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ABSTRACT
Drug delivery and triggered release in tumor cells would realize the ultimate goal of precise 
cancer treatment. An APE1 triggered DNA nanoprism was designed, aiming at the applications of 
both drug delivery and precise triggered drug release in cancer cell. We demonstrate that the AP- 
Prism was successfully used as a vehicle based on the intracellular endogenous enzyme APE1 
triggered for controlled drug delivery and triggered release. The box like DNA prism was self- 
assembled by annealing process and Doxorubicin molecules were then inserted into the GC base 
pairs. The reaction of AP-Prism enzymolysis and stability of DNA prism were investigated. 
Encouraged by the demonstration of AP-Prism as a drug delivery carrier, the cellular uptake and 
Dox release were with investigated in a human cervical cancer cell HeLa and human embryonic 
kidney cell HEK-293 T. Thanks to the overexpression level of APE1 in cancer cells, DNA prism could 
selectively release the trapped doxorubicin in response to APE1 activity in cancer cells, and 
provide a new strategy for the development of precision medicine.
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1. Introduction

Apurinic/apyrimidinic endonuclease/redox effec-
tor factor 1 (APE1) plays key roles in both the 
short-patch and long-patch pathways of base exci-
sion repair (BER) pathway [1,2]. It can also 
respond to intracellular oxidative stress conditions. 
Abnormal expression of APE1 has been found in 
a couple of tumor cells, which demonstrate APE1 
as an emerging biomarker for some cancer types 
[3]. Utilizing the precise cleavage of APE1 in 
mammalian cells, a number of approaches have 
been developed for detecting APE1 activity [4,5], 
and intracellular enzyme regulation [6,7].

Nanotechnology is receiving attention in many 
fields of chemistry, engineering, biology, and med-
icine [8,9]. Nanoparticle-based technology has 
opportunities in therapeutic and diagnostic appli-
cations, especially for drug and gene delivery, 
photothermal therapy, and recognition in cancer 
[10,11]. Targeted delivery and drug release have 
become a hot topic in precision medicine. 

Nanodevices are biocompatible and nontoxic and 
they have diagnostic and therapeutic properties 
with wide applications in this field [12,13]. 
Researches developed lots of ingenious system to 
achieve drug target delivery and release which are 
successfully used in cancer therapy applications, 
such as pH-sensitive [14,15], X-ray-responsive 
[16] drug delivery systems, et al. These advanced 
approaches have made important breakthroughs 
in reducing multidrug-resistance [17], reducing 
side effects and upregulating the drug accumula-
tion at the target site [18]. Due to the program-
mability and biocompatibility, DNA 
nanostructures have potential applications in the 
fields of biosensor development [19,20], biomedi-
cal imaging [21], drug delivery [22], etc. DNA 
prism has been used to create functional compo-
nents by a DNA-minimal approach [23–26]. It has 
been demonstrated that DNA prism exhibited sig-
nificant biostability and more drug or siRNA
delivery to the tumor sites [27].
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Herein, we develop an APE1 responsive DNA 
prism as a nanovehicle for both drug delivery 
and precise triggered drug release in cancer cells 
(Figure 1). APE1 recognizes the double strand 
edges and then cleaves the AP-site, releasing 
short fragments which activate doxorubicin 
(Dox) dissociated. DNA nanostructures, such as 
DNA prism, not only have been shown to gain 
access to the cytoplasm without a co-carrier 
agent but also have high robustness due to the 
rigid structure [25,28]. This DNA prism shows 
high specificity toward APE1 and the kinetics 
analysis suggests that the enzymatic cleavage is 
the rate-limiting step, making the rate of drug 
release highly dependent on digest progress. 
APE1 has often been seen to be overexpressed 
or to exhibit a sub-cellular distribution pattern, 
in many cancer types that is not observed in 
normal pre-cancerous tissue [29,30] The cyto-
plasmic distribution of APE1 provides a key to 
drug release in living cancer cells. This cleavage 
process triggers the release of the trapped Dox 
for accurate diagnosis and precise drug delivery 
in cancer cells, which suggests a potential appli-
cation in drug target therapy.

2. Materials and methods

2.1. Materials

Human apurinic/apyrimidinic endonuclease 
I (APE1), DNase I, Exonuclease I, Exonuclease 
III, T7 Exonuclease and λ Exonuclease were 
obtained from NEB (Beverly, MA). 
Doxorubicin hydrochloride was from Sigma- 
Aldrich (St. Louis, MO). All of the oligonucleo-
tides used in this work were synthesized by 
Sangon Co. (Shanghai, China) and their 
sequences are listed in Table S1. All modified 
oligonucleotides were purified by HPLC, while 
unmodified oligonucleotides were purified by 
PAGE. DNase/RNase free deionized water 
from Tiangen Biotech Co. (Beijing, China) was 
used in all experiments.

