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Abstract

“Maskne” is a new term coined during the 2020 COVID-19 pandemic. It refers to a subset

of acne mechanica, deserving consideration in view of widespread reusable fabric mask-

wearing to control the pandemic worldwide. Understanding of underlying pathophysiology

directly relates to the novel skin microenvironment and textile–skin friction created by

mask-wearing, distinct from nontextile-related acne mechanica previously linked to wearing

of headgear. Specifically, the occlusive microenvironment leads to microbiome dysbiosis,

which is linked to various dermatological conditions. Additional textile–skin interactions

include factors such as breathability, stickiness sensations, moisture saturation, and

hygiene maintenance. Increased skin temperatures can trigger sweat/heat-related

dermatoses, and ear loops potentially trigger pressure-induced dermatoses. Important

therapeutic considerations include increased skin irritation potential of conventional acne

treatments under occlusion, exacerbation of chronic dermatoses, that is, perioral dermatitis,

rosacea, and eczema, and susceptibility of these same patient groups to heightened

discomfort with mask-wearing. Cotton, as the traditional fabric of choice for dermatology

patients, has limited benefits in the context of face masks – increased subjective

discomfort relates to increased moisture saturation and stickiness, inevitable because of

high biofluid load of the nasal and oral orifices. Prolonged textile–skin contact time, directly

proportional to the risk of maskne, can be an opportunity for the application of biofunctional

textiles.

COVID-19, a respiratory disease caused by the SARS-CoV-2

virus, was declared a pandemic by the World Health Organiza-

tion (WHO) on March 11, 2020. In light of estimates that

approximately one half of new infections are transmitted by per-

sons who have no symptoms, universal mask-wearing has

become one of the public health recommendations critical to

reducing respiratory transmission of SARS-CoV-2 virus.

Mask acne or “maskne”1, which has arisen during the 2020

COVID-19 pandemic, refers to a form of acne mechanica aris-

ing from textile–skin friction. “Maskne” is deserving considera-

tion in view of widespread reusable textile mask-wearing to limit

the spread of biofluids and, hence, the risk of contagion

because of environmental contamination. Skin microbiota is

influenced by genetic and external factors such as environment,

pH, and temperature,2 all of which are modified with mask-

wearing and retention of biofluids. This review paper addresses

the impact of fabric mask-wearing on the skin microbiome and

dermatological conditions as well as the therapeutic role of bio-

functional textiles in improving the skin microenvironment. A

textile is defined as any material that is woven. These materials

can be synthetic (i.e., plastic-derived) or natural fibers (i.e., cot-

ton, linen, and silk). The scope of this review also includes

synthetic textiles such as polyester, that is, plastic-derived types

of materials, which are also identified as textiles.

Skin microbiome

1 Bacteria: The disruption of the healthy skin microbiome asso-

ciated with mask-wearing has profound implications on sev-

eral dermatological conditions such as eczema,3 acne,4 and

perioral dermatitis,5 with bacterial dysbiosis implicated in its

pathogenesis. Staphylococcus aureus colonization has a

well-established superantigen effect on eczema flare-ups and

has been implicated in various studies involving acne patho-

genesis.4 Gram-negative folliculitis is a common complication

of acne and can result in pustular eruptions and requires

treatment with broad-spectrum antibiotics. Our latest under-

standing of acne pathogenesis has shifted from Propionibac-

terium acnes to Cutibacterium acnes (C. acnes) colonization

of sebaceous follicles. Dysbiosis of the skin microbiota leads

to selection of virulent and pathogenic C. acnes strains and

activation of innate immunity causing cutaneous inflamma-

tion.6 Fusobacteria has been implicated in the pathogenesis
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of perioral dermatitis successfully treated with b-lactam antibi-

