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Abstract: Macrohyporia cocos is a medicinal and edible fungi, which is consumed widely.
The epidermis and inner part of its sclerotium are used separately. M. cocos quality is influenced by
geographical origins, so an effective and accurate geographical authentication method is required.
Liquid chromatograms at 242 nm and 210 nm (LC242 and LC210) and Fourier transform infrared
(FTIR) spectra of two parts were applied to authenticate the geographical origin of cultivated
M. cocos combined with low and mid-level data fusion strategies, and partial least squares
discriminant analysis. Data pretreatment involved correlation optimized warping and second
derivative. The results showed that the potential of the chromatographic fingerprint was greater than
that of five triterpene acids contents. LC242-FTIR low-level fusion took full advantage of information
synergy and showed good performance. Further, the predictive ability of the FTIR low-level fusion
model of two parts was satisfactory. The performance of the low-level fusion strategy preceded
those of the single technique and mid-level fusion strategy. The inner parts were more suitable
for origin identification than the epidermis. This study proved the feasibility of the data fusion of
chromatograms and spectra, and the data fusion of different parts for the accurate authentication of
geographical origin. This method is meaningful for the quality control of food and the protection of
geographical indication products.

Keywords: Macrohyporia cocos; data fusion; liquid chromatography; fourier transform infrared
spectroscopy; partial least squares discriminant analysis; authentication

1. Introduction

The dried sclerotium of Macrohyporia cocos, belonging to Polyporaceae, is an herbal medicine
(called Poria) that can be used as food, and has been approved by the National Health Commission of
the People’s Republic of China. It plays an indispensable role in numerous drugs, such as the liquid
oral formulation of Poriacocos polysaccharides, Sijunzi Tang, Liuwei Dihuang Wan and Chuanbei Pipa
Gao. Various kinds of Poria-based foods and skin cosmetics such as sleep-friendly tea, Tuckahoe pie,
Guiling jelly (drinks made from turtle shell and medicinal herbs), Guiling jelly soft candy and the Poria
facial mask, are pretty popular. Present phytochemical investigation suggests that this fungus contains
terpenes and polysaccharides, which present beneficial biological properties, such as a prebiotic effect,
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through the modulation of gut microbiota composition [1], anti-hyperlipidemic [2], anti-cancer [3]
hepatoprotective [4] and affecting adipocyte and osteoblast differentiation effects [5].

Generally, the sclerotium of M. cocos is peeled and processed into two products, the epidermis and
the inner part. The epidermis is called Poriae Cutis in Chinese, and the inner part is still called Poria.
The epidermis and inner part have similar types of compounds and different secondary metabolites
contents [6], which are often used and studied separately. Both Poria and Poriae Cutis are officially
recorded in the Chinese Pharmacopoeia.

The provenance of M. cocos is mainly distributed in the Dabie mountains area and Yunnan
Province of China. Yunnan is suggested as the most satisfactory habitat because the quality of
Yunnan M. cocos is being highly recommended all the time. Due to the large demand for it, and
the knowledge of cultivation mastered easily by common people, this fungus is cultivated in large
quantities. Although M. cocos is cultivated in Yunnan, the chemical profiles influencing biological
activities may be uneven owing to various cultivation sites and different management techniques.
It was reported in a previous study that the contents of pachymic acid of M. cocos in different regions
of Yunnan varied significantly [7]. Consequently, customers are increasingly demanding some sort of
proof of the geographical origin. For the sake of response to the demand, it is necessary to conduct
research with respect to the authentication of geographical origin, which can also provide basic
technology for the protection of specific geographical indication products [8].

To date, various analytical technologies that respond to the different chemical information of
samples have been implemented for the origin identification of M. cocos [9–11]. Although these methods
proved promising for the discrimination of provenance, they were separately applied. Nowadays,
data fusion has been applied in the fields of food and medicine [12,13]. For example, Ni et al. [14]
discovered that, based on high-performance liquid chromatography (HPLC) and Fourier transform
infrared spectroscopy (FTIR) data fusion, the type and geographical origin of Radix Paeoniae samples
could be successfully discriminated, and the fused data matrix showed a prominent result compared
with the independent technique.

Data fusion strategies, which fuse the outputs of multiple complementary information to provide
rich knowledge about a sample, are hoped to achieve a more accurate characterization than single
pieces of information [15]. In addition to the fusion of several datum regarding one sample, the fusion
of information regarding different parts was reported. For instance, Casale et al. [16] combined
the near-infrared information obtained by the three parts (pileipellis, flesh and hymenium) of
each individual to check the authenticity of dried porcini mushrooms. Studies mentioned above
demonstrated that although time and effort would be taken to collect multiple complementary data,
data fusion was suggested as an alternative strategy to show accurate characterization.