2.2. Design, preparation and characterization of 
the DNA prism by gel

The software Tiamat was used for DNA structure 
design and sequence generation. To prepare the 
DNA prism, the oligonucleotides (final concentra-
tion of each strand 1 μM) were mixed in 1× TAE- 
Mg2+ buffer (40 mM Tris, 12.5 mM MgCl2, and 
2 mM EDTA, pH 8.0). The solution was denatured

Figure 1. Illustration of the assembly of AP-Prism-Dox and drug release.
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on a thermocycler as the following procedure: 
95°C for 5 min, 65°C for 30 min, 50°C for 
30 min, 37°C for 30 min, 22°C for 30 min and 
4°C for 55 min. For the assembly of dSpacer- 
labeled probe, equimolar probe was added to the 
DNA prism solution and denatured following pro-
cedure: 50°C for 30 min, 37°C for 30 min, 22°C for 
30 min and 4°C for 55 min. The DNA prism was 
characterized by 8% native PAGE which was oper-
ated at 4°C for 4 h at a constant voltage of 
120 V. The gel was subsequently stained with 
SYBR Gold.

2.3. Characterization of the APE1 activity by 
fluorescence dequenching assay

All reactions in homogeneous solution were car-
ried out in 0.2 mL sealed PCR tube. Once APE1 
was added to reach final concentrations of 
0.658 nM. Then fluorescence was recorded imme-
diately in the FAM channel (ex: 480 nm, em: 
510 nm) of a real-time PCR cycler (Rotor-Gene 
Q, QIAGEN, Germany) at 37°C, using a gain of 8, 
with a time interval of 5 s.

2.4. DOX loading to DNA prism

0.1 mL Dox (1 mM) was added to the DNA prism 
solution with continuous shaking under dark con-
dition at room temperature for 24 h. To remove 
excessive Dox, DNA prism-Dox was washed with 
1× TAE-Mg2+ buffer using an Amicon-2 kD cutoff 
filter.

2.5. Drug delivery to living cells

HeLa and HEK-293 T cell lines were cultured in 
1640 medium supplemented with 1% Penn/Strep 
and 10% fetal bovine serum and incubated at 37°C 
in a humidified atmosphere of 5% CO2/95% air. 
The cells were transferred to a laser confocal cul-
ture dish for fluorescence imaging in an appropri-
ate density. The cells were incubated with DNA 
prism-Dox (labeled with Cy5) and other reagents 
in a low-fluorescence culture media (FluoroBrite 
DMEM, Thermo Fisher) for 4 h. Fluorescence 
imaging was carried out on an inverted fluores-
cence microscope equipped with a mercury light 
source (Nikon). The filter with 470 nm/ 585 nm, 

640 nm/660 nm and 360 nm/ 447 nm were used to 
detecting the emission of Dox, Cy5 and 
Hoechst33342 respectively. The images were 
acquired using a 40 × objective and recorded by 
the EMCCD (50 ms, gain 3).

2.6. Western blot analysis of APE1 in different 
cells

Cells were collected by trypsinization and centri-
fuged to remove supernatant. Cell pellet was resus-
pended in lysis buffer with 1× protease inhibitor, 
1 mM NaF and 1 mM Na3VO4 for 30 min, at 4°C. 
After centrifugation at 13000 rpm for 15 min, at 
4°C, the supernatant was collected as total cell 
lysate. The protein concentrations of cells were 
determined with BSA standard curve method 
from absorbance. For western blot analysis, 30 μg 
of proteins were resolved on 10% SDS-PAGE, 
transferred onto nitrocellulose membranes, and 
probed with anti-APE1 antibodies (1: 5000) 
(ab194, abcam). The membranes were incubated 
with goat anti-mouse IgG labeled with horseradish 
peroxidase (HRP) (1: 5000) (ab6789, abcam). 
Bands on blots were visualized using an enhanced 
chemiluminescence (ECL) detection system (5200, 
Tanon, China).