otics in those who were tetracycline-intolerant.7

2 Fungal organisms: Proliferation of malassezia furfur, other-

wise a healthy skin commensal, plays an important etiopatho-

genic role in the development of seborrheic dermatitis8 as

well as pityrosporum folliculitis, a clinical mimic of acne.9,10

3 Others: There is a statistically significant association between

demodex mite density and rosacea.11–13 The emergence of

ivermectin as a key therapy for rosacea supports the role of

Demodex mites in the etiopathogenesis of rosacea. An

altered skin microbiome will influence the interaction of demo-

dex with various microorganisms, affecting the host immune

system modulation response.11–13

Dermatoses associated with heat/sweat

Fabric mask wear will increase skin temperatures and lead to

increased sweat retention in normal individuals and worsen

symptoms in those with facial hyperhidrosis.14 Sweat allergy

plays a role in the exacerbation of atopic dermatitis (AD)

because of specific IgE-mediated (type 1) hypersensitivity to

sweat contents.15 The effects of increased skin temperature

can trigger conditions such as miliaria rubra and cholinergic urti-

caria. The moist warm microenvironment created by mask-

wearing increases the susceptibility of skin to fungal/yeast infec-

tions including candidiasis and malassezia, both common com-

mensal of healthy skin. Intertrigo16,17 traditionally associated

with flexural areas, such as digital web spaces, axilla, groin,

and inframammary folds, can be caused by microorganism

overgrowth and is exacerbated by frictional dermatitis. Causa-

tive organisms implicated include candida, group A beta-he-

molytic streptococcus,18 Corynebacterium minutissimum, and

pseudomonas aeruginosa.16,19 Mask-wearing potentially intro-

duces a “new” intertriginous area which is susceptible to similar

infections, in particular with microbial communities like Staphylo-

coccus and Corynebacteria, which favor moist regions.2

Allergic contact dermatitis and harmful

chemical exposure associated with textiles

The widespread manufacturing of various types of fabric face

masks is to be regarded as part of the largely unregulated gar-

ment industry, with regard to fabric safety/skin tolerability, in

contrast to personal protective equipment. It is reasonable to

hypothesize that textile dyes will influence the development of

allergic contact dermatitis over areas in contact with the face

mask. Disperse dyes are a leading cause of textile-related aller-

gic patch test positivity.20 Given the close proximity and occlu-

sive effect of the mask to facial skin and the nasal and oral

mucosal passages, as well as the use of potentially allergenic

dispersed dyes in garment textiles, it may be prudent to con-

sider dermatological recommendations for fabrics used for face

masks. Existing textile certification bodies currently exist but are

not mandated for manufacturers of face masks. This is in line

with regulation of cosmetic products used in the personal care

market, that is, the Personal Care Products Safety Act, which

allows tracking, reporting of adverse events as well as the care

of patients who are uniquely vulnerable to certain chemicals.21

Benzothiazole, its derivatives, and other potentially hazardous

chemicals are common textile contaminants in the garment

industry. Using an artificial skin mimicking model membrane,

Strat-M�, a study by Iadaresta et al.22 in 2018 demonstrated

that benzothiazole, a carcinogen (also applied to other chemical

contaminants), was released from textile materials, where it

subsequently penetrated through the skin and further entered

the human body systemically. Textile contaminants are potential

health risks via dermal permeation to reach the systemic circu-

lation.23

Therapeutic considerations

1 Cleansing: Gentle cleansers with antibacterial active ingredi-

ents for maintenance of a healthy skin microbiome.

2 Leave-on skincare: Avoid alcohol, salicylic acid, alpha-hy-

droxy acids, and retinols in leave-on acne skincare formula-

tions because of increased risk of irritant contact dermatitis

under prolonged occlusion.

