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Abstract

Measurement of clock gene expression has recently provided evidence that the cerebellum, like the master clock in the SCN,
contains a circadian oscillator. The cerebellar oscillator is involved in anticipation of mealtime and possibly resides in
Purkinje cells. However, the rhythmic gene expression is likely transduced into a circadian cerebellar output signal to exert
an effective control of neuronal brain circuits that are responsible for feeding behavior. Using electrophysiological
recordings from acute and organotypic cerebellar slices, we tested the hypothesis whether Purkinje cells transmit a circadian
modulated signal to their targets in the brain. Extracellular recordings from brain slices revealed the typical discharge
pattern previously described in vivo in single cell recordings showing basically a tonic or a trimodal-like firing pattern.
However, in acute sagittal cerebellar slices the average spike rate of randomly selected Purkinje cells did not exhibit
significant circadian variations, irrespective of their specific firing pattern. Also, frequency and amplitude of spontaneous
inhibitory postsynaptic currents and the amplitude of GABA- and glutamate-evoked currents did not vary with circadian
time. Long-term recordings using multielectrode arrays (MEA) allowed to monitor neuronal activity at multiple sites in
organotypic cerebellar slices for several days to weeks. With this recording technique we observed oscillations of the firing
rate of cerebellar neurons, presumably of Purkinje cells, with a period of about 24 hours which were stable for periods up to
three days. The daily renewal of culture medium could induce circadian oscillations of the firing rate of Purkinje cells,
a feature that is compatible with the behavior of slave oscillators. However, from the present results it appears that the
circadian expression of cerebellar clock genes exerts only a weak influence on the electrical output of cerebellar neurons.
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Introduction

Anticipation of daily and seasonal environmental rhythms is

provided by a biological clock that controls the circadian rhythm

of physiological, endocrine and behavioral processes. The

dominant pacemaker is located in the hypothalamic suprachias-

matic nucleus (SCN) and is composed of numerous individual

clock cells which are synchronized to solar time by direct retinal

afferents [1]. However, rhythmically expressed clock genes which

are responsible for the sustained 24 hour oscillations in the SCN

were also discovered in other brain areas and in many peripheral

tissues [2,3]. It is believed that the mammalian circadian timing

system is composed of a hierarchical organized network of

oscillators involving the entrained master oscillator in the SCN

and a number of slave oscillators in other brain areas and in

peripheral organs [1]. Circadian gene expression in peripheral

tissues, which are themselves not light sensitive and can be

entrained by nonphotic cues, depend to a large extent on

a functional SCN pacemaker in intact animals [4]. Whereas the

light-dark cycle is the most important zeitgeber for the master

clock in the SCN, time of feeding is the dominant zeitgeber for

peripheral tissues.

The food entrainable oscillator (FEO) is responsible for the food

anticipatory activity (FAA) that precedes the mealtime during

scheduled feeding in mammals [5,6]. The localization of the

presumptive FEO was assessed by lesioning specific brain areas

and measuring the reduction of the FAA. From these studies it was

assumed that the FEO may consist of a network of coupled brain

regions involving principally hypothalamic areas outside of the

SCN, including the dorsomedial hypothalamus, and also the

brainstem with the parabrachial nucleus [7,8,9,10]. Interestingly,

restricted feeding induces phase-shifts of rhythmic clock gene

expression in both regions without affecting expression of the same

clock genes in the SCN [9]. Circadian rhythms in the SCN are

only affected when the timed feeding becomes additionally

hypocaloric [11]. This suggests that the FEO is independent from

the SCN, and possesses a self-sustained clock mechanism.

Another possible candidate involved in a feeding entrained

network is the cerebellum which shows, besides its established

control of fine locomotor activity [12], a rhythmic expression of

clock genes [13]. Destruction of Purkinje cell function by an

immunotoxin leads, similar as in mouse mutants with impaired

cerebellar circuitry, to a strong diminution of rhythmic FAA which

shows that the cerebellum belongs to a network of self-sustained
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FEO [13]. Rhythmic clock gene expression in the cerebellum is

independent from the master clock in the SCN, because in

cerebellar brain slices that are isolated from any input signal this

rhythmicity persists for several days [3,13]. However, if Purkinje

cells harbor an intrinsic circadian oscillator, it is uncertain whether

this rhythmic clock gene expression is transduced into a rhythmic

neuronal output signal that can influence other brain targets

involved in feeding behavior.

In the SCN, the circadian expression of clock genes forms the

core of circadian rhythm generation and this intrinsic timekeeping

signal must be transmitted to the SCN targets in the brain in the

form of humoral or neural outputs [14]. Rhythmic SCN electrical

activity as a circadian output signal can be recorded in vivo [15], as

well as in vitro in dissociated cell cultures [16,17], acute slices [18]

or organotypic slice cultures [19,20]. The activity of SCN output

neurons is thus a reliable signal that communicates temporal

information to various brain regions. In the present work, we

investigated whether the circadian expression of clock genes in the

cerebellum is also communicated as a rhythmic electrical output

signal to brain areas. Since Purkinje cells provide the sole output

signal of the cerebellar cortex we performed random single cell

extracellular recordings in acute slices, as well as long-term MEA

recordings from organotypic slices to elucidate whether the

circadian oscillation of genes in the cerebellar clock is transduced

into a circadian electrical output signal. Additionally, we in-

vestigated, using whole-cell patch-clamp recordings, a possible

circadian modulation of synaptic inputs to Purkinje cells.