Infrared spectroscopy can provide the molecular functional group structure of metabolites.
Liquid chromatography can characterize the exist of compounds and determinate the special
compounds. Both techniques present different and complementary information, which were used
for data fusion in this study. To the best of our knowledge, infrared spectroscopy was widely
used for geographical classification because of the features of simplicity and rapidity [17,18].
Liquid chromatography was almost used for determining the contents of compounds [19,20].
Multiple chromatographic data fusion has been merely reported in the authentication of the
geographical origin of palm oil [21], predicting antioxidant activity of Turnera diffusa [22], authentication
of Valeriana species [23] as well as a comparison of Salvia miltiorrhiza and its variety [24]. Actually,
a wealth of information was contained in the chromatographic data, and due to extensive automation,
a stable and reliable result could be obtained.

In this study, two data fusion strategies including low and mid-level fusion as well as two data
combinations including the fusion of complementary information regarding a single part, and the
fusion of information regarding two medicinal parts from one sclerotium were performed for the
geographical authentication of M. cocos. Liquid chromatograms at two wavelengths (242 nm and
210 nm) and FTIR spectra of two medicinal parts (Poria and Poriae Cutis) of M. cocos were analyzed.
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Contents of five triterpene acids were measured. Chromatographic data fusion, spectral data fusion as
well as chromatography and spectroscopy data fusion were implemented, combined with partial least
squares discriminant analysis (PLS-DA).

2. Results and Discussion

2.1. Spectral Analysis

FTIR is an auxiliary method in the structural elucidation of organic compounds, which is also
employed to assess the quality attributes of a product and authenticate geographic location [17].
With the characteristics of easy operation and rapid acquisition, it was applied to the identification of
cultivation location of M. cocos. The second derivative spectra of samples from each geographic origin
were given in Figure 1, and absorption peaks were observed in the form of negative peaks. Because a
2600–1750 cm−1 signal was caused by ATR crystal material [25], it was discarded and did not present
in the Figure.

1 
 

 
Figure 1. Second derivative spectra of Poria (A) and Poriae Cutis (B) samples from eight geographic origins.

Absorption bands at 2964 and 1704 cm−1 were just observed in Poriae Cutis samples.
A disparity of absorption intensity exhibited in samples from different cultivation locations.
Relatively high absorbance values were at around 1200–950 cm−1, which were mainly caused by C-O
stretching vibration, C-C stretching vibration and C-OH bending vibration of polysaccharides [26,27].
Peaks located at 2964 and 2873 cm−1 correspond to C-H antisymmetric and symmetrical stretching
vibration of methyl group respectively, while the peak at 2927 cm−1 is assigned to C-H antisymmetric
stretching vibration of methylene. The absorption at 1452 cm−1 and 1373 cm−1 belonged to C-H
antisymmetric and symmetrical bending vibration of methyl [11]. The peak at 1643 cm−1 was assigned
to C=O antisymmetric stretching vibration, which was related to triterpenes [28]. The band at 1704 cm−1

was associated with C=O group of esters [29,30]. The band at 891 cm−1 was assigned to the bending
vibration of the C=CH2 functional group [28]. The peak at 1259 cm−1 may be related to the amide III
band [31]. In total, FTIR spectrum reflected comprehensive structural information of components in
M. cocos samples, like triterpenes, polysaccharides, and so on.
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2.2. Quantitative Analysis of Five Triterpene Acids

The content of each triterpene acid was calculated by their calibration curves and result of the
validation of quantitative method was presented in Tables S1 and S2. The calibration curves of five
compounds showed good linearity (R2 ≥ 0.99). Recovery rates calculated by the standard addition
method varied from 96.32% to 106.4%. Values of relative standard deviation (RSD) of intra-day and
inter-day precision were less than 1.24% and 5.68%, respectively. RSDs of repeatability did not exceed
5.95% after analyzing six solutions from the same sample in parallel. RSDs of stability were less than
0.71% after detecting a sample solution at 0, 6, 12, 17, 21 and 24 h, respectively. The method validation
above indicated that the quantitative analysis was feasible. In particular, due to the obvious difference
in the contents of poricoic acid A in Poria and Poriae Cutis samples, the calibration curves in two
concentration ranges were prepared separately.