3 Moisturizers: Serum, mist, lotion, and cream-based vehicles,

preferred over ointments. Moisturizers are essential in the

maintenance of a healthy skin barrier function and reduce dis-

ruption of the skin microbiome, besides acting as a shield

against external triggers. Humectants and “Prescription Emol-

lient Devices (PEDs)”24 should be the standard of care for

moisturizers as opposed to emollient or occlusive active

ingredients. Examples of PEDs include optimal ceramide/lipid

mixtures with anti-inflammatory ingredients such as gly-

cyrrhetinic acid. Traditional humectants containing lactic acid

and urea should be avoided, as these interact with sweat and

moisture to alter the pH of skin under occlusion, resulting in

irritant contact dermatitis. Examples of humectants that

reduce transepidermal water loss without any irritation when

worn under occlusion are natural moisturizing factors, sodium

hyaluronate, and polyglutamic acid. Occlusives (e.g., petrola-

tum, mineral oil, and dimethicone) and emollients (lanolin,

glycerol stearate, glyceryl stearate, and soy sterols) can both

trigger occlusion acne in the case of maskne. For individuals

with hyperhidrosis, excessive oily, acne-prone skin, cream to

powder moisturizer formulas may be helpful in maintaining an

intact skin barrier to prevent skin inflammation under occlu-

sion.25

4 Topical acne treatments: Chemical/synthetic active ingredi-

ents, such as benzoyl peroxide, salicylic acid, sulfur, alpha-

hydroxy acids, and retinoids, have a higher risk of inducing

irritant contact dermatitis under occlusive face mask wear. In

addition, benzoyl peroxide has a bleaching effect on fabrics.
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Evidence-based botanical active ingredients, which work via

anti-inflammatory effects, regulation of sebum production,

and broad-spectrum antimicrobial activity, are recommended

for maskne treatment.1 Use of powder formulations for acne

may be preferred under occlusion to absorb excess mois-

ture,25 especially in individuals with facial hyperhidrosis. Zinc

oxide formulations have broad antimicrobial properties effec-

tive for prevention and treatment of acne, and are stable in

powder formulations.26 Hydrogel carrier formulations of reti-

noid/antibiotic combination topicals can minimize local irrita-

tion by ensuring better drug tolerance and efficacy27 in

addition to providing an optimal wound healing environment.

It may also provide effective barrier protection to reduce

skin–textile friction and secondary bacterial infection.

5 Sunscreen: Current recommendations of broad-spectrum

SPF 50+ topical sunscreen and its 3–4 hourly reapplication

rate are impractical under long periods of face mask wear

especially outdoors. Chemical sunscreens can induce sensiti-

zation because of photodegradation, worse in individuals with

atopy28 when in contact with sweat/moisture under occlusion.

Water-resistant sunscreen with high lipophilic/hydrophilic

ratios increases comedogenicity.28,29 Ultraviolet protective

(UPF) 50+ fabrics used for mask wear should be the principal

intervention for broad-spectrum sun protection for the lower

half of the face during the COVID-19 pandemic,1 to improve

patient compliance to photoprotection and incentivize mask-

wearing, also eliminating periodic reapplication of sun-

screens.

6 Impact of face mask material/design on skin microenvi-

ronment

a Textile–skin interactions: Natural fibers, such as cotton,

linen, silk, and lyocell, offer greater breathability compared

to synthetic fibers by wicking moisture away from skin.

These may be beneficial for keeping the surface of skin

dry and reducing microorganism overgrowth. However, nat-

ural fibers increase saturation levels. This increases symp-

toms of discomfort and weight. The perceived stickiness of

the fabric can be measured by accumulated stickiness

magnitude, ASM.30 Synthetic fabrics that have been trea-

ted for cooling coefficient, moisture, and air permeability,

also known as biofunctional textiles,31 have a high evapo-

ration coefficient without the fabric weighing down, an

important factor in ensuring comfort. Sensitive skin pos-

sesses heightened neurosensory input that increases sus-

ceptibility to cutaneous sensory stimulants.32 Textile–skin

friction is an established trigger for several dermatological

conditions, that is, AD, acne mechanica, frictional dermati-

tis, and postinflammatory hyperpigmentation. It may wor-

sen symptoms in inflammatory conditions such as

seborrheic dermatitis, perioral dermatitis, and rosacea.

Fabrics with lower thread count as opposed to those with

higher thread count will cause increased friction against

skin. The fabric should have a smooth surface and a tight

weave rather than loose weaves, which cause an irregular

surface. Tightly woven fabrics also innately have higher

UPF. Dark colors retain heat and increase skin tempera-

ture, which affects skin comfort and worsens heat-sensitive

conditions such as AD, cholinergic urticaria, hyperhidrosis,

miliaria rubra, and rosacea.

b Design: A smooth-surfaced design with minimal folds is

recommended1 for minimal textile–skin friction, with a draw-

string ear loop system to allow for individual adjustment.