Cerebellar Purkinje cells are firing spontaneously with high

frequencies in the range of 20 to 50 Hz in vivo [21]. Spontaneous

activity can be recorded with MEAs in acute slices [22] and also in

organotypic slice cultures [23]. However, despite the considerable

work already done on Purkinje cell physiology, we do not know

whether the recently detected circadian clock gene expression is

communicated as rhythmic electrical information to the brain.

Materials and Methods

Animals and Ethics Statement
Acute brain slices and organotypic slices were prepared from

wild type mice (C57Bl/6). Animals were housed under a 12:12

light/dark (LD) cycle with lights on at 7 am and lights off at 7 pm.

All animal procedures were carried out in accordance with

institutional guidelines of the Max Planck Institute for Brain

Research, Frankfurt, and the University of Strasbourg, following

the standards described by the German animal protection law

(Tierschutzgesetz), the rules of the European Committee Council

Directive of November 24, 1986 (86/609/EEC) and the French

Department of Agriculture (licence no. 67-7 and 67–88). Killing of

mice for organ harvesting (brain slices) has been approved by the

animal welfare officer of the respective facility (Max Planck

Institute for Brain Research, Frankfurt) and reported to the local

authorities (Regierungspraesidium Darmstadt).

Preparation of Brain Slices
Acute brain slices. Animals (3–5 week old) were deeply

anesthetized with isoflurane (CuraMed Pharma, Karlsruhe,

Germany), the cerebellum was dissected out and placed in cold

artificial cerebrospinal fluid (aCSF) (4uC) bubbled with carbogen

(95% O2, 5% CO2), containing in mM: NaCl 120; KCl 3;

NaHCO3 26; NaH2PO4 1.25; CaCl2 2.5; MgCl2 2; glucose 10;

minocyclin 0.00005 (Sigma-Aldrich). Transverse slices of 330 mm

thickness were prepared with a vibrating blade microtom (Microm

HM 650V, Thermo Scı́entific) in potassium-based medium,

containing in mM: K-gluconate 130; KCl 14.6; EGTA 2; HEPES

20; glucose 25; minocyclin 0.00005; D-(-)-2-amino-5-phosphono-

valeric acid (D-AP5) 0.05 [24]. After cutting, slices were soaked

a few seconds in a sucrose-based medium at 34uC, containing in

mM: Sucrose 230; KCl 2.5; NaHCO3 26; NaH2PO4 1.25; glucose

25; CaCl2 0.8; MgCl2 8; minocyclin 0.00005; D-AP5 0.05. Slices

were maintained in bubbled aCSF.

Organotypic slices. Mouse pups of age P0 to P3 were

rapidly decapitated, and the brain was removed and placed in ice-

cold aCSF complemented with 100 mg/ml penicillin/streptomy-

cin. Coronal and sagittal slices of 250–350 mm were cut on

a vibratome, and placed on a Millipore culture insert (MilliCell-

CM) in a 35-mm culture dish with a small amount of culture

medium (ca. 1 ml). The medium consisted of DMEM/F12

(Invitrogen, Karlsruhe, Germany) supplemented with 10% fetal

calf serum, 2.5 mM glutamax (Invitrogen, Karlsruhe), 10 mM

HEPES (Sigma-Aldrich, München, Germany) and 100 mg/ml

penicillin/streptomycin (Invitrogen, Karlsruhe). Medium was

exchanged three times per week. The dishes were incubated at

37uC in 5% CO2/95% air for at least two weeks. Before recording,

the membrane of the culture insert was cut to approximately the

size of the slice. The slice was then inverted with the culture

membrane at the top and placed onto a nitrocellulose coated MEA

(Multi Channel Systems, Reutlingen, Germany). Organotypic

slices were maintained on MEAs for 1–3 weeks under continuous

superfusion with recording medium.

MEA Recordings
Long-term recordings of the firing rate from organotypic brain

slices were carried out with a MEA-1060 recording system (Multi

Channel Systems, Reutlingen) as previously described [25]. Two

types of high density MEAs (HD-MEA) and one standard type

with different electrode layouts were used. One HD-MEA type

consisted of 2 fields with 30 electrodes each with a diameter of

10 mm and 30 mm spacing. The distance between the two fields

was 500 mm. The second HD-MEA type consisted of one field of

60 electrodes with 10 mm diameter and 40 mm spacing between

the electrodes. It was possible to record the activity of the same

Purkinje cell on several electrodes of the HD-MEAs. The third

standard type consists of 60 electrodes of 30 mm diameter evenly

spaced by 200 mm. This type of MEA allowed to record

simultaneously from different cells located at various places in

the cerebellar cortex.

Extracellular voltage signals recorded from the MEA electrodes

were amplified 61200 and sampled at 32 kHz on 60 channels

simultaneously. Extracellularly recorded spikes which are usually

embedded in biological and thermal noise of about 15 mV peak to

peak were detected by using a threshold based algorithm. Action

potentials exceeding a defined voltage threshold were digitized and

stored as time-stamped spike cut-outs using the MC_Rack

software (Multi Channel Systems).

Recording medium consisted of DMEM/F12 with the same

supplements as the culture medium with the exception that the

HEPES content was elevated to 20 mM and the NaHCO3 levels

reduced to 0.56 g/l. During long-term recordings, medium was

exchanged continuously at a flow rate of 20 ml/min using a SP

260PZ syringe pump (WPI, Sarasota, USA). Culture chamber,

application system and inflow-, outflow-system were completely

sealed to prevent bacterial contamination.

