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Abstract

Repetitive transcranial magnetic stimulation (rTMS) induces changes in cortical excitability

for minutes to hours after the end of intervention. However, it has not been precisely deter-

mined to what extent cortical plasticity prevails spatially in the cortex. Recent studies have

shown that rTMS induces changes in “interhemispheric” functional connectivity, the resting-

state functional connectivity between the stimulated region and the symmetrically corre-

sponding region in the contralateral hemisphere. In the present study, quadripulse stimula-

tion (QPS) was applied to the index finger representation in the left primary motor cortex

(M1), while the position of the stimulation coil was constantly monitored by an online naviga-

tor. After QPS application, resting-state functional magnetic resonance imaging was per-

formed, and the interhemispheric functional connectivity was compared with that before

QPS. A cluster of connectivity changes was observed in the stimulated region in the central

sulcus. The cluster was spatially extended approximately 10 mm from the center [half width

at half maximum (HWHM): approximately 3 mm] and was extended approximately 20 mm

long in depth (HWHM: approximately 7 mm). A localizer scan of the index finger motion con-

firmed that the cluster of interhemispheric connectivity changes overlapped spatially with

the activation related to the index finger motion. These results indicate that cortical plasticity

in M1 induced by rTMS was relatively restricted in space and suggest that rTMS can reveal

functional dissociation associated with adjacent small areas by inducing neural plasticity in

restricted cortical regions.

Introduction

Transcranial magnetic stimulation (TMS) is a non-invasive method to induce neural activity

of stimulated regions or block their functions transiently and is also capable of changing
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behavior [1–4]. Since behavioral changes are thought to result primarily from changes in neu-

ral activity in the stimulated region and connectivity with other brain regions, it is important

to understand the spatial extent of the effect of stimulation that prevails in the stimulated

region. Electric field measurements have provided the spatial distribution of field strength in

the stimulated region [5–12]. Concurrent measurements using functional magnetic resonance

imaging (fMRI) and TMS have also revealed the spatial distribution of MRI signals in local

and remote brain regions elicited by magnetic stimulation [13–18]. Repetitive TMS (rTMS),

on the other hand, has been used to induce changes in cortical excitability of stimulated

regions for minutes to hours after the end of the intervention, which may result in behavioral

changes [1–4]. It is also important to understand the spatial extent of cortical plasticity induced

by rTMS. However, the visualization of the spatial extent of cortical plasticity remains largely

uninvestigated.

Recent MRI studies have investigated the effects of rTMS on functional connectivity and

revealed changes in functional connectivity between the stimulated region and other brain

regions after rTMS [19–44]. Our previous study has demonstrated changes in “interhemi-

spheric” functional connectivity, the resting-state functional connectivity between the stimu-

lated region and the symmetrically corresponding region in the contralateral hemisphere [33].

It found that, after stimulation to the left primary motor cortex (M1), inhibitory rTMS

increased interhemispheric functional connectivity between bilateral M1 while excitatory rTMS

decreased it. This previous study employed a region of interest-based analysis in the stimulated

region in M1, and suggests that interhemispheric functional connectivity can be utilized to

examine the spatial extent of cortical plasticity in the stimulated region by calculating the con-

nectivity in a voxel-by-voxel basis, with no assumption of functional symmetricity of the cortex.

In the present study, to examine the spatial extent of cortical plasticity, we measured inter-

hemispheric functional connectivity changes in the first dorsal interosseous (FDI) representa-

tion in the M1 in the left hemisphere. Quadripulse stimulation (QPS) [33, 40, 45, 46] was

applied to induce changes in cortical excitability in the M1, while the position and orientation

of the stimulation coil were constantly monitored by an online navigator. The voxel-wise

changes of interhemispheric functional connectivity after QPS were calculated to visualize the

spatial extent of cortical plasticity. Localizer scans of the finger movement task were also

administered to compare the spatial extent of brain activation in the M1 with that of changes

in interhemispheric functional connectivity.

Materials and methods

Subjects

Twenty right-handed subjects [12 men and 8 women, age: 25.9 ± 9.0 years (mean ± SD) rang-

ing from 20 to 48 years] participated in the experiments. Written informed consent was

obtained from all subjects according to the Declaration of Helsinki. The experimental proce-

dures were approved by the Institutional Review Board of Juntendo University School of

Medicine.