The surgical mask pattern with expandable folds accommo-

dates various head sizes and face shapes but is not com-

fortable in the form of thicker textiles (used in reusable

fabric masks) following the same pattern. The increased

stitching and seams involved in creating the folds may

reduce durability. To allow for maximal breathability and

comfort while speaking, a pattern with two separate panels

of the fabric follows the contour of the nose bridge and

allows for comfortable air movement around the nose while

minimizing spread of droplets. Based on the principle of an

ideal fabric face mask offering UPF protection, the design

facilitates maximum coverage of available facial skin sur-

face area, consistent with current European recommenda-

tions for the design of UV-protective clothing.33

c Contact dermatitis: Metallic nasal bridges offer no addi-

tional function and can cause nickel sensitization/contact

allergy to the metal piece.34 Ear loops should be latex-

free35 alternatives such as spandex (polyurethane poly-

mer). Adjustable rather than stretchable properties are pre-

ferred to avoid pressure and friction on the retroauricular

region when worn for prolonged periods. This can predis-

pose or aggravate abrasions, frictional dermatitis, postin-

flammatory hyperpigmentation, flexural eczema, and

pressure dermographism. Rather than elastics, an adjusta-

ble threadable flat-surfaced bead can be used to hold the

face mask loops in place, a variant of a drawstring sys-

tem.1 Spherical beads protrude on skin and can cause fric-

tional dermatitis. Drawstring forms of adjustable ear loops

are preferred over ribbon ties, as these are prone to slip

off, reduce a snug fit of the face mask, and cannot be

quickly re-worn in common social circumstances.

d Hygiene: Reusable fabric mask wear poses the practical

challenge of how to hygienically store the mask when one

is exercising, eating, or drinking. To increase compliance of

face mask-wearing for the general public, immediately

before/after the said activities, doctors can recommend the

quick act of looping it under the jawline (vs. storage in a

separate bag) (Fig. 1). This provides a natural hold, mini-

mizing risks of mask dislocation and need for constant

adjustment (i.e., surface contamination). Given the daily

wear of the face mask and contamination with respiratory

droplets and saliva, the face mask should withstand daily

laundering at high temperatures to destroy microorganisms

that cause odor/disease. Synthetic fibers like polyester and
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(a)

(b)

(c)

Figure 1 Proposed method of mask

handling when eating/drinking/exercising. (a)

The fabric face mask for public use should

cover the nose and the mouth when worn,

for protection of the environment from

biofluid contamination. (b) When

eating/drinking/exercising, the mask can be

conveniently looped under the jawline which

forms a natural hold for storage, minimizing

the risk of further contamination and

enabling quick re-wearing. (c) Dangling a

mask off one side of face while performing

said activities is not recommended as it

exposes biofluid for potential contamination

of the environment
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polyurethane are more durable than natural fibers, the lat-

ter prone to distortion/disintegration, affecting efficacy. For

hygienic and convenient disinfection of fabric masks when

daily washing is not possible, applying a hot iron (356–428

Fahrenheit at standard settings) on both sides of the fabric

will be sufficient to kill respiratory viruses, including the

COVID-19 virus36 as well as minimize pathogenic bacterial

growth. Biofunctional textiles confer self-cleaning benefits

relevant for a frequent wear, high biofluid contamination

garment like the reusable fabric mask.37

7 Distinct complications from systemic pharmacotherapy:

The use of traditional systemic pharmacotherapy for moder-

ate or severe maskne may face unique complications distinct

from acne vulgaris. The side effect profile of isotretinoin, a

widely used systemic medication for the treatment of moder-

ate/severe acne, includes development of eczema, cheilitis,

and increased bacterial infections, that is, S. aureus.38 Indi-

viduals on isotretinoin are prone to frictional dermatitis, exac-

erbation of retinoid dermatitis, cheilitis, and are more

susceptible to cutaneous infections.39 The warm and moist

microenvironment increases the risk of microorganism over-

growth and secondary infections, such as impetigo, Gram-

negative folliculitis, and malassezia folliculitis.