Contents of five triterpene acids were displayed as box-plot given in Figure 2. One-way analysis
of variance was computed by SPSS 21.0 software (IBM Corporation, Armonk, NY, USA) to display
the difference among eight cultivated locations. A value of p < 0.05 was considered significant.
Poricoic acid A contents of Mengmeng were significantly different from those of Beicheng, Tuodian
and Zhanhe in inner parts, and Yongping in cutis samples. Contents of dehydropachymic acid and
pachymic acid in inner parts from Caodian were higher than those of other geographical origins
except for Baliu. Inner parts from Baliu showed higher contents of dehydropachymic acid than
those from Beicheng, Dawen and Mengmeng, and higher contents of pachymic acid than those
from Tuodian, Yongping, Beicheng and Mengmeng. Inner parts from Dawen contained fairly low
contents of dehydrotrametenolic acid compared with those from others with the exception of Baliu.
Compared with epidermis samples from Dawen, Beicheng and Yongping showed higher contents of
dehydrotumulosic acid, and Caodian and Baliu presented higher amount of pachymic acid. From the
results, it was found that it was difficult to distinguish M. cocos samples from eight cultivation origins
just in terms of contents of several target compounds. Therefore, it was necessary to take full advantage
of the chromatographic fingerprint, namely, the intensity data for each retention time, to extract more
information related to cultivation location.
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2.3. Chromatographic Data Preprocessing

The chromatograms recorded at 242 nm in Figure S1 were obtained by analyzing the solution
from the same sample five times successively within a day and on two consecutive days. Obviously,
the retention time of each peak shifted in two days, which was inconvenient for the qualitative
results of chemometric analyses. Hence, all of the chromatographic data should be aligned prior to
further analysis.

The correlation optimized warping algorithm proposed by Skov et al. [32] was used to correct the
retention time shifts among samples. The chromatogram that was most similar to all others was selected
to be the reference chromatogram for alignment. The global search space was set to a combination of
segment length from 10 to 200 and a slack size from 1 to 20 according to the observed peak widths
and shifts on the chromatograms. Then the optimal combination of segment length slack size was
automatically selected according to the criterion of well alignment while at the same time considering
the preservation in peak shape and area. The theory for the algorithms with respect to the automated
alignment of chromatographic data can be consulted in [32].

As a result, suitable combinations of segment length and slack size were achieved for
chromatographic data at 242 nm of Poria (197 and 11), 210 nm of Poria (105 and 16), 242 nm of
Poriae Cutis (105 and 11) and 210 nm of Poriae Cutis (198 and 16), respectively. Figure 3 presented the
aligned M. cocos chromatographic fingerprints using these warping parameters, which displayed that
the retention time shifts were properly corrected. What’s more, it was observed that chromatograms
of the same medicinal part recorded at 242 nm and 210 nm showed complementary information, i.e.,
some peaks obviously presented in liquid chromatograms at 242 nm (LC242) and some compounds
just displayed in liquid chromatograms at 210 nm (LC210). Further, chromatograms of two parts were
appreciably different. In other words, multiple chromatographic profiles presented abundant chemical
information of M. cocos that probably facilitated to confirm cultivation areas.

The chromatographic data of one Poria sample and one Poriae Cutis sample could be represented
as 7201 and 7801 data points, respectively. In order to save the time for calculation, the number of
data points in the retention time dimension of the matrix was reduced by taking one in every three
points without affecting the chromatographic features. Therefore, 2401 and 2601 data points were
obtained after reducing data, respectively. It was proved that this method was feasible by comparing
the PLS-DA results since reducing data had little influence on identifying different groups (Table S3).
Additionally, the first 11 min data in the chromatogram that mainly comprised unseparated peaks
and baseline shift (Figure 3), which were discarded to obtain representative fingerprints and accurate
results. In this way, the final data points were 1960 and 2160, respectively.
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2.4. PLS-DA Using Chromatograms and FTIR Spectra

Partial least squares discriminant analysis is a widely-used linear classification method [33–36].
The selection of the optimal number of latent variables was an essential question for PLS-DA model,
which was implemented on the basis of 7-fold cross validation procedure in present study. Unit variance
scaling, which could give all variables of the same or different measurements equal importance, was
performed by default when developing each PLS-DA model. The parameters of classification models
were shown in Table 1 and Tables S4–S6 in detail.