Overall design of the combined rTMS-fMRI experiment

The experiment consisted of two daily sessions (Fig 1A). On the first day, T1-weighted struc-

tural images were acquired. Then, the subjects underwent a resting-state scan for five runs

without QPS as a control connectivity scan. On the second day, the motor evoked potential

(MEP) was measured to search for the hot spot of the FDI representation in the M1. Then,

QPS was delivered to the hot spot for 30 min to induce cortical plasticity at the FDI-M1. An

online navigation system was utilized to maintain accurate stimulation onto the hot spot
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throughout the 30 min of QPS. After an approximately 30 min break (during which the subject

was moved from a TMS room to an MRI scanner, placed into the scanner and administered

with preparatory scans), a resting-state functional scan was administered for five runs to mea-

sure functional connectivity changes induced by QPS. A functional localizer scan was also

administered for one run, where the subjects performed a motor task designed to activate the

FDI-M1.

TMS procedures

TMS was administered using a hand-held figure-of-eight coil (7-cm diameter at each wing;

The Magstim, Whitland, Dyfed, UK). Single-pulse TMS experiments were conducted to deter-

mine the optimal stimulation site and active motor threshold (AMT) for the right FDI muscle

[33, 40, 45–48]. MEP was recorded from the right FDI muscle using Ag/AgCl sheet electrodes

placed over the muscle belly (active) and the metacarpophalangeal joint of the index finger

(reference). The signals were sent to an amplifier (MEG-5200, Nihon Kohden, Japan) through

filters set at 150 Hz to 3 kHz. The AMT was defined as the lowest intensity that evoked a small

response (>100 μV) in more than 5 of 10 consecutive trials when the subjects maintained a

slight contraction of the right FDI (10% of the maximum voluntary contraction [MVC]) [33,

45–47]. MVC was calculated approximately 10 min before QPS administration.

Fig 1. Overview of the experimental design. (A) On the first day, the T1-weighted image and resting-state (control) scans were obtained. On the

second day, MEP after single-pulse TMS was measured to identify the FDI representation in the M1. Then, QPS was delivered to the FDI-M1 region for

30 min to induce cortical plasticity. After an approximately 30 min break, the resting-state scan (post-QPS) was administered. (B) A QPS sequence that

consisted of 360 trains of quadripulse rTMS at 50 msec inter-stimulus interval (ISI) with an inter-train interval of 5 sec. (C) A finger movement task in a

localizer scan to identify the M1 for the FDI. The subjects were instructed to move their left or right FDI at 2Hz as the arrows blinked for 20 sec each,

followed by resting for 20 sec. The left-right-rest cycle was repeated six times.

https://doi.org/10.1371/journal.pone.0224175.g001
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There are many forms of rTMS that are widely used to induce neural plasticity [4, 49]

including theta burst stimulation (TBS) [50], high-frequency rTMS [51] and low-frequency

rTMS [52]. As the fMRI measurements took more than one hour (including moving from the

TMS room to the MRI scanner, placing the subject into the scanner, performing preparatory

scans, and resting-state measurements), an rTMS paradigm with aftereffects lasting over an

hour was needed. QPS, the effect of which lasts approximately 90 min [45, 46], offered a suit-

able length of aftereffect for the present study.

Magnetic pulses of QPS were delivered by four magnetic stimulators (Magstim 2002, The

Magstim) connected to a specially designed combining module (The Magstim). QPS consisted

of trains of four monophasic TMS pulses with an inter-train interval (ITI) of 5 sec, based on

the standard protocol of QPS [45, 46, 53] (Fig 1B). Each train consisted of four magnetic pulses

separated by inter-stimulus intervals (ISIs) of 50 msec (inhibitory QPS). One QPS block con-

sisted of 360 consecutive trains that took 30 min. The intensity of QPS was set at 90% AMT

and was 40.8 ± 7.0 (mean ± SD) % of the maximum stimulator output. We did not use QPS

with an ISI of 5 msec (excitatory QPS) because it is well known that facilitation is often associ-

ated with surround inhibition [54, 55]. It is well established that the inhibitory QPS reduces

MEP by approximately 50% for approximately 90 min [45, 46]. The QPS effect in MEP was

also confirmed in our previous study of fMRI-rTMS [33]. Furthermore, the magnitude of

connectivity changes has been shown to correlate with changes in MEP [38]. Based on these

literatures, we did not record MEP to confirm the effect of QPS in this study. After QPS

administration, the subjects were asked if they had a headache or any other type of discomfort.

No subjects reported any discomfort.