Potential of biofunctional textiles in

microbiome dysbiosis

Given that textiles have prolonged contact with skin, research

into functional textiles with intrinsic properties, such as antiox-

idative capacity and antimicrobial activity, will be relevant in der-

matological applications. The current recommendation of the

widespread use of reusable fabric masks is one such area.

Traditionally, dermatologists have recommended cotton as

the only comfortable tissue suitable for patients with dermato-

logical conditions. With the advancement of materials engineer-

ing, synthetic fibers with improved functions of breathability and

waterproofing, and the added properties of quick-dry, increased

comfort (compared to cotton), surface modification with antimi-

crobial properties, have emerged as a complementary tool in

dermatologic treatments.40 Functional textiles (that maintain

deliverable antimicrobial activity in vitro)41 have been proposed

as safe adjunct treatment for AD with some data published

regarding their antimicrobial properties and clinical efficacy.42–45

Relevant biofunctional textiles to dermatology were reviewed,

via a search over the following databases, i.e. PubMed, Scien-

ceDirect, and Google Scholar. The key words such as “textile

dermatology”, “textile skin”, “zinc textile”, “zinc oxide textile”,

“zinc textile dermatology”, “copper textile”, “copper oxide tex-

tile”, “copper textile dermatology”, “silver textile”, “silver textile

dermatology”, “antibacterial textile”, “UV textile”, “antiaging tex-

tile”, “textile nanoparticles”, “atopic dermatitis textile”, “eczema

textile”, and “acne textile” were utilized. A separate search with

the word “textile” replaced by “fabrics” was also executed. All

studies published over a 10 year duration from 2010 till

September 2020 were analyzed.

Study selection. Studies describing synthesis of nanoparticles

on textiles with subsequent analysis of acquired functions and

studies containing clinical evidence of the effect of textiles

impregnated with nanoparticles on skin condition were included

into this review.

Study characteristics. All studies were analyzed with regard

to the nature of nanoparticles utilized for textile modification, the

type of textile, and the efficacy of modified textile in terms of its

antimicrobial, antifungal, antiviral activity, UV protection, or anti-

aging properties. The results of individual studies were used per

se and not analyzed (Table 1).

Silver impregnated textiles exhibited significantly less S. aur-

eus as well as total bacterial colonization after 2 days of wear-

ing without washing, as compared with a placebo textile.46 In a

randomized controlled trial, silver-loaded seaweed fiber was

associated with an in vivo statistically significant reduction in S.

aureus colonization and a pronounced improvement in barrier

function (transepidermal water loss).47 Given the pathophysio-

logic similarities of bacterial proliferation and chronic inflamma-

tion in both acne and hidradenitis suppurativa, Morand et al.

treated a case of hidradenitis suppurativa with silver-coated tex-

tiles with reported success.48 ZnO-functionalized textile fibers

were associated with rapid improvement of AD severity, pruri-

tus, and subjective sleep quality when AD patients wore the

ZnO textiles,49 postulated to be related to high antioxidative

capacity of the ZnO textile, strong antibacterial activity, and

good biocompatibility. Nanocrystalline silver dressings have

demonstrated statistically significant wound healing benefits

over traditional silver sulfadiazine and gauze dressings,

because of its anti-inflammatory effect.50

Copper oxide impregnated textiles are broadly biocidal, self-

sterilizing, with efficacy against antibiotic-resistant bacteria,

including methicillin-resistant S. aureus and vancomycin-resis-

tant Enterococci when used in the control of nosocomial infec-

tions and the spread of antibiotic-resistant bacteria.51

Impregnation of copper oxide into respiratory protective face

masks also confers additional biocidal properties (anti-influenza)

apart from its inherent filtration properties and can significantly

reduce the risk of hand or environmental contamination, and

subsequent infection, because of improper handling and dis-

posal of the masks.52 Examples in dermatological applications

include incorporation in antifungal socks for treatment of tinea

pedis and anti-demodex mite mattress covers for prevention of

dust mite-triggered allergies, with no demonstrable skin-sensitiz-

ing properties.51

Antibiotic resistance is an important concept in acne treat-

ment, and it is currently recommended to use topical antibiotics

in combination with benzoyl peroxide or retinoids to lower antibi-

otic resistance of P. acnes to erythromycin and clindamycin.53

However, such formulations when worn under occlusive effects

will increase the risk of irritant contact dermatitis. Given the

ª 2021 the International Society of Dermatology International Journal of Dermatology 2021, 60, 799–809