Patch-clamp Recordings
Extracellular spike recordings were made with borosilicate

pipettes (Warner Instruments, USA) filled with 3 M NaCl and 20–

30 MV resistance using a multiclamp 700A amplifier and

WinWCP 4.2.x freeware (John Dempster, SIPBS, University of

Circadian Rhythmicity in the Cerebellum
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Strathclyde, UK). Purkinje cells were selected for recording under

visual guidance of differential interference contrast microscopy

(BX51, Olympus). Recordings were performed at room temper-

ature from randomly selected Purkinje cells with a sampling rate of

20 kHz. The activity of each randomly selected cell was recorded

for 5 minutes. Recordings from each slice were conducted for

a maximum time of 1 h, before the next slice was used. For the

same preparation a maximum of 4 slices were used which should

limit the risk that a degradation of the health of the slices could

influence the firing rate. The electrical activity of the cells was

recorded independently of their position in the cerebellar folia. All

measurements were completed within 4 hours following de-

capitation.

Whole-cell recordings were performed at room temperature

with an EPC-9 patch-clamp amplifier and Pulse 8.11 software

(HEKA Elektronik, Lamprecht, Germany). The patch pipettes

were pulled from borosilicate glass tubing (Hilgenberg, Malsfeld,

Germany) on a horizontal puller and had a resistance of 5–8 MV.

The pipette solution contained in mM: Cs-gluconate 125, CaCl2
1, EGTA 10, MgSO4 4.6, Na-HEPES 10, Na-ATP 4, Na-GTP

0.4, QX-3145 5 (pH 7.3, adjusted with CsOH). Purkinje neurons

were identified by differential interference contrast microscopy

(Axioscope 2, Zeiss). Input resistances typically were between 600

and 1400 MV. Series resistances were 10–20 MV and left

uncompensated. The cell and pipette capacitances were cancelled.

The liquid junction potential of the aCSF with regard to the

pipette solution was approximately 15 mV. The holding potential

was corrected for the junction potential. The signals were filtered

at 1 kHz with an eight-pole Bessel filter built into the EPC-9

amplifier and digitized. The sampling rate was 10 kHz. Sponta-

neous inhibitory post-synaptic currents (IPSCs) were measured

using Mini Analysis 6.0.3 software (Synaptosoft, Decatur, GA,

USA).

Immunohistochemistry
After MEA recordings, organotypic slices were gently removed

from the electrode fields and indirect immunohistochemistry was

performed on the free-floating slices. Slices were fixed for 10 min

with 4% paraformaldehyde in 0.1 M phosphate buffer (PB) at

room temperature, washed three times with phosphate buffer and

then incubated overnight with a rabbit primary antibody, raised

against either calbindin D28K (Cat. No. CB 38; Swant, Marly,

Switzerland) to label Purkinje cells or calretinin (Cat.No. 7699/

3H; Swant, Marly, Switzerland) to label granule cells. Primary

antibodies were diluted to 1/200 in 0.1 M PB containing 10%

normal goat serum, 1% bovine serum albumin, 0.5% Triton X-

100, and 0.05% NaN3. After incubation overnight at room

temperature, slices were washed out three times in PB 0.1 M.

Then, slices were incubated for 1.5 hours at room temperature

with the secondary, anti-rabbit antibody raised in goat, coupled

with Alexa 488 and diluted to 1/500 in the same solution as the

first antibody. Additional incubation for five minutes with DAPI

(1/1000 in 0.1 M PB) was realized after wash out of the secondary

antibody. Slices were mounted on microscope slides and cover-

slipped with Aqua Polymount medium (Polysciences, Warrington,

PA). The labeled cerebellum neurons were examined with an

Axioplan 2 microscope (Zeiss).

Drug Application
Drugs were applied by superfusion through a multibarrel,

pressure driven system (DAD12, ALA Scientific Instruments). The

tip of the micromanifold had an inner diameter of 200 mm and

was placed within 100 mm of the soma of the recorded cell. GABA

and glutamate were applied for five seconds at different

concentrations. The sequence of drugs applied to cells was

randomized. The slices were continuously superfused at the same

rate before and after drug application. Between drug applications,

the cells were perfused for at least 3 min with aCSF to prevent

possible receptor desensitization.

Data Analysis and Statistics
All normally distributed data are presented as mean 6 standard

error of the mean. One-way analyses of variance (ANOVA) for

repeated and independent measures were used to compare the

firing rates and currents recorded at different Zeitgeber times in

acute slices. Significant periodicity of neuronal activity measured

on MEAs was determined with Fisher periodograms (Sigmastat 3;

Systat Software). Statistical analysis of circadian phase and

amplitude of electrical activity was performed by fitting a single

cosinor model onto the data points (Time Series Analysis Seriel

Cosinor: Expert Soft Technology, Esvres, France), by comparing

the peak time of the firing rhythm and by using the K maximal

rise-time of the activity rhythm as reference point. All different

methods to quantify the phase shifts gave consistent results.

Solutions and Chemicals
All drugs were purchased from Sigma-Aldrich (Taufkirchen,

München, Germany) unless otherwise stated.

Results

Extracellular Recordings from Acute Cerebellar Slices
In order to assess a possible circadian component in the output

signal of Purkinje cells, as it is inferred by the rhythmic expression

of clock genes, extracellular single unit recordings were performed

in sagittal cerebellar slices. For these long-term experiments,

spanning a time-period of more than 24 h, we adopted the

classical protocol used by Green and Gillette [26] to monitor

circadian activity in the SCN under in vitro conditions. This

protocol is based upon rapid and random sampling of single units

for periods of 5 minutes, rather than the long-term activity of

a single cell, to obtain the firing pattern of the ensemble of SCN

neurons [18]. Using the same method, we sampled the mean firing

rate of all Purkinje cells recorded, averaged the data and plotted

them over the course of the 24 hour cycle.