An online navigator assured that stimulation was targeted to the left FDI-M1 determined

by the MEP measurements. T1-weighted images were registered to subjects’ heads in space

using a tracking device and navigator software (TMS Navigator-SW, Localite GmbH, Ger-

many). The position and orientation of the coil were also registered to the subjects’ heads in

space and were continuously monitored and recorded in real time during QPS.

fMRI procedures

Image data were acquired using a 3-T MRI scanner and a 64-channel RF head coil (Siemens

Prisma, Erlangen, Germany). T1-weighted structural images were obtained for anatomical ref-

erence (resolution = 0.8 × 0.8 × 0.8 mm3). Functional images were obtained using multi-band

gradient-echo echo-planar sequences [56] (TR = 1.0 sec, TE = 30 msec, flip angle = 62 deg,

FOV = 192 × 192 mm2, matrix size = 96 × 96, 78 contiguous slices, voxel size = 2.0 × 2.0 × 2.0

mm3, multi-band factor = 6, phase encode direction: posterior to anterior). Before each run,

one functional image was acquired with opposite phase-encode direction for subsequent

topup distortion correction [57].

The resting-state fMRI scan consisted of five runs of 6 min each, and the subjects were

instructed to fixate on a cross during the scans. The localizer scan was also conducted to iden-

tify the M1 for the right FDI and consisted of one run of 6 min. During the FDI motor task, a

left or right arrow appeared and blinked in the display, and the subjects were instructed to

move their left or right FDI at 2 Hz as the arrows blinked for 20 sec each, followed by resting

for 20 sec (Fig 1C). The left-right-rest cycle was repeated six times during the run.

Image analysis for resting-state data

Images were first slice timing corrected, realigned using SPM8 (www.fil.ion.ucl.ac.uk/spm/),

and topup distortion corrected using FSL [58]. For topup distortion correction, the susceptibil-

ity-induced off-resonance field was estimated using images with distortions going in opposite
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directions [57]. Temporal filters (0.009 Hz< f < 0.08 Hz) were applied to images using in-

house-written Matlab scripts. A general linear model (GLM) [59] was used to regress out nui-

sance signals that correlated with head motion, whole-brain global signal, averaged ventricular

signal, and averaged white matter signal. To prepare for subsequent interhemispheric func-

tional connectivity analyses, obtained residual images were made symmetrical by spatial nor-

malization to the MNI template and were spatially smoothed [full width at half maximum

(FWHM) = 4 mm].

Then, we estimated how QPS changed the voxel-wise inter-hemispheric functional connec-

tivity (Fig 2A). Each voxel in the left hemisphere of each subject was used as a seed to calculate

its correlation with the corresponding voxel in the right hemisphere. For the corresponding

voxel in the right hemisphere, the X coordinate of the voxels in the left hemisphere was flipped.

A voxel-wise interhemispheric correlation was calculated for each seed voxel, and the correla-

tion coefficient was then converted to Fisher’s z [60, 61] (Fig 2B). Since the interhemispheric

connectivity map is symmetrical by definition, the z values are shown only in the left hemi-

sphere for display purposes (Fig 2A). The z-map of the post-QPS was then contrasted with that

of the control scans in each subject (Fig 2B). The differential interhemispheric connectivity

map was transformed back into the original space for individual analyses. For group analyses,

the spatial smoothing kernel was greater (FWHM = 6 mm) than that for single subject analyses

(FWHM = 4 mm), and the differential z-maps were entered into a second-level one-sample t-

test, treating subjects as a random effect.

Image analysis for localizer scan data

Similarly to the analysis for resting-state data, images were first slice timing corrected,

realigned, and distortion corrected using topup. The images were then spatially smoothed

(FWHM = 4 mm). Time-series data were analyzed with a block design. The event timings of

two types of trials (moving right/left FDI) were coded into a GLM, together with temporal and

dispersion derivatives using the canonical hemodynamic response function. Six parameters of

head motion derived from realignment were also included in the model as covariates of no

interest. The right FDI-M1 in the left hemisphere was determined by calculating contrast

images defined as moving right FDI > moving left FDI for each subject, to counterbalance

non-motor components such as visual response to a cue and effort of finger movements. For

group analyses, images were normalized to the template and were spatially smoothed with a

greater kernel (FWHM = 6 mm), and contrast images were entered into a second-level one-

sample t-test, treating subjects as a random effect.

Results

Stability of the stimulation site

To maintain spatially accurate stimulation throughout the 30-min QPS, the online navigation

system was utilized. The variability of the points of stimulation was estimated to confirm the

spatial extent of the stimulation site. Fig 3A shows the points of stimulation on the plane

contacting the brain surface in one representative subject. One count represents the coil posi-

tion during one train of four pulses. The distribution of the stimulation points in the subject

group is shown in Fig 3B as a function of the distance from the center. Counts with distances

between 0 to 0.25 mm from the center were normalized to 1. The half width at half maximum

(HWHM), which is a half of FWHM and measures the cluster extent from its center, of the

counts was approximately 0.5 mm. Most of the stimulation points (96.0 ± 6.0%, mean ± SD)

were located within a circle of 1 mm radius. The distance between the coil and the brain sur-

face is known to be approximately 15 mm [62–65], and the variability increases as the
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stimulation goes deeper into the brain. However, navigation monitoring results confirmed

that the stimulation site was reasonably stable compared to the size of a cluster of connectivity

changes described later.