Teo The “Maskne” microbiome – pathophysiology and therapeutics Review 803



Table 1 Review of in vitro and in vivo studies involving biofunctional textiles with antimicrobial properties

Reference Material Effect

Textiles modified by Zn compounds

In vitro studies

Pandimurugan et al. (2017)54 ZnO NPs/cotton Inhibits S. aureus, S. pyogenes, E. coli and K. aerogenes

Ghasemi et al. (2018)55 ZnO NPs/cotton Inhibits S. aureus and E. coli

Khan et al. (2018)56 ZnO NPs/cotton Inhibits E. coli and S. aureus and preserves UV properties

up to 20 washing cycles

D’Agua et al. (2018)57 ZnO NPs/cotton Inhibits MRSA, S. epidermidis, S. aureus and P. acnes

Shaheen et al. (2016)58 ZnO NPs/cotton Inhibits S. aureus and E. coli

Souza et al. (2018)59 ZnO NPs/cotton Inhibits S. aureus and P. aeruginosa

Ran et al. (2018)60 ZnO NPs/cotton Inhibits G. cerinus

Salat et al. (2018)61 ZnO NPs/cellulose Inhibits S. aureus after 60th laundry

Wang et al. (2016)62 ZnO NPs/cotton Inhibits S. aureus and K. pneumoniae. UPF 50+

Petkova et al. (2016)63 ZnO NPs/cotton Inhibits S. aureus and E. coli

El-Nahhal et al. (2020)64 ZnO NPs/cotton Increases antimicrobial activity toward S. aureus and E. coli

Das et al. (2017)65 ZnO NPs/cotton Inhibition of E. coli and S. aureus

Kar et al. (2019)66 ZnO NPs/cotton Khadi Inhibits K. pneumoniae and S. aureus. UPF 20

Huang et al. (2019)67 ZnO NPs/silk Has UPF >50

Nourbakhsh et al. (2018)68 ZnO NPs/polyester Inhibits S. aureus and E. coli

Ashraf et al. (2016)69 ZnO NPs/polyester, cotton Inhibits S. aureus

Paul et al. (2019)70 ZnSnO3/cotton Inhibits Gram-positive and Gram-negative bacteria

with UPF 45

Amani et al. (2019)71 ZnO NPs/polyester Inhibits E. coli, S. aureus and C. albicans

Preethi et al. (2020)72 ZnO NPs/cotton Inhibits S. aureus, B. subtilis and E. coli

Fiedot-Tobola et al. (2018)73 ZnO microparticles/polyethylene

terephthalate, polyamide, polypropylene

Inhibits E. coli and S. aureus

Hassabo et al. (2019)74 Ag NPs/ZnO NPs/Cu NPs/cotton Durable antibacterial and UV protection properties.

Holt et al. (2018)75 ZnCl2/polyester Inhibits S. aureus even after abrasive washing

In vivo studies

Wollina et al. (2009)76 Smartcel sensitive (ZnO NPs/cotton,

lyocell, elastane)

Sleep improvement and pruritus alleviation was

observed in neurodermatitis patients after 10 days

Hoefer et al. (2018)77 Smartcel sensitive (ZnO NPs/cotton,

lyocell, elastane); Benevit Zinc+ (lyocell,

ZnO NPs/Smartcel sensitive, spandex);

DermaSilk (AEGIS 5772/silk); Padycare

(polyamide, Ag NPs/lycra); Binamed

(modal, Ag NP/polyester, lycra)

ZnO-containing fabrics have stronger antibacterial

activity than Ag-containing samples, which are

more effective in decreasing lesion severity,

while silk fabrics alleviate pruritus and symptoms

Wiegand et al. (2013)49 Benevit Zink+ (lyocell, ZnO NPs/Smartcel

sensitive, spandex)