Based on the preprocessing of chromatograms and FTIR spectra, a model of PLS-DA was
established using the single dataset (Table 1 and Table S4). The LC210 dataset of Poriae Cutis samples
did not build model successfully, so results of classification were not listed. FTIR and LC242 datasets
showed better performance with higher accuracy not only in calibration set but in validation set
than LC210 dataset. The sensitivity values of class 2 and class 8 in the validation set were 1 for Poria
LC242 model and were smaller values for the Poria FTIR model, which indicated that LC242 model
had stronger ability to correctly recognizing samples of class 2 and class 8. While the sensitivity of
class 1 and 7 in calibration set was 0.8571 for Poria LC242 model smaller than that of Poria FTIR model,
indicating that FTIR model had stronger ability to correctly recognizing samples of class 1 and class 7.
Moreover, LC models of Poriae Cutis samples presented poorer results than those of Poria samples,
which reflected the difference of two medicinal parts of M. cocos.
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Table 1. The major parameters of PLS-DA model.

Fusion Approach Data Matrix
Calibration Set Validation Set

R2(cum) Q2(cum) Accuracy Accuracy

single technique
Poria

FTIR 0.8883 0.7268 100% 92.31%
LC242 0.6634 0.5277 96.15% 100%
LC210 0.5174 0.4012 90.38% 76.92%

Poria Cutis
FTIR 0.9292 0.6981 100% 96.15%
LC242 0.2874 0.2204 65.38% 34.62%

low-level data fusion

Poria

FTIR-LC242 0.9599 0.7917 100% 100%
FTIR-LC210 0.9468 0.7663 100% 100%

LC242-210 0.8097 0.6547 98.08% 92.31%
FTIR-LC242-210 0.8823 0.7566 100% 100%

Poria Cutis
FTIR-LC242 0.9016 0.7032 100% 100%

FTIR-LC242-210 0.905 0.698 100% 100%

combination data of
two medicinal parts

FTIR 0.9548 0.8064 100% 100%
LC242 0.8147 0.6495 100% 100%
LC210 0.6489 0.4806 94.23% 88.46%

mid-level data fusion

Poria
FTIR-LC242 0.8266 0.5745 100% 100%
FTIR-LC210 0.7453 0.5053 96.15% 96.15%

FTIR-LC242-210 0.8286 0.5882 100% 100%

Poria Cutis

FTIR-LC242 0.7386 0.5493 100% 92.31%
FTIR-LC210 0.7518 0.4991 100% 96.15%

LC242-210 0.4617 0.228 76.92% 73.08%
FTIR-LC242-210 0.7607 0.5558 100% 96.15%

combination data of
two medicinal parts

FTIR 0.7564 0.5982 98.08% 88.46%
LC242 0.7761 0.4973 98.08% 100%
LC210 0.676 0.3756 96.15% 88.46%

Variable importance for the projection (VIP) plot [37] was used for assessing the significance of
variable, and that the VIP score of retention time was greater than one means the compound separated
at the time was important on distinguishing different cultivation origins. As an example of the Poria
LC242 model, there were lots of variables whose VIP were higher than one including the corresponding
retention time of poricoic acid A and dehydrotrametenolic acid (Figure 4). It indicated that the potential
of the chromatographic fingerprint from the aspect of origin identification was greater than that of
the contents of several compounds. However, all single technique models did not achieve a perfect
performance, so it was necessary to carry out the data fusion strategy that was expected to enhance the
classification and prediction ability of the model.
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2.5. Low-Level Data Fusion

2.5.1. PLS-DA of Poria

Figure 5 was the workflow of geographical authentication using data fusion, which was helpful
to understand how data was combined. As shown in Table 1, accuracy rates of low-level data fusion
datasets about Poria samples were 100% and higher than those of single technique models except for
the model using LC242-210 data, which implied that these models had strong classification performance.
The highest R2(cum) (0.9599) and Q2(cum) (0.7917) were observed in FTIR-LC242 model, indicating
a high goodness of fit for the established model in the data and good predictive ability. Therefore,
the combination of FTIR and LC242 datasets was deemed a suitable strategy, and the fusion of three
datasets was unnecessary and verbose. Furthermore, compared with the LC242-210 model, the accuracy
of FTIR-LC210 model was higher both in calibration and validation sets. It could be interpreted that
FTIR dataset provided more helpful information to identify eight geographical origins than LC242

dataset in data fusion model of Poria samples. By analogy, it was found that FTIR data showed
more contribution for origin discrimination than LC210 data when compared LC242-210 model with
FTIR-LC242 model.
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2.5.2. PLS-DA of Poriae Cutis