Changes in interhemispheric functional connectivity after QPS

We estimated changes in cortical plasticity by calculating the difference in interhemispheric

functional connectivity between the post-QPS and control scans. Fig 4A demonstrates a cluster

Fig 2. Interhemispheric functional connectivity analysis. (A) Each voxel in the left hemisphere of each subject was

used as a seed to calculate its interhemispheric correlation with the corresponding voxel in the right hemisphere. The z

values are shown only in the left hemisphere for display purposes. (B) The interhemispheric connectivity map of the

post-QPS scans was calculated and was contrasted with that of the control scans to generate the differential

interhemispheric connectivity map of each subject.

https://doi.org/10.1371/journal.pone.0224175.g002
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of voxels with changes in the interhemispheric functional connectivity observed in the central

sulcus in one representative subject. The cluster was spatially restricted around the stimulation

site in the central sulcus, extending to the brain along the stimulation vector. The stimulation

vector was perpendicular to the cortex as long as the experimenter stimulated the region indi-

cated by the navigator system. Fig 4B shows the spatial extent of the cluster when the differen-

tial connectivity maps were sliced by different angles around the stimulation vector. The

cluster of high connectivity changes appeared similar in spatial extent, irrespective of the dif-

ferent angles.

Interhemispheric functional connectivity was calculated based on the assumption that

when a voxel in one hemisphere is gray matter, a voxel in the contralateral hemisphere is also

gray matter. However, this is not always the case. To address this issue, interhemispheric func-

tional connectivity was calculated between a gray matter voxel in one hemisphere and the gray

matter voxel located nearest to the corresponding voxel in the contralateral hemisphere, if

the corresponding voxel is judged as white matter based on the segmentation process in SPM.

Fig 5 shows differential interhemispheric connectivity maps calculated in these two ways. The

spatial patterns of the z values were almost the same in the central sulcus, as well as in other

clusters of no interest outside the central sulcus. The results validate the differential interhemi-

spheric connectivity pattern calculated simply between symmetrical voxels.

We then estimated how far the connectivity cluster extended in the brain surface and along

the stimulation vector. Fig 6A and 6B show the differential Fisher’s z of the connectivity cluster

in the brain surface along the long (X) and short (Y) axes of the stimulation coil, respectively.

The cluster was spatially extended approximately 10 mm from the stimulation site (HWHM:

approximately 3 mm), to a significantly greater extent in the anterior than in the posterior

direction along the Y axis [t(19) = 2.2, P< 0.05], reflecting the direction of magnetic field

from the stimulation coil. In Fig 6C, the differential Fisher’s z was plotted along the stimulation

Fig 3. Monitoring of the stimulation site during QPS using an online navigation system. (A) The points of stimulation on the plane contacting the

brain surface in one representative subject. Each dot represents one position of one-train stimulation. (B) The distribution of the stimulation points in

the subject group as a function of the distance from the center. The counts with distances between 0 to 0.25 mm from the center were normalized to 1.

The error bars indicate the standard error of means (SEM) of the subject group.

https://doi.org/10.1371/journal.pone.0224175.g003
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Fig 4. Differential interhemispheric connectivity map. (A) The differential interhemispheric connectivity map

overlaid onto a structural image in one representative subject. The triangle indicates the central sulcus in the left

hemisphere, and the red dashed line indicates the stimulation vector (the length of the vector in the figure is arbitrary).

The color scale represents the differential Fisher’s z value. D: dorsal, V: ventral, A: anterior, P: posterior. (B) The

differential interhemispheric connectivity maps sliced by different angles around the stimulation vector. L: left, R:

right.

https://doi.org/10.1371/journal.pone.0224175.g004
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vector from the brain surface. Data in white matter voxels were excluded from group averag-

ing. The z value gradually declined along the vector up to approximately 20 mm in depth

(HWHM: approximately 7 mm). For reference, the distance from the coil and brain surface

was 16.1 ± 2.9 mm (mean ± SD). Fig 6D shows the inter-individual variability of the differen-

tial interhemispheric connectivity at the origin of the cluster (X = 0, Y = 0, Z = 0). There were

no subjects with a negative z value. The distribution was normal (Kormogorov-Smirnov test,

P> 0.9) (Fig 6E). These results suggest that some subjects were less sensitive but were within a

normal distribution.