Improved night sleep, pruritus, and AD severity

Textiles modified by Cu compounds

In vitro studies

Teli et al. (2013)78 Cu NPs/bamboo rayon Inhibits S. aureus and E. coli after 50 washes

Hammer et al. (2012)79 Cu NPs/cotton Inhibits T. rubrum, T. mentagrophytes and

C. albicans

Sharma P et al. (2019)80 Cu NPs/cotton Inhibits S. aureus and E. coli

Turalija et al. (2015)81 Cu2O microparticles/polyester Inhibits S. aureus and K. pneumoniae

Bhutiya PL et al. (2018)82 Cu2O NPs/cellulose Inhibits S. aureus, S. thermophilus,

P. aeruginosa and E. coli

Vasantharaj S et al. (2019)83 CuO NPs/cotton Inhibits S. aureus, E. coli, K. pneumoniae

Galani et al. (2016)84 Cu NPs/para-aramide and polyester Inhibits S. aureus, K. pneumoniae, P. aeruginosa,

A. baumannii and E. faecium, P. aeruginosa and

C. parapsilosis

S�ojka-Ledakowicz et al. (2016)85 CuSiO3/polypropylene and polylactide Inhibits E. coli, S. aureus and C. albicans

Imai K et al. (2012)86 Cu2+/cotton Inactivates avian influenza virus H5 subtype

In vivo studies

Marcus et al. (2017)87 CuO NPs/linen, cotton and polyester Reductions of 29.3, 55.5, 23.0, and 27.5% in the ATIEs,

fever days, days of antibiotic treatment, and antibiotics.
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Table 1 Continued

Reference Material Effect

Butler (2018)88 CuO NPs/linen, cotton and polyester ~48% reductions in HCAI caused by C. difficile, ~32% reductions

in HCAI caused by MDROs, and ~45% in the reduction of HCAI

caused by C. difficile and MDROs combined

Lazary et al. (2014)89 CuO NPs/linen, cotton and polyester A 24% reduction in HCAI, a 47% reduction in number of fever

days and a 32.8% reduction in total number of days of

antibiotic administration

Dykes (2015)90 CuO NPs/polyester After 4 weeks, an increase in the mean net skin and biological

elasticity of 31.4 and 20.7%, respectively, was observed

Gargiulio et al. (2012)91 CuO NPs/polyester Amelioration of tinea pedis

Baek et al. (2012)92 CuO NPs/polyester Decrease of crow’s feet was observed after 4 weeks

Borkow et al. (2009)93 CuO NPs/polyester Reduction of facial wrinkles and crow’s feet/fine lines after 2 weeks

Textiles modified by Ag compounds

In vitro studies

Rehan et al. (2017)94 Ag NPs/cotton Blocks UV and inhibits E. coli

Xu et al. (2017)95 Ag NPs/cotton Inhibits S. aureus and E. coli. Stable after 50 laundering cycles

Emam et al. (2015)96 Ag NPs/cotton Inhibits E. coli and S. aureus

Li et al. (2017)97 Ag NPs/cotton Inhibits E. coli and S. aureus, has improved UPF values

El-Rafie et al. (2014)98 Ag NPs/cotton Inhibits S. aureus and E. coli after 20 washings

Zhang et al. (2013)99 Ag NPs/cotton Inhibits S. aureus and E. coli after 50 washings

Gerba et al. (2016)100 Ag NPs/cotton Inhibits salmonella, MRSA, P. acnes, T. mentagrophytes,

Enterococcus, C. difficile and norovirus

Balakumaran et al. (2016)101 Ag NPs/cotton Inhibits B. subtilis, S. aureus, K. pneumoniae and P. aeruginosa

Dhiman et al. (2015)102 Ag NPs/cotton Inhibits S. aureus and E. coli

Pulit-Prociak et al. (2016)103 Ag NPs/cotton Inhibits S. cerevisiae

Shaheen et al. (2018)104 Ag NPs/cotton Inhibits S. aureus, E. coli, C. albicans and fungi