Extracellular recordings from visually identified Purkinje cells in

acute slices showed similar firing rates as it is known for simple

spikes from in vivo recordings [27]. The most frequent cell type

displayed a trimodal-like pattern consisting of three successive

phases with a phase of inactivity, a phase with bursting activity and

a phase with a regular, tonic firing (Fig. 1B). The second type

showed tonic and constant firing (Fig. 1A) and a third group of

cells exhibited firing with random patterns (data not shown). The

average firing rate of all 524 Purkinje cells recorded in this study

was 18.6460.43 Hz (min: 1.52 Hz; max: 64.89 Hz), which

corresponds to the spike rate that is usually recorded in acute

slices at room temperature. However, the mean firing rate of

Purkinje cells did not show any clear circadian variation during the

24 hour cycle (p.0.1; Fig. 2A). When only cells with a similar

firing pattern were taken into account, i.e. only cells with trimodal-

like pattern (firing rate: 14.060.4 Hz) or only cells with tonic

pattern (firing rate: 17.160.8 Hz), no significant circadian changes

of the firing rate were observed (data not shown). Furthermore, in

cells with trimodal-like pattern, the average duration of the silent

phases (in the mean 12 s) or the bursting phases (mean: 2 s),

respectively, did not vary with circadian time. Similarly, the

proportion of cells belonging to a specific cell group remained

unchanged during the whole duration of the experiment.

Circadian Rhythmicity in the Cerebellum
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In the SCN, it is known that the effect of a resetting stimulus

which occurs at the time of slice preparation is preserved in the

SCN in vitro [18]. Therefore, we additionally plotted the data

depending on the time at which the animals were sacrificed for

slice preparation and also under these conditions we did not

observe any difference in the average firing rate over the course of

a 24 hours period (p.0.3; Fig. 2B).

Whole-cell Recording of Post-synaptic Activity
To examine a possible circadian modulation of the excitatory

and inhibitory input pathways into the Purkinje cells we de-

termined the synaptic currents on cerebellar Purkinje cells. In situ,

Purkinje cells receive excitatory inputs from glutamatergic granule

cells and olivary neurons via parallel and climbing fibers, and

inhibitory inputs from basket and stellate cells, but in slice culture

Figure 1. Firing pattern of Purkinje cells in single cell extracellular recordings (A and B) or MEA recordings (C and D). The main firing
pattern observed were a tonic pattern (A and C, in blue) or a trimodal-like pattern consisting of a period of higher activity followed by a phase of
tonic activity and a period of silence (B and D). Purkinje cell activity was comparable with both recording methods. For each example, a short portion
of spike recordings (top trace), the firing rate (middle trace) and the auto-correlogram of the single neuron (bottom trace) are represented. The peaks
in the correlograms show that cells are spiking with a regular period. Insets in (C) and (D) depict the waveform of averaged single units.
doi:10.1371/journal.pone.0058457.g001

Circadian Rhythmicity in the Cerebellum
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the two excitatory afferents are absent [28]. In order to examine

a possible circadian modulation of synaptic activity we determined

changes in spontaneous synaptic events in Purkinje cells over the

course of the day. We recorded inhibitory postsynaptic currents

(IPSCs) in whole-cell configuration at a holding potential of

250 mV. Spontaneous activity was recorded in a single cell for

several minutes before the next cell was examined. However,

neither the frequency (p.0.1; 5.1060.26 Hz; n = 13) nor the

amplitude (p.0.4; 13.4560.53 Hz; n = 13) of IPSCs significantly

varied with time of the day (Figure 3A and B) and also the

amplitude of GABA- (p.0.9; 2198.1469.79 pA; n = 30) and

glutamate- (p.0.1; 349.24615.58 pA; n = 30) evoked currents

were stable over the course of the day when both neurotransmit-

ters were applied exogenously (Figure 3 C and D).

Multielectrode Recordings
The variability in firing activity between individual animals

and the absence of a rhythm in random single cell recordings

from acute slices prompted us to perform recordings in

organotypic cultures with the help of MEAs. Organotypic

cultures preserve the structural and physiological characteristics

described in vivo and are together with the MEA technique an

excellent method to monitor extracellular circadian activity on

many electrodes simultaneously for prolonged periods lasting

days or weeks [19,20], whereas single electrode recordings from

acute slices are limited to minutes or hours. If only a small

subset of Purkinje cells or other cerebellar cells contains a self-

sustained oscillator, the rhythm cannot be detected in random

measurements of the average firing rate by single electrodes, but

will be feasible by continuous recordings from individual cells

on MEA.

We performed MEA recordings from sagittal slices kept 2–5

weeks in culture. Figure 4A shows recordings from many regions

of the cerebellar cortex. The Purkinje cell layer is clearly visible in

this slice and marked by red squares. Yellow circles superimposed

on the figure represent the electrodes with a clear spontaneous

activity of high amplitude as it is indicative for Purkinje cells.

