic diffraction peaks appear
at 30.2◦, 35.6◦, 43.2◦, 53.6◦, 57.1◦, and 62.7◦, which were ascribed to (220), (311), (400),
(422), (511), and (440) planes of Fe3O4, respectively [26]. These peaks match well with
the standard XRD pattern of Fe3O4 according to JCPDS [27]. The characteristic peaks of
CMC@Fe3O4 samples appear at 30.1◦, 35.4◦, 43.0◦, 53.5◦, 56.8◦, and 62.8◦, which indicates
that the adsorbents contain Fe3O4 nanoparticles. The results confirm that the cross-linking
reaction has taken place. The FT-IR spectra of CMC and CMC@Fe3O4 is shown in Figure 2b.
For CMC, the absorption bands were found at 3440 cm−1 (stretching vibration of N-H and
O-H), 2920 cm−1 and 2875 cm−1 (stretching mode of C-H), 1620 cm−1 (amide), 1315 cm−1,
and 1423 cm−1 (CH3 symmetrical angular deformation), respectively. The Fe-O bond
of Fe3O4 appeared at 585 cm−1 in the magnetic adsorbent CMC@Fe3O4 but weakened.
Thus, the CMC has been crosslinked to the surface of the Fe3O4 magnetic nanoparticles
through glutaraldehyde [28]. The XPS survey spectra (Figure 2c) showed that there is no
iron exposed to the surface of CMC@Fe3O4, thus the surface of the magnetic adsorbent
CMC@Fe3O4 was wrapped by organic phase [29].
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Figure 2. The XRD (a), FT-IR (b), and XPS (c) spectra images of the magnetic adsorbent CMC@Fe3O4.

The TGA curves of the Fe3O4, CMC, and CMC@Fe3O4 samples are shown in Figure 3a.
From 40 ◦C to 600 ◦C, the weight loss of Fe3O4, CMC, and CMC@Fe3O4 was 7.7%, 67.9%,
and 66.4%, respectively. For Fe3O4, the total weight loss over the tested temperature
is structure water and surface water. For CMC, the water loss temperature is ~245 ◦C,
and when the temperature reaches at 295 ◦C, most of the organic matter begins to decom-
pose thermally. For the magnetic adsorbent CMC@Fe3O4, a weight loss of 66.4% over
the tested temperature indicates the lost weight of cross-linked CMC in the magnetic
adsorbent [23]. In comparison with CMC, the magnetic adsorbent CMC@Fe3O4 showed
less thermogravimetric loss, which can also prove that CMC is successfully cross-linked to
Fe3O4 nanoparticles.

The size distribution and zeta potential curves of the magnetic adsorbent CMC@Fe3O4
are shown in Figure 3b,c. The particle diameter of CMC@Fe3O4 shows a concentrating
distribution between 459 nm to 825 nm, which is somewhat different from the results of
SEM/TEM. It is speculated that the presence of magnetism leads to the aggregation of the
adsorbents which results in the increase of particle size. The zeta potential curve showed
that most of the adsorbent particles had negative electronegativity, which was conducive
to the adsorption of metal cations.
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Magnetic hysteresis loop of the magnetic adsorbent CMC@Fe3O4 is shown in Figure 3d.
The saturation magnetization value was 19.2 emu/g for CMC@Fe3O4, suggesting that the
adsorbent was superparamagnetic [30], and it was easy to isolate from solution by gravity
and magnetism for only a few seconds.
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3.2. Adsorption of Arsenic on CMC@Fe3O4

The effect of the initial arsenic concentration was tested with its loading ranging
from 2 mg/L to 90 mg/L (Figure 4a). With the increase of initial arsenic concentration,
the adsorption quantity (Q, mg/g) of arsenic showed a trend of first up and then down.
As it reaches to 30 mg/L, the adsorption quantity gets its maximum at 20.1 mg/g. Therefore,
the concentration of 30 mg/L arsenic was applied to the following experiments.

The effect of pH was explored, as shown in Figure 4b. With the increase of pH,
the adsorption quantity of arsenic significantly decreased, suggesting that adsorption
process would get better effect at lower pH. For example, the adsorption quantity reached
17.3 mg/g at pH 3.0. On account of the presence of Fe3O4 in the adsorbents, lower pH was
not selected because it might cause dissolution of Fe3O4.

Figure 4c shows that the adsorption quantity of arsenic gradually increased as reac-
tion continued, and reached its maximum value after reaction for 15 min. The optimal
adsorption quantity was 20.8 mg/g, and it decreased significantly as the reaction time was
prolonged. Therefore, 15 min is the optimal contact time. Figure 4d shows that too high or
too low temperature is not conducive to the adsorption process. When the temperature was
50 ◦C, the adsorption quantity of arsenic reached the optimal value of 13.2 mg/g. Figure 4e
showed that the ionic strength (NaCl) affects the adsorption of arsenic. The adsorption
quantity declined slightly with the addition of NaCl raising from 0 to 0.08 mol/L, indicating
that the presence of NaCl inhibited the absorption of arsenic.
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Figure 4. Effect of initial arsenic concentration (a), pH (b), reaction time (c), temperature (d), and ionic strength (e) on the
adsorption quantity (Q) of arsenic by CMC@Fe3O4.

Compared with other magnetic adsorbents or chitosan-based adsorbents, the prepared
CMC@Fe3O4 adsorbents have higher adsorption quantity as shown in Table 2. As the
magnetic adsorbent was prepared by a one-step process, much preparation time can
be saved.

Table 2. Comparison of adsorption capacity of CMC@Fe3O4 with different magnetic or chitosan-
based adsorbents.