Rodrigues et al. (2019)105 Ag NPs/cotton and polyester Inhibits S. aureus, E. coli, C. albicans,

C. glabrata and C. parapsilosis

Ali et al. (2011)106 Ag NPs/polyester Inhibits S. aureus

Noor et al. (2019)107 Ag NPs/polyviscose Inhibits E. coli

Mofidar et al. (2019)108 Ag NPs/polyacrylic acid fibers Inhibits C. albicans and MRSA

Rehan et al. (2018)109 Ag/AgI NPs/viscose Inhibits E. coli and S. aureus and has UV protection

Tremiliosi et al. (2020)110 Ag NPs/polyester-cotton Inhibits S. aureus, E. coli, C. albicans, SARS-CoV-2.

Ib�anescu et al. (2014)111 Ag/ZnO NPs/cotton and cotton-polyester Inhibits S. aureus and M. luteus

Shin et al. (2014)112 Ag/Ag-SiO2 NPs/polyester Inhibits S. aureus and E. coli

Nischala et al. (2010)113 Ag-SiO2/cotton Inhibits E. coli

In vivo studies

Juenger et al. (2006)114 Padycare (polyamide, Ag NPs/lycra) Reduced clinical severity of AE and pruritus within a

wearing period of 2 weeks

Park et al. (2012)45 Skin Doctor (TiO2–Ag NPs/algal cellulose) Reduction in S. aureus colonization and decrease in TEWL

Ara�ujo et al. (2013)115 Skin to skin (cotton, Ag NPs/algal

cellulose)

Decreases up to 70% of itching. Quality of sleep improved

to about 65%.

Fluhr et al. (2010)47 Ag NPs/algal cellulose Reduction in S. aureus colonization and improved TEWL was

observed during the first 4 weeks of the study

Srour et al. (2019)41 DermaSilk (AEGIS 5772/silk), Padycare

(polyamide, Ag NPs/lycra), SkinProtect

(Ag NPs/cotton and polyester), Binamed

(modal, Ag NP/polyester, lycra), Platatex

(Ag NPs/cotton and polyester),

Pulmanova Bioactive (Ag NPs/cotton),

Silver-Skin (AgNPs/cotton and

polyester), Best4Body (Ag NPs/cotton),

Schiesser (Ag NPs/cotton), Medima

Antisept (Ag NPs/cotton and polyamide),

Sansita (micromodal, lycra and Ag

NPs/cellulose)

Textiles coated by Ag NPs delivered durable

antimicrobial activity unaffected by laundering

Hoefer et al. (2011)116 Ag NPs/polyester No pathogenic germs occurred in the

microflora of the subjects during 4 weeks
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recommendation for widespread mask-wearing, it is reasonable

to hypothesize increased incidence of maskne. It is important

that the international dermatology community is made aware of

how prescribing patterns may potentially influence the develop-

ment of antibiotic resistance worldwide.

Role of dermatologists

Dermatologists should be aware of changes in the skin micro-

biome because of widespread fabric mask-wearing and its influ-

ence on new and existing dermatological conditions. The

antimicrobial functions of biofunctional textiles and the new

social “norm” of widespread mask-wearing present therapeutic

opportunities for treatment of microbiome dysbiosis in maskne

and chronic skin disorders, while decreasing the risk of antibi-

otic resistance in the population.

Several dermatological factors may influence noncompliance

to mask-wearing. Individual discomfort in the form of retained

moisture, sensation of stickiness, and inconveniences experi-

enced by the individual caused by difficulty in speaking or

breathing may be related to the design and material of the

mask. Sensitive skin patient populations may experience height-

ened sensations with frictional dermatitis. A poor understanding

of infectious disease control methods may also be a contribu-

tory factor to noncompliance. Dermatological benefits of bio-

functional textiles, such as UV protection, treatment of skin

disease, and antiaging, can potentially be viewed as additional

evidence-based incentives for widespread face mask wear,1

besides reducing the occurrence of common complications such

as maskne and flare-ups of existing dermatological conditions

caused by face masks made of traditional textiles.
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