The accuracy of FTIR-LC242 and FTIR-LC242-210 models was 100%, which was greater than that of
the models using the independent technique. It indicated the effectiveness of low-level data fusion.
The similar Q2(cum) of FTIR-LC242 and FTIR-LC242-210 models was observed. Accordingly, FTIR-LC242

was considered as a preferred combination, and the fusion of three datasets was superfluous.
Furthermore, the Q2(cum) values of low-level fusion models about Poriae Cutis samples (≤ 0.7032)
were less than those of corresponding models about Poria samples (> 0.75), indicating that Poria
samples were more suitable for origins identification than Poriae Cutis species. In the developing
LC242-210 and FTIR-LC210 low-level models, latent variables could not be calculated so the models
were not successfully built. It was in consistent with the state that epidermis LC210 dataset did not
built PLS-DA model, which was probably attributed by a lot of irrelevant classification information
included in LC210 dataset of epidermis.

2.5.3. PLS-DA of Combination Data of Two Medicinal Parts

Both FTIR and LC242 datasets of two parts samples showed better performance than LC210 dataset,
which was in accordance with the results of single technique mentioned above. Compared with the
single spectrum or chromatogram, data fusion of two medicinal parts proved more advantageous
with greater sensitivity, specificity and efficiency. Therein, the FTIR fusion model of two part samples
presented the best prediction performance from the Q2(cum) point of view. What’s more, compared
with FTIR-LC242 model of Poria samples, the Q2(cum) of LC242 fusion model of two parts was smaller.
It could be interpreted that Poria FTIR dataset provided more helpful information to predict different
geographical origins than Poriae Cutis LC242 dataset in data fusion model. By analogy, it was found
that the contribution of FTIR dataset was always more than that of LC242 and LC210 datasets in
low-level data fusion. The low-level data fusion strategy has achieved a good classification result, but
the mid-level data fusion could spend less computation time compared to the low level. Therefore,
mid-level fusion was performed.

2.6. Mid-Level Data Fusion

2.6.1. The Extraction of Feature Variables

Mid-level fusion needed to first extract relevant features from each dataset independently and then
concatenated them into a new matrix employed for origins identification. Principal component analysis
(PCA) is a dimension reduction technique that creates a small number of new variables called principal
components (PCs) from a large number of original variables, which would be applied to extract
features. These PCs almost retain the same information as the original variables [38]. The optimal
number of PCs was determined by 7-fold cross-validation procedure. The results of feature extraction
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were shown in Table S7. As an example of LC210 dataset of Poria samples, the first thirteen PCs were
extracted, which account for 90.92% of the information concerning the original variables. Then the
scores of the thirteen PCs were used for data fusion.

2.6.2. PLS-DA of Poria

In agreement with the results of low-level data fusion, the accuracy rates of FTIR-LC242 and
FTIR-LC242-210 of Poria samples were 100% not only in calibration set but in validation set. And they
had stronger recognition performance with higher sensitivity, specificity, efficiency than corresponding
single dataset. Nonetheless, all Q2(cum) values of mid-level data fusion models of Poria samples were
less than those of low-level data fusion models, indicating that low-level fusion presented stronger
prediction ability than mid-level fusion according to cross validation.

As always, The LC242-210 fusion model did not build successfully. The fusion of LC242 and
LC210 could not gain satisfactory discrimination and even could not construct the model, and it was
likely caused by the similar chemical information provided by both chromatograms. Although they
presented different peak shapes, there were many common chromatographic peaks that did not
provide complementary and useful information.

2.6.3. PLS-DA of Poriae Cutis

LC242-210 model that was not built successfully in low-level fusion finished construction in
mid-level fusion. The fact indicated the significance of mid-level data fusion and might be due
to the feature extraction. The accuracy rates of FTIR-LC210 and FTIR-LC242-210 models were equal,
but the detail of incorrect identification was different from sensitivity and specificity points of view.
Further analysis showed that one sample belonging to Tuodian was judged as the sample from Baliu
in FTIR-LC210 model and Mengmeng in FTIR-LC242-210 model by mistake, respectively. FTIR-LC242

and FTIR-LC242-210 mid-level fusion models of Poriae Cutis samples presented poorer results than
those of Poria samples as well as low-level data fusion models and FTIR model of epidermis samples.