Magnetic Adsorbents Q (mg g−1) Reference

Iron-impregnated chitosan granular 22.5 [31]

TiO2-impregnated chitosan bead 2.1 [32]

Iron oxide-coated sponge 4.5 [33]

Iron oxide-coated cement 0.7 [34]

CMC@Fe3O4 20.1 Our work

3.3. Effect of Contact Time on Adsorption and Kinetics Study

The adsorption kinetics of CMC@Fe3O4 is shown in Table 3 and Figure 5. As can be
seen from the figure, the adsorption gradually approached equilibrium with the increase of
time, and the adsorption equilibrium could be reached after 15 min. The pseudo-first-order
kinetics model and pseudo-second-order kinetics model were used for data fitting analysis,
and relevant parameters were calculated by using Equations (1) and (2), respectively.

qt = qe

(
1 − e−k1t

)
(1)

t
qt

=
1
qe

t +
1

k2q2
e

(2)
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where k1 is the pseudo-first-order adsorption constant (min−1), and k2 is the pseudo-second-
order adsorption constant (g mg−1 min−1), respectively. Moreover, qt and qe represent the
unit adsorption capacity at time t and at equilibrium adsorption (mg g−1), respectively.

Table 3. Parameters of CMC@Fe3O4 removing arsenic at 30 mg L−1 based on pseudo-first-order and pseudo-second-order
kinetics model.

C0/
(mg L−1)

qe/
(mg g−1)

Pseudo-First-Order Model Pseudo-Second-Order Model

k1/min−1 qe
cal/(mg g−1) R2 k2/(g mg−1 min−1) qe

cal/(mg g−1) R2

30 20.1 1.7 14.1 0.727 0.15 15.5 0.919
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In comparison to the pseudo-first-order kinetics model, the correlation coefficient
R2 of the pseudo-second-order kinetic model is 0.919, and the theoretical maximum ad-
sorption capacity (qe

cal) calculated by the pseudo-second-order kinetic model is close to
the experimental results (qe

exp). Therefore, the adsorption process can be well described
by pseudo-second-order kinetic model, suggesting that chemisorption was main rate-
controlling step [35].

3.4. Adsorption Isotherms and Adsorption Mechanism

Figure 6 is the adsorption isotherm of CMC@Fe3O4 for arsenic at 30 ◦C. The adsorption
amount increased with the increasing of the initial concentration, and gradually reach
saturation adsorption. The saturated adsorption capacity of CMC@Fe3O4 was 20.1 mg g−1

at 30 ◦C. Langmuir and Freundlich adsorption models were used to simulate the adsorption
isotherm, and the relevant parameters were calculated by Equations (3) and (4), respectively
(Table 4).

qe =
qmaxKLCe

1 + KLCe
(3)

qe = KLC
1
n
e (4)

In the formula, Ce (mg L−1) represents equilibrium concentration in aqueous solution,
qe (mg g−1) is adsorption amount of pollutant at equilibrium, and qmax (mg g−1) is the
maximum uptake capacity of the adsorbent. KL (L mg−1) is a Langmuir constant concerning
adsorption energy and KF represents Freundlich constant associated with sorption intensity
and sorption capacity.
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Table 4. Langmuir and Freundlich parameters for adsorption of arsenic on CMC@Fe3O4.

Sample Temperature/◦C
Langmuir Model Freundlich Model

qmax/(mg g−1) KL/(L mg g−1) R2 KF/(g mg−1 min−1) n/(mg g−1) R2

CMC@Fe3O4 30 49.2 0.02 0.995 1.1 1.2 0.985

The related parameters show that the Langmuir adsorption model can better fit the
adsorption of arsenic for CMC@Fe3O4. The Langmuir adsorption model provided much
higher correlation coefficients (R2), indicating that the adsorption behavior is monolayer ad-
sorption on the surface of the magnetic adsorbents. The underlying adsorption mechanism
might be that the surface of carboxymethyl chitosan contains a large number of carboxyl
groups, which have electrostatic attraction with the heavy metal ions with positive charge.
Therefore, the CMC@Fe3O4 magnetic adsorbents could achieve the purpose of removing
inorganic arsenic in water [34,36]. The best pH of the prepared CMC@Fe3O4 magnetic
adsorbent is about 3. Therefore, it will inevitably lead to the dissolution of a part of the
magnetic adsorbents in the process of adsorption. Recycling and reusing for three times,
the adsorption quantity reduced by 20–30%.

4. Conclusions

In this study, chitosan-based magnetic adsorbent CMC@Fe3O4 was prepared by glu-
taraldehyde cross-linking reaction coupled with one-step synthesis. The as-prepared
magnetic adsorbent CMC@Fe3O4 had the core–shell structure with saturation magnetiza-
tion value of 19.2 emu/g. The batch adsorption experiments showed that the maximum
adsorption quantity of arsenic in water was 20.1 mg/g by using 30 mg/L CMC@Fe3O4.
The optimal conditions of the adsorption process were pH 3.0, 30−50 ◦C and a reaction time
of 15 min. The ionic strength inhibited the adsorption process. The adsorption process can
be well described by pseudo-second-order kinetic model, suggesting that chemisorption
was main rate-controlling step. The Langmuir adsorption model provided much higher
correlation coefficient than that of the Freundlich adsorption model, indicating that the
adsorption behavior is monolayer adsorption on the surface of the magnetic adsorbents.
Additionally, the developed CMC@Fe3O4 has the advantages of simple operation and rapid
adsorption and showed satisfactory removal performance of arsenic in water samples.
This study will offer good prospects to the synthesis of the adsorption materials for treating
real wastewater with metal ions.
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