Generally, the firing rate of Purkinje neurons was in the range

between 5 and 50 Hz, with an average rate of 12.562.2 Hz (min:

1.1 Hz, max: 77 Hz), similar to the only other study performing

long-term MEA recordings from Purkinje cells [23]. The typical

firing pattern with tonic (Fig. 1C) and trimodal-like pattern

(Fig. 1D), as observed in single cell recordings from acute slices

(Fig. 1A and B), are a further characteristic indicating that these

spikes originate from Purkinje cells. After discrimination of single

cells by spike sorting, single neurons displayed a highly auto-

correlated activity showing a regular firing pattern with multiple

clearly defined peaks. A comparison of autocorrelograms obtained

for the two main firing pattern in MEA and in single electrode

extracellular recordings shows a similar shape of the spike trains,

only the number of oscillations being larger and more precise in

acute slices compared to organotypic slices, and the time interval

between two oscillations was shorter in acute slices (75 ms vs.

110 ms; Fig. 1). Immunostaining with an antibody against

calbindin after the end of the experiments provided further

evidence that the spikes analyzed in MEA recordings originate

from Purkinje cells (see Fig. S1). In some cases, cells located close

to the Purkinje cell layer displayed bursting activity or random

firing patterns; these cells could not be identified with certainty as

Purkinje cells.

Changes of the Firing Rate during a Circadian Cycle
In long-term MEA recordings, spike activity showed high

variability, usually with high firing rate at the beginning of the

experiments, which was not maintained for long periods. In these

cases, spike activity decreased or completely disappeared after 2–

10 hours; other cells were silent at the beginning of the

experiments, but started firing after a few hours or sometimes

days (for example electrode 71 in Fig. 4D).

However, the time course of the firing rate showed in some

cases oscillations with periods between 21.3 hours and 33 hours

for 3 to 5 cycles (see electrode 37 in Fig. 4). The average period

of these rhythmic cells was 24.2760.65 hours (n = 17, out of

more than 300 recorded cells). All of these cells appear to

belong to the Purkinje cell population as judged from their

position in the slice and their firing pattern. Nevertheless, the

periods varied from day to day and the cyclic activity

disappeared after few days.

Figure 2. Extracellular recording from Purkinje cells in acute
slices. A) Firing rate of 524 individual Purkinje cells were measured at
different time of the day within four hours following decapitation. B)
The same cells as in (A) were clustered corresponding to the time of
decapitation. No rhythm can be observed between the different
circadian times (p.0.05). Black dots represent the firing rates of every
single Purkinje cell randomly recorded in the course of a day. Red
squares with error bars show the median firing rate of all cells recorded
in four hours. The black and white bars at the top of each group
represent the periods of subjective day and night.
doi:10.1371/journal.pone.0058457.g002
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Medium Replacement can Induce a Circadian Rhythm
Peripheral clocks require, contrary to the master pacemaker in

the SCN, external signals to sustain or synchronize their internal

circadian rhythms. In order to investigate whether medium

replacement can induce a circadian rhythmicity in Purkinje cells,

we exchanged the recording medium in MEA recordings in

regular intervals close to 24 hours against freshly prepared

medium. In all other long-term experiments, medium was

randomly exchanged in time intervals of about 3 days to ensure

relatively undisturbed recording conditions. However, when the

medium was replaced in intervals of 24–25 hours, rhythmicity in

spike activity was induced in several Purkinje cells for up to five

days. Figures 5A and B show such a MEA experiment with

a medium renewal every 25 hours showing a clear and significant

induction of a rhythmicity of spike discharges for five days. The

phases calculated for both cells were 24.8 hours (Fig. 5A) and 25.0

hours (Fig. 5B), respectively, i.e. they closely coincide with the

renewal interval. However, the two cells shown in Fig. 5 clearly

exhibit a rhythm induction (Fig. 5A) or a rhythm amplification

(Fig. 5B), but, interestingly, the rhythms are 5.6 hours out of phase

suggesting that medium renewal leads to an induction of

rhythmicity, but not to a synchronization, and that the rhythm

was not induced by a mechanical disturbance of the neuron which

should induce similar variations in the activity of all other neurons.

Discussion

It is a fundamental question whether rhythmic clock gene

expression in the brain or in peripheral tissues is, similarly to the

master pacemaker in the SCN, transduced into an electrical

output to communicate the circadian signal to its appropriate

target. One of the brain areas showing oscillations in clock gene

expression is the cerebellum [13] which was, until recently, not

regarded as a major component of the circadian timing system.

However, the question is still open whether cerebellar circadian

clock gene expression is transduced into an appropriate rhythmic

output signal. Using the established method to detect circadian

rhythmicity in an in vitro SCN slice preparation by randomly

recording spike activity over a time period of 24 hours [26], we

monitored the electrical output signals from acute cerebellar slices,

but did not find clear evidence for a circadian variation of the

mean firing rate of acute slices. All these recordings in acute slice

preparations were unambiguously performed from Purkinje cells,

which form the sole output of the cerebellar cortex [27], as judged

by visual identification of the Purkinje cell layer above the

Figure 3. No circadian modulation of the synaptic inputs to Purkinje cells in acute brain slices. A) Whole-cell patch-clamp recording from
a Purkinje cell showing inhibitory post-synaptic currents (IPSCs) under a holding potential of 250 mV. B) The median of frequency (left) and
amplitude (right) of the IPSCs did not vary over a 24 hours cycle (p.0.05). Single black dots represent the average amplitude or frequency of IPSCs for
every single Purkinje cell recorded for 5 minutes. Red squares with error bars with the broken line represent the median of the frequency or
amplitude of IPSCs from all Purkinje cells recorded during a four hours period. C) The amplitude of glutamate-induced currents recorded in four hour
bins did not vary over a 24 hours period (right) (p.0.05). Left: recording trace of a glutamate-evoked current in voltage-clamp. D) The amplitude of
GABA-evoked currents showed no change with circadian time (right) (p.0.05). Left: recording trace of a GABA-evoked current in voltage-clamp.
doi:10.1371/journal.pone.0058457.g003
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electrodes, the typical spike pattern and the specific staining