3. Results and discussion

As illustrated in Figure 1 and Fig. S1 in SI, the 
boxlike DNA prism was constructed with three 
clip strands. The two 10-base ends of the first 
clip hybridized to the back of the next clip through 
their complementary domain. Likewise, the second 
clip bound to the third clip and the third clip 
bound to the first clip as the same way which 
formed a closed DNA triangular-prism. The three 
vertical edges of the prism are of double-stranded 
structure, which guarantees nanoassembly with 
a rigid 3D structure. The strands with AP sites 
hybridized to the six edges of the top and bottom 
faces of DNA prism which were rich of GC base 
pairs (AP-Prism). Doxorubicin (Dox) molecules 
were then inserted into the GC base pairs. 
Specifically, the double strand edges contained 
AP sites which were recognized and cleaved by 
APE1, resulting in a single strand nick as well as 
short fragments The structure of DNA prism
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changed back to the rigid 3D structure with three 
hybridized clips. Dox molecules then were released 
because APE1 destroys the double stranded struc-
ture. Native gel analysis confirmed formation of 
the expected assembled structures (Fig. S2). 
Successive additions of the three clip strands and 
AP site labeled edge generated bands of reduced 
mobility, indicating that successful hybridization 
of each clip (lane 2–5) produced the 3D triangular- 
prism nanostructure in high yield.

To examine the enzyme activity, we labeled 
the DNA prism with a fluorophore and 
quencher as the reporter (Figure 2(a)). The 
fluorescence of intact AP-Prism was quenched. 
The APE1 cleaves the AP sites yielding short 
fragments release and fluorescence restoration. 
As the concentration of APE1 increases, the 
reaction speed increased (Figure 2(b)). By con-
sidering these results, we speculated that the 
catalytic hydrolysis is the rate-limiting step of 
the process. The kinetics of APE1 catalysis 

directly reflected the velocity of drug release. 
To test the specificity of the AP-Prism toward 
APE1, we examined the possible nonspecific 
interactions of the AP-Prism with some 
nucleases that can digest dsDNA or ssDNA. 
Weak fluorescence increase was observed when 
the AP-Prism was incubated with these nucleases 
(Figure 2(c)). The degradation of AP-Prism by 
these enzymes is below 15% after 4 h (Figure 2 
(d)). In addition, the stability of AP-Prism in 
fetal bovine serum (Figure 3(a)) and DNA- 
Prism in cell lysate (Figure 3(b)) were investi-
gated. Almost no detectable fluorescence 
increase was detected of Prism present into 
these solutions. The resistance of nuclease activ-
ity is mainly attributed to the biostability of AP- 
Prism achieved by the steric hindrance effect of 
the backbone [31,32]. Accordingly, the rational 
design of the AP-Prism allows for high specifi-
city to APE1 with potential to response the
intracellular AP endonuclease activity.

Figure 2. Exploring the speed and selective of DNA prism by ensemble fluorescence measurement. (a) Scheme of the fluorogenic 
AP-Prism. (b) The fluorescence response generated by the fluorogenic AP-Prism in the presence of APE1 at different concentrations. 
(c) Fluorescence response of the AP-Prism digested by APE1 and non-specific enzymes. (d) Percentage degradation of the AP-Prism 
by the nonspecific enzymes for 4 h.
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Anticancer drug doxorubicin hydrochloride 
(Dox) is commonly used to treat several kinds of 
cancer. It is also known to be fluorescent which 
has often been used to characterize concentrations, 
and has opened the possibility of using the mole-
cule as a theranostic agent [33,34]. Further, we 
investigated the performance of our AP-Prism- 
Dox in response to APE1. The drug load and 
release behavior of the AP-Prism-Dox by measur-
ing the fluorescence intensity of Dox in solution 
was studied. After remove excessive Dox with 
a cutoff filter, the fluorescence intensity in the 
solution was obviously decreased which suggesting 
successful drug load (Fig. S3A). The encapsulation 
efficiency of Dox was about 0.65 nM according to 
the calibration curve (Fig. S3B). In the present of 
APE1, the significant fluorescence increasing in 
the solution was detected after 1 h. The Dox 

release curve was shown in Figure 4(a). It is note-
worthy that the fluorescence intensity in Figure 4 
(b) was taken at 10 min after introduced several 
series concentration of APE1 so that the AP-Prism 
-Dox with less APE1 exhibits relatively dim fluor-
escence. As the concentration of APE1 increases, 
the fluorescence of Dox in the solution increased 
(Figure 4(b)). We speculated that the speed of 
drug release depends on catalytic hydrolysis, on 
the other hand the fluorescence products are also 
able to reflect the AP endonuclease activity.