2.6.4. PLS-DA of Combination Data of Two Medicinal Parts

Both FTIR data fusion and LC242 data fusion of two medicinal parts had stronger recognition
ability when compared to the LC210 combination. Both LC242 and LC210 of two medicinal parts
improved performance of single LC242 and LC210 models. However, the result of FTIR was the
opposite. Compared to low-level data fusion, the identification ability of mid-level data fusion did not
show any obvious advantage. This might be due to the limitation of our method of feature extraction.
In terms of FTIR datasets, only more than 73.29% original information (Table S7) was extracted.

To validate the performance of the PLS-DA model, a 30-iteration permutation test was performed.
As shown in Figure S2 that one of permutations plots for Poria LC242-210 model, all permutated Q2

and R2 values (bottom left) were lower than the corresponding original values (top right). It indicated
that the PLS-DA model was considered as an appropriate model without randomness and overfitting.
The results showed that all the PLS-DA models were not overfitting.

3. Materials and Methods

3.1. Reagents, Solvents and Standard References

Dehydrotumulosic acid (purity ≥ 96%) was supplied by ANPEL Laboratory Technologies Inc.
(Shanghai, China). Dehydropachymic acid, pachymic acid, poricoic acid A and dehydrotrametenolic
acid (purity ≥ 98%) were purchased from Beijing Keliang Technology Co., Ltd. (Beijing, China).
HPLC grade acetonitrile and formic acid were purchased from Thermo Fisher Scientific (Fair Lawn,
NJ, USA) and Dikma Technologies (Lake Forest, CA, USA), respectively. Purified water was purchased
from Guangzhou Watsons Food & Beverage Co., Ltd. (Guangzhou, China). Other chemicals and
reagents were analytical grade.
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3.2. Samples

Seventy-eight intact cultivated M. cocos sclerotia (Figure 6) from eight geographical origins of
Yunnan Province, China were collected and identified by Prof. Yuanzhong Wang (Institute of Medicinal
Plant, Yunnan Academy of Agricultural Sciences, Kunming, China). Voucher specimens (FL20160217)
were deposited in the herbarium of Institute of Medicinal Plant, Yunnan Academy of Agricultural
Sciences. After digging sclerotium up, the soil was brushed away. Fresh M. cocos sclerotium was
air-dried in the shade and then peeled. Both the epidermis and inner part of the dried sclerotium, i.e.,
Poria and Poriae Cutis, were powdered to a homogeneous size using pulverizer and sieved through
No. 60 mesh sieve. The powder was stored in the airproof, dry and dark condition prior to analysis.
Detailed information of samples was summarized in Table 2.
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Table 2. The information of M. cocos samples.

Class Location Abbreviation Elevation
(m)

Latitude
(◦N)

Longitude
(◦E) Parts Sample Size

1 Beicheng Town, Hongta, Yuxi BC 1720 24.4319 102.5182
inner part 10
epidermis 10

2 Tuodian Town, Shuangbai, Chuxiong TD 2062 24.6912 101.6493
inner part 10
epidermis 10

3 Zhanhe Town, Ninglang, Lijiang ZH 2560 26.8832 100.9275
inner part 10
epidermis 10

4 Dawen Town, Shuangjiang, Lincang DW 1438 23.3487 100.0047
inner part 10
epidermis 10

5 Caodian Town, Yunlong, Dali CD 2066 25.6360 99.1320
inner part 10
epidermis 10

6 Yongping Town, Jinggu, Pu’er YP 1077 23.4204 100.4044
inner part 10
epidermis 10

7 Mengmeng Town, Shuangjiang, Lincang MM 1052 23.4779 99.8378
inner part 10
epidermis 10

8 Baliu Town, Mojiang, Pu’er BL 1979 23.0676 101.9765
inner part 8
epidermis 8
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3.3. FTIR Spectra Acquisition

A Fourier transform infrared spectrometer from Perkin Elmer equipped with an attenuated
total reflectance (ATR) sampling accessory with a diamond focusing element was employed for
FTIR spectroscopy measurement. The sample powder was pressed under a consistent pressure with
a pressure tower when collecting spectral. FTIR spectrum of each sample was scanned 16 times
successively with a resolution of 4 cm−1 in the range of 4000–650 cm−1. After the measurement of one
sample was finished, the surface of ATR crystal and the apex of pressure tower were cleaned for the
next sample detection. All spectra were background corrected utilizing air spectrum. The laboratory
environment was maintained a constant temperature (25 ◦C) and humidity (30%).