following recordings. As we did not find any circadian modulation

of spontaneous inhibitory postsynaptic currents, the endogenous

cerebellar pacemaker also does not shape the synaptic input into

Purkinje cells, as it is observed in SCN neurons in GABAergic

neurotransmission [29]. Although we recorded from a relatively

large number of Purkinje cells over the time course of the 24 hour

cycle, this method gives only information about the mean activity

of a randomly selected cell population, but no information about

the behavior of individual cells. In the SCN with its numerous

clock cells, the method gives a reliable measure of SCN population

activity and the clock output in vitro [18,26] and is congruent with

data of rat SCN multi-unit activity obtained in vivo [15], but the

method is apparently not suitable to detect clock driven oscillations

in the cerebellum. This drawback was overcome by the use of

MEA, which allow long-term recordings from multiple single cells

with a time span that was previously not applicable in

electrophysiological recordings. Even in these MEA recordings,

the majority of spontaneously spiking cells did not exhibit clear

circadian oscillations of their firing rate, showing that the principal

output of the cerebellum is not under the control of a circadian

oscillator. However, multisite MEA recordings revealed several

spontaneously active cells, presumably Purkinje cells, with

a rhythmic modulation of their spike rate with periods of about

Figure 4. MEA recordings from an organotypic cerebellar slice. A) Photomicrograph of an organotypic sagittal cerebellar slice on an 868
MEA. The Purkinje cell layer is indicated by the red squares. Yellow circles superimposed on the figure indicate those electrodes that show
a spontaneous activity and spike pattern similar to Purkinje cells. All of these electrodes are situated close to the Purkinje cell layer. Scale bar: 400 mm.
B) Recording of spike rate for 144 hours for the 60 electrodes represented in (A). At most electrode positions, no clear circadian oscillation of the
Purkinje cell firing rate could be observed for several cycles during the recording period of 6 days. However, some electrodes (eg. electrode 33, 34)
showed for one cycle a 24 hour oscillation which was not maintained for longer periods. Electrodes that were not covered by the Purkinje cell layer
showed only a very low spike activity. The scale on the ordinates is set to a maximum of 40 Hz for each channel. C), D) and E) Magnification of the
three marked graphs in (B) showing typical examples of the firing rate of individual Purkinje cells. C) In the majority of recordings, the initial high
spike rate declined progressively after a few hours (electrode 24) until it disappeared at the sixth day. D) In other cases, a previously silent cell started
firing after several days of recording (electrode 71). E) Oscillations of the firing rate were evident in a low number of recordings from Purkinje cells
before they damped out or disappeared after few cycles. The period of the three-day long oscillations was 32.6 hours (electrode 37). The numbers at
each corner of the electrode field (A) and the graphs (B) indicate the numbering in the MEA layout.
doi:10.1371/journal.pone.0058457.g004
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24 hours or slightly longer, but the rhythms damped rapidly after

one or two cycles. Interestingly, rhythmicity could be induced in

some previously non-rhythmic Purkinje cells by a regular external

stimulation, a feature that is known from slave oscillators where

circadian oscillations in gene transcription are not sustained, but

can be reinstated with regular, cyclic stimulation [30]. Unlike self-

sustained oscillators, the rhythm of slave oscillators dampens and

disappears after several days in vitro [2]. This was also observed in

the cerebellum of rats and mice where bioluminescence measure-

ments of Per1- and Per2-luciferase show a constant dampening of

the bioluminescence intensity with time [3,13]. This suggests that

the cerebellum functions more as a slave oscillator and requires an

input from a master clock to maintain strong circadian rhythmic-

ity. However, this poses the question about the nature of rhythmic

action potential firing. In SCN neurons the ionic mechanisms

underlying action potential firing rhythms, although not com-

pletely understood, appear to involve an array of different ionic

channels which are under the control of the circadian clock and

promote high daytime firing (for review see [31]). In Purkinje cells

of the cerebellum, spontaneous activity also results from intrinsic

conductance and seems to be largely independent of synaptic

transmission, but it is possible that the ionic conductance that is

responsible for generation of spontaneous activity might, contrarily

to the SCN, not be under the control of the molecular clock.

Purkinje cells are the sole output of the cerebellar cortex

circuitry and provide the signals that are required for planning,

execution and coordination of motoric functions [12]. They are

additionally involved in short temporal processing as a kind of

interval timer in the range of tens to hundreds of ms [32]. The

rhythmic clock gene expression in the cerebellar cortex suggests an

involvement of the cerebellum in longer temporal processing, i.e.

in circadian processes [3]. It was shown that this circadian timer in

the cerebellum is sensitive to feeding cues, because during meal

anticipation, glucose utilization is reduced in the cerebellum [33],

and clock gene oscillations are shifted in response to restricted

feeding [13]. Food-anticipatory activity was significantly reduced

in the study of Mendoza et al. [13] by destroying the Purkinje cell

layer with an immunotoxin, and also in mutant mice with

impaired cerebellar circuitry, indicating that the cerebellum, and

especially Purkinje cells, is required for the anticipation of

mealtime. However, if a circadian pacemaker resides in Purkinje

cells or in any other cerebellar cell structure, the question remains

how this circadian information is transduced into a signal that is

relevant for the food-entrainable clock and its related food

anticipatory mechanisms and that is transmitted to the appropriate

brain targets. The anatomical substrate of the FEO is composed of

a network of interconnected brain structures rather than a single

brain area driving food entrained circadian rhythms [34]. There is

some evidence that it is located outside of the SCN because food

anticipatory behavior is still present in SCN-lesioned animals [35].