DNA nanostructure can be rapidly internalized 
in living cells through a caveolin-dependent path-
way [35]. Encouraged by the above demonstration 
of AP-Prism as a drug delivery carrier, we investi-
gated the cellular uptake by HeLa cells. The DNA 
Prism was labeled with Cy5, incubated with HeLa 
cells and imaged by fluorescence microscopy. The

Figure 3. The stability assay of the DNA Prism over time in (a) 10% fetal bovine serum (FBS) and (b) HeLa cell lysate. Error bars 
represent standard deviations from three measurements.

Figure 4. (a) Dox release curve. The concentration of APE1 is 0.0658 nM. (b) Release behavior of AP-Prism-Dox after and 10 min in 
the presence of APE1 at different concentrations. Error bars represent standard deviations from three measurements.
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cytoplasm of the HeLa cell exhibited bright fluor-
escence within 4 h (Fig. S4) suggested that the 
DNA Prism began to be internalized by cells and 
gradually accumulated in cells during the incuba-
tion. APE1 plays a central role in base excision 
repair (BER) pathway throughout the cell cycle 
[36]. It has long been believed to be located in 
the nucleus, and cytoplasmic expressions were 
found in several types of cancer [37]. 
Intracellular AP endonuclease was exploited as 
a potential biomarker of cancer cells because 
there is a significant difference of APE1 leave 
between cancer and normal cells [4]. The kinetic 
analysis and drug release in vitro imply that the 
whole progress highly relies on the amount of 
APE1 which suggests a potential application in 
drug target therapy. Further, we detected Dox 
target release with a human cervical cancer cell 
HeLa and human embryonic kidney cell HEK- 
293 T. AP-Prism-Dox with Cy5 labeled prism 
backbone was incubated for 4 h. The blue fluores-
cence signal indicated the nucleus of cell, the red 
fluorescence signal denoted DNA Prism, and the 
green fluorescence signal showed Dox. As shown 
in Figure 5(a)(c), the red fluorescence was both 
observed in the cytoplasm of different cells 

suggested that the Prism was internalized by 
cells. The green signal could be observed both in 
cytoplasm and nucleus in HeLa, which suggested 
Dox could be delivered into cells by AP-Prism and 
subsequently released into nucleus (Figure 5(a)). 
In contrast, no significant fluorescence of Dox in 
nucleus and weak fluorescence in cytoplasm was 
found in nucleus when using AP site free Prism- 
Dox (Figure 5(b)) which indicated that the drug 
release caused by high accuracy of APE1 cleavage. 
We also compared the behavior of AP-Prism-Dox 
in cancer cells and normal cells. Weak green signal 
in HEK-293 T cell was observed, suggesting that 
drug can be trapped effectively by using this AP- 
Prism and released in cancer cells with high selec-
tivity (Figure 5(c)). In order to characterization the 
co-localization of carrier and drug, Dox served as 
a donor and Cy5 was an acceptor. FRET signal 
intensity implies the distance of DNA Prism and 
drug. Bright fluorescence of FRET can be observed 
when using AP site free Prism-Dox (Figure 5(b)) 
or in HEK-293 T cell (Figure 5(c)), while the 
fluorescence was dim in HeLa cell (Figure 5(a)). 
To confirm the different APE1 levels, western blot 
analysis was carried out for the cytoplasmic frac-
tions of the cells. APE1 expression of HeLa cells

Figure 5. Uptake and release of AP-Prism-Dox in living cells. (a) HeLa cells. (b) HeLa cells by using DNA-Prism-Dox without AP site. 
(c) HEK-293T cells. Scale bar=50 μm. (d) Western blot analysis of cytoplasmic APE1 expression level of HeLa and HEK-293T cell. α- 
tubulin was used as loading control. (e) Relative quantification of cytoplasmic APE1 expression. Error bars represent standard 
deviations from three measurements. ****p < 0.0001.
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was significantly higher than that of HEK-293 T 
cells (Figure 5(d) 5 (e)). Overall, we demonstrate 
that the AP-Prism was successfully used as 
a vehicle for controlled drug delivery and triggered 
release.

4. Conclusions

In summary, we have successfully developed a new 
drug nanocarrier based on the intracellular endo-
genous enzyme APE1 triggered DNA prism. By 
virtue of the structure and function of DNA 
nanostructure, the AP-Prism showed high robust-
ness and therapeutic efficacy with a drug loaded. 
Since APE1 is believed to be a potential biomarker 
for cancers, targeted drug release could be 
achieved without any external driving force. 
Therefore, this AP-Prism holds a promising plat-
form to realize enzyme-mediated targeted 
chemotherapy.
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