3.4. Chromatographic Analysis

Sample powder was weighed accurately to 0.5 g and extracted with 2.0 mL of methanol by an
ultrasound-assisted method for 40 min at ambient temperature. The extract solution was filtered using
a 0.22 µm membrane filter. The filtrate was loaded into the auto-sampler vial and stored at 4 ◦C before
injecting into the chromatographic system for analysis.

Analyses of all 156 samples (including Poria and Poriae Cutis) were implemented using a
Shimadzu ultra-fast liquid chromatography system equipped with a UV detector, binary gradient
pumps, a degasser, an auto sampler and a column oven. The chromatographic separation was achieved
using an Inertsil ODS-HL HP column (3.0 × 150 mm, 3 µm particle size) operated at 40 ◦C. The mobile
phase consisted of acetonitrile (A) and 0.05% formic acid (B). Before use, the mobile phase constituents
were degassed and filtered through a 0.2 µm filter. The gradient elution sequence was conducted
as follows: 0–25 min, 40% A; 25–52 min, 40–69% A; 52–56 min, 69–72% A; 56–58 min, 72–78% A;
58–58.01 min, 78–90% A; and 58.01–60 min, remaining at 90% A (eluting to 65 min for Poriae Cutis
samples). Each run was followed by an equilibration period of 3 min with initial conditions (40% A
and 60% B). The flow rate was kept at 0.4 mL·min−1 and the injection volume was 7 µL. Detective
wavelengths were set at 242 nm and 210 nm.

3.5. Method Validation

The developed UFLC method was validated in terms of precision, stability, repeatability, accuracy
and linearity under the above chromatographic condition.

A mixed standard solution was determined six times successively within a day and on three
consecutive days for evaluating intra- and inter-day precision. For the stability test, the extract of a
sample was analyzed at 0, 6, 12, 17, 21 and 24 h, respectively. Six sample solutions prepared individually
from the same sample were analyzed in parallel for evaluating the repeatability. The recovery test was
performed to evaluate the accuracy by adding reference compounds of three different amounts (low,
middle, and high) to the sample with known concentration accurately. The following equation was
used to calculate recovery rate: Recovery rate (%) = [(measured amount − original amount)/spiked
amount] × 100%.

The standard solutions of five compounds for constructing calibration curves were prepared
by diluting the stock solutions with methanol individually. The ranges of concentration in the
linearity study were 5.00–999 µg·mL−1 (dehydrotumulosic acid), 0.22–6730 µg·mL−1 (poricoic acid A),
2.4–480 µg·mL−1 (dehydropachymic acid), 10.3–1240 µg·mL−1 (pachymic acid) and 0.49–2450 µg·mL−1

(dehydrotrametenolic acid). Due to the obvious difference in contents of poricoic acid A of
Poria and Poriae Cutis samples, two concentration ranges of 0.22–1121.95 µg·mL−1 (Poria) and
0.22–6730 µg·mL−1 (Poriae Cutis) were prepared. More than seven levels (in arithmetic progression)
of every concentration range were guaranteed. The limit of detection (LOD) and limit of quantification
(LOQ) were determined by diluting continuously standard solution until the signal-to-noise ratios
(S/N) reached about 3 and 10, respectively.
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3.6. Preprocessing of Chromatograms and Spectra

The correlation optimized warping algorithm was applied to correct the retention time shifts
of chromatogram using MATLAB software (MathWorks, R2017a, Natick, MA, USA). Then the
corrected chromatographic data was reduced by taking one in every three points without affecting
the chromatographic features to save computation time, which was inspired by the ‘data binning’ of
Lucio-Gutiérrez et al. [22,23]. The first 11 minutes of data that mainly comprised unseparated peaks
and baseline shift were discarded.

Raw FTIR spectra were subjected to advanced ATR correction to reduce the impact of skewing of
band intensity using OMNIC 9.7.7 software (Thermo Fisher Scientific). Due to the fact that spectra
contained hidden and overlapped absorption peaks, second derivative was used for highlighting
slight differences employing SIMCA-P+ 13.0 software (Umetrics, Umeå, Sweden). Derivative spectra
were calculated with a Savitzky–Golay filter using a second-order polynomial and a 15-point window.
The band of 2600–1750 cm−1 was associated to diamond crystal in ATR accessory, of which data
were excluded prior to chemometrics analysis. These pre-processed data were used to data fusion
and PLS-DA.