Many regions in the thalamus, hypothalamus, and forebrain

exhibit alterations in clock gene expression under temporary food

restriction, including the paraventricular thalamic nucleus, the

dorsomedial nucleus of the hypothalamus, hippocampus, lateral

septum, nucleus accumbens, and cerebral cortex [34]. As part of

this network, Purkinje cells need to communicate with at least

a part of these structures with specific signals that could be similar

to those described in the master clock in the SCN. In the SCN,

circadian information is either transduced into an electrical or

a humoral output which can influence the targets of the circadian

system in the brain or in the periphery (for review, see [14]).

Humoral factors alone are sufficient to restore circadian rhythms

in locomotor activity in SCN-lesioned animals by implanting fetal

SCN [36], whereas circadian neuroendocrine rhythms appear to

require intact neural projections [37].

Humoral factors are also essential to regulate food ingestion, but

there is presently, at least to our knowledge, no evidence that the

cerebellum releases any hormone or humoral signal in a circadian

fashion. Several humoral factors are involved in food entrainment

synchronizing feeding behavior with a specific time of the day.

These factors include the orexigenic ghrelin which is released from

the stomach and acts on ghrelin receptors in the arcuate nucleus

and other parts of the hypothalamus. Ghrelin is related to, but not

essential for anticipation of food availability [38]. Another

hormone related to food ingestion is leptin released by adipose

tissue which may inhibit food anticipation [39]. Leptin receptors

are expressed in high density in the cerebellum and their

expression is downregulated by high-fat feeding suggesting that

peripheral leptin transmits a metabolic signal to the cerebellum

[13]. The leptin signal converges also on neurosecretory TRH

Figure 5. Medium replacement can induce a circadian rhythm
in Purkinje cell firing rate. A) and B) represent extracellular
recordings of the spike rate from two different cells (electrode 46 and
74) obtained from a slice cultured on a standard MEA. Red triangles
show the time of renewal of the medium in daily intervals (between 24
and 25 hours). The exchange of the medium with fresh medium induces
a rhythm in the neuronal activity of the Purkinje cells that closely
followed the timed renewal. However, the rhythm induction was not
accompanied by a synchronization of the spike rate because the
rhythm in both cells was out of phase. The blue curve depicts a cosine
curve fitted to the recording traces.
doi:10.1371/journal.pone.0058457.g005
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neurons of the hypothalamic paraventricular nucleus together with

alpha-melanocyte-stimulating hormone and neuropeptide Y sig-

naling. Since TRH-like neuropeptides show in the cerebellum

diurnal rhythms of their concentration, this could be another

indirect pathway for the transmission of diurnal signals to the

cerebellar cortex [40]. Other humoral signals involve the glucose-

insulin-glucagon pathway. Under restricted feeding schedule, rats

show an increase of glucagon and a decrease in insulin before food

access [41]. Since glucose transporters (Glut) including the insulin-

responsive Glut4, are expressed in the cerebellum [42], this might

be also a pathway by which feeding cues can influence cerebellar

functions. All these humoral signals that are involved in the

transmission of feeding cues and the FEO network can provide an

afferent input to the cerebellum, but none of them is known to

provide an output signal of the cerebellar clock mechanism that

could influence the FEO.

If the cerebellar clock transmits its signals via a rhythmic

electrical activity in Purkinje fibers, the question remains why only

few cerebellar neurons exhibit signs of a circadian neuronal

activity? All investigations in the cerebellum were performed ex-

vivo. It is known from investigations from the SCN that

synchronization between neurons depends strongly on the network

organization increasing the precision of the clock [30,43]. In the

cerebellum, a neuronal network exists in organotypic cultures

similarly to acute slices, even in the absence of the excitatory

afferent input by mossy fibers and climbing fibers [28]. However,

from calbindin immunocytochemistry, a specific marker for

Purkinje cells, it appears that in organotypic slices a considerable

number of cells die in the first week of culture. Staining with

calbindin after the termination of MEA recordings show gaps in

the Purkinje cell layer, and, in some cases, single Purkinje neurons

were disseminated in the slice and their axons seemed to extend to

random directions (data not shown). This might indicate a partial

loss of this cell type during culture and consequently an altered

neuronal network which could explain the low number of

rhythmic firing cells which could belong to a more fragile Purkinje

cell subtype. Although the neuronal activity in cultured cerebellum

retains their physiological features, slice explants possess a number

of characteristic architectural properties. A proportion of Purkinje

cells lose the usual polarity observed in vivo in the cerebellar cortex,

and in the absence of the deep cerebellar nuclei within the culture,

Purkinje fibers return toward their cell layer, innervate the

molecular layer or are randomly distributed [28]. All these

changes could lead to a loss of synchronization in the cerebellum

which is necessary to express and maintain a circadian rhythmic-

ity.