3.7. Multiple Chromatograms and Spectra Data Fusion

According to the source of data, there were two kinds of data fusion techniques, including
the fusion of multiple complementary pieces of information about a single part and the fusion
of information about two parts from one sclerotium. For instance, data matrices of LC-Poria and
FTIR-Poria could be fused into a new dataset, and data matrices of FTIR-Poria and FTIR-epidermis
could be fused into a dataset. It was important to note that information must correspond in the process
of data fusion, namely, the LC and FTIR data of the same Poria sample must correspond, or the FTIR
data of inner parts and epidermis from the same sclerotium should correspond.

The data fusion could be classified into three levels in light of the combination of data: low level,
mid-level and high level. Low and mid-level fusion has been widely used, and was applied to
the identification of geographical origin of M. cocos. The scheme of low and mid-level data fusion
approaches is shown in Figure 7. In the low-level fusion, pre-processed different datasets were
straightforward concatenated into a matrix, and the number of variables was equal to the sum of
number of original variables. For the mid-level fusion, the scores obtained independently from
different data by PCA were concatenated into a dataset applied for provenance traceability, and the
number of variables of the dataset was significantly less than that of original variables. Compared with
low level, mid-level data fusion could save more time on the operation. Specific types of the data
fusion in this study were shown in Table 1.
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3.8. Evaluation of Model Performance

The calibration and validation sets were selected for assessing the quality of model. The calibration
set was used to construct a model that was performed 7-fold cross validation for internal validation,
and the validation set was used to externally estimate the practicability of model. To avoid the influence
of randomness caused by random sampling, and to obtain a representative calibration set from a
pool of samples, the Kennard-Stone algorithm [39] was performed to systematically divide dataset of
78 samples into calibration (52) and validation (26) sets using MATLAB R2017a software (MathWorks).

The performance of discrimination model could be evaluated by sensitivity, specificity and
efficiency [40]. The three parameters are dependent on these values: true positive (TP), false positive
(FP), true negative (TN) and false negative (FN). TP and TN represent the correctly identified samples
in target positive and negative classes, respectively. By analogy, FP and FN represent the incorrectly
identified samples in positive and negative classes, respectively.

Sensitivity =
TP

TP + FN
(1)

Specificity =
TN

TN + FP
(2)

Efficiency =
√

sensitivity × specificity (3)

Therein, sensitivity shows the ability to correctly recognize samples belonging to the target class
while specificity reflects the model ability to reject samples belonging to all other classes. The measure
combining the sensitivity and specificity value is called efficiency.

In addition, the accuracy rate of calibration set, the accuracy rate of validation set, R2(cum) and
Q2(cum) were also employed for assessing the classification performance. Accuracy was obtained
by calculating the proportion of correctly classified samples in the total amount of calibration set (or
validation set) samples. R2 is calculated by following equation: R2 = 1 − RSS/SSX, where RSS is
the residual sum of squares of calculated and measured values, and SSX is the total sum of squares
after mean centralization [41]. R2(cum) represents the percentage of explained variance for a defined
number of latent variables, indicating how well the model fits the data. Q2(cum) represents the
cross-validated cumulative R2, suggesting how well the model predicts new data. The higher values
of these parameters (close to 1 or 100%), the better performance of model.
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4. Conclusions

In order to establish an effective method for geographical authentication of M. cocos, two data
fusion strategies, including low and mid-level fusion, as well as two data combinations, including
the fusion of complementary information regarding a single part and the fusion of information about
two parts from one sclerotium were compared. FTIR, LC242 and LC210 were used to characterize
the epidermis and inner part of M. cocos sclerotium from different places individually and jointly.
The results showed that, chromatographic fingerprint was more suitable than content data of five
triterpene acids for origin identification. In the fusion of complementary information about single part,
good classification performance was achieved obtained by merging LC242 chromatograms and FTIR
spectra in low-level fusion way. In the fusion of information about two parts from one sclerotium,
the predictive ability of the FTIR low-level fusion model of two parts was the most satisfactory, and all
analyzed samples were classified correctly.

In most cases, FTIR proved to be more efficient than LC242 and LC210, not only in a single
data source but in data fusion. Mid-level data fusion was slightly worse than low-level data fusion.
The performance of low-level data fusion models was superior to single technique models. Moreover,
Poria samples were more suitable for origin identification than Poriae Cutis samples. On the basis
of effective and comprehensive fingerprint information, the low-level data fusion strategy could be
used for the discrimination of M. cocos samples from different origins with the aid of appropriate
mathematical algorithms.
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