The cerebellum is organized in different compartments with

their own phenotypic characterisation. Aldolase C (or zebrin II)

has been described to form bands of expression in the different

lobules of the cerebellum [44]. This compartmentation could

reflect functional localized specializations in the cerebellar cortex

as axon collaterals from Purkinje cells are forming synapses only

with cells belonging to the same zebrin-positive region of the

cerebellar cortex [45]. It appears that cerebellar cortical excitabil-

ity, information processing, and synaptic plasticity depend on the

intrinsic properties of different parasagittal zones in the cerebellum

[46]. Moreover, the deep cerebellar nuclei integrate the output

signals from Purkinje cells following this compartmentation [47].

Their readout is based on sparse coding and population coding. A

circadian signal might then be coded by a specific ensemble of

Purkinje cells rather than multiple individual neurons. If only

a subset of these compartments express circadian oscillations,

random recordings from a slice cannot uncover rhythmicity. The

MEA technology with its simultaneous multisite recordings for

long periods detected only in few cases oscillations of about one

day. A recording field with 60 electrodes is more effective to

discover a special cell type compared to single electrode

recordings, but apparently not sufficient to provide information

about the behaviour of the complete Purkinje cell layer with all its

zoning. However, MEA recordings are a clear improvement in

respect to the number of simultaneous recordings and long-term

stability of such recordings.

A second facet concerns a possible altered maturation of the

cerebellar network in organotypic slice cultures compared to in vivo

conditions which might impair circadian cerebellar function.

Organotypic slices are usually prepared from newborn mice, P0 to

P2, because in older animals the survival rate of the slices is

considerably impaired [48]. The mouse cerebellar cortex requires

for maturation about 14 to 21 days after birth. Therefore it is

possible that some developmental factors that are essential for

a correct formation of the network are missing. During de-

velopment, granule cells migrate in the first two postnatal weeks

from the external granular cell layer to the internal granule cell

layer [49]. This migration is possibly impaired in organotypic

slices because we observed in four week old cultures granular cells

also near the molecular layer and not only in the internal granule

cell layer (data not shown) which could speak for an insufficient

maturation of the cerebellar network. In this context, it is

noteworthy that the pineal hormone melatonin, as a component

of the circadian timing system, possesses many binding sites in the

cerebellum [50] and constitutes a neurotrophic factor that is

essential for controlling cerebellar granule cell fate [51].

Cerebellar granule cells themself show clock gene expression,

but Per1 expression requires several signaling pathways like Ca2+

influx or activation by PACAP [52], and thus, they appear to be

more slave oscillators rather than master oscillators. Granule cells

receive excitatory input from mossy fibers originating from

pontine nuclei, which themselves display an expression of clock

genes [53] and could also provide a rhythmic signal to the

cerebellar cortex. Other parts of the brainstem, such as the nucleus

of the solitary tract, expressing clock genes, also project to the

cerebellum and are likely associated with the FEO [9]. However,

cerebellar modulation of visceral functions does not only rely on

afferent and efferent connections with the brainstem, but involve

also bidirectional connections between the cerebellum and the

hypothalamus [54]. The neurotransmitters in the hypothalamo-

cerebellar pathway, although not well known so far, involve

histamine, GABA, and glycine [55]. Serotonin, synthesized in

brainstem, is another modulator of Purkinje cell activity linked to

regulation of feeding and arousal. These transmitter candidates

are all implicated in circadian functions and show either circadian

or diurnal rhythms of their brain level and/or act directly on the

master clock in the SCN by phase shifting the rhythms [20,30,56].

In conclusion, despite rhythmic clock gene expression in the

cerebellum and the recent implication of the cerebellum in a food

entrainable network, a clear circadian modulation was not

detected for the spike rate or synaptic transmission of the majority

of Purkinje cells in vitro. However, a fraction of cerebellar output

neurons show characteristics of slave oscillators; their rhythm

damps after few days and rhythmicity can be induced by external

stimulation. This is supported by a recent study showing that

rhythmic clock gene expression in the cerebellum is lost in rats

with SCN lesions. Since direct neuronal projections linking the

SCN to the cerebellum have not been described, it was assumed

that this influence could be due to secondary changes in circadian

physiology [57]. The intimate, bidirectional relationship between

cerebellum, hypothalamus and circadian system for the control of
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food-anticipatory activity must be further elucidated to identify the

feeding-associated circadian network.

Supporting Information

Figure S1 A) Organotypic cerebellar slice on a high-density

MEA field. The figure shows an immunostaining for calbindin

D28K to label somata, dendrites and axons of Purkinje cells

(green). Scale bar 60 mm. B) Scheme of one field of 30 electrodes

with their identification by letters (lines) and numbers (columns).

C) Example of a recording obtained from the organotypic slice

shown in (A) on electrode E1. Top: superimposed spikes of a single

cell after spike discrimination (left) and the corresponding spike

train over a period of about 30 s (right). Bottom: autocorrelogram

drawn for all spikes recorded during a period of 4 hours (left). The

spike rate was stable over longer time periods (right).

(TIF)
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modulates neuronal activity of the rodent suprachiasmatic nucleus in vitro.

Eur J Neurosci 30: 65–75.

18. Gillette MU (1986) The suprachiasmatic nuclei: circadian phase-shifts induced

at the time of hypothalamic slice preparation are preserved in vitro. Brain Res

379: 176–181.

19. Herzog ED, Geusz ME, Khalsa SBS, Straume M, Block GD (1997) Circadian

rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode

plates. Brain Res 757: 285–290.

20. Mordel J, Karnas D, Inyushkin A, Challet E, Pévet P, et al. (2011) Activation of
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