To examine the effect of stimulation strength (i.e., 90% AMT) on differential interhemi-

spheric functional connectivity, correlation was calculated between the differential z score

and the stimulation strength across subjects. There was no significant correlation (r = -0.1,

P > 0.05), suggesting that stronger stimulation does not result in greater connectivity

changes.

Brain activation during FDI movement

To validate differential interhemispheric connectivity maps, brain activity was measured using

fMRI while the same subjects performed a motor task designed to activate the right FDI repre-

sentation in the M1 in the left hemisphere. The interhemispheric connectivity difference

should be greatest near the surface (Fig 6), while the brain activation peak may be not always

located near the surface. Therefore, the peaks of the interhemispheric connectivity difference

and brain activation will not always overlap, but the clusters of the two should spatially overlap.

Fig 7A shows the differential interhemispheric connectivity map and brain activation map in

one representative subject in the original subject space (see also S1 Fig). The peaks of the two

maps did not overlap, but their clusters considerably overlapped, especially in the central

Fig 5. Two ways of calculating interhemispheric connectivity maps. (A) A differential interhemispheric connectivity map calculated simply between

symmetrical voxels in the two hemispheres. Therefore, the voxel in the contralateral hemisphere can be gray matter or white matter. The map is the

same as Fig 4A. (B) A differential interhemispheric connectivity map calculated in another way. The map was calculated between a gray matter voxel in

one hemisphere and the gray matter voxel located nearest to the corresponding voxel in the contralateral hemisphere, if the corresponding voxel is

judged as white matter.

https://doi.org/10.1371/journal.pone.0224175.g005
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sulcus region stimulated by QPS. Fig 7B shows the group results of the two maps in MNI space

(see also S1 Fig). These two maps also exhibited considerably overlapping patterns, confirming

that the largest part of the cluster of connectivity changes in the central sulcus is located at the

right FDI representation in the M1.

Fig 6. Cluster of connectivity changes in the surface and depth directions. (A) The differential Fisher’s z plotted along

the long axis (X) in the brain surface. Vertical error bars indicate the SEM of the z values. (B) The differential Fisher’s z

plotted along the short axis (Y) in the brain surface. (C) The differential Fisher’s z plotted along the stimulation vector (Z)

from the brain surface. Data in white matter voxels were excluded from group averaging. The black triangle indicates the

mean depth of the activation peak in M1, and the horizontal error bar indicates the SEM of the depth of the activation

peaks. (D) Distribution of differential Fisher’s z in the subjects at the origin (X = 0, Y = 0, Z = 0) of the connectivity

cluster. (E) Cumulative distribution function of the differential Fisher’s z of the subjects (shown in black). A red curve

indicates the case of a normal distribution.

https://doi.org/10.1371/journal.pone.0224175.g006
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Discussion

The present fMRI study utilized interhemispheric functional connectivity to examine the spa-

tial extent of cortical plasticity induced in M1 by applying QPS with good spatial accuracy sup-

ported by an online navigator. A cluster of connectivity changes was observed mostly in the

restricted region in the central sulcus, around a circle of 20 mm in diameter. The cluster

extended in depth by approximately 20 mm. The activation related to finger movement in the

left central sulcus region overlapped with the cluster of connectivity changes. These results

indicate that connectivity changes in M1 were relatively restricted in space and suggest that

interhemispheric functional connectivity can be used for visualization of cortical plasticity

induced in the stimulated region.

Changes in interhemispheric connectivity after QPS to the left M1 were rarely seen outside

the M1. Interhemispheric connectivity changes in the M1 indicate changes in connectivity

between the left M1 (stimulated) and the right M1. Stimulation to the left M1 may induce

changes in connectivity between the left M1 and the ipsilateral regions such as the premotor

cortex. On the other hand, interhemispheric connectivity changes in the premotor cortex indi-

cate changes in connectivity between the left premotor cortex and the right premotor cortex.

Fig 7. Comparison of differential interhemispheric connectivity and brain activity during finger movement. (A)

The differential interhemispheric connectivity map (left) and brain activation map (right) in one representative subject

(the same as Figs 4 and 5) in the original subject space. Triangles indicate the central sulcus of the subject. The color

scale represents the differential Fisher’s z value (left) or t-value (right). (B) Group results of the two maps in MNI

space. Triangles indicate the central sulcus.

https://doi.org/10.1371/journal.pone.0224175.g007
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Therefore, the interhemispheric connectivity changes outside the M1 require multi-step con-

nectivity changes, which may explain the faint interhemispheric connectivity changes outside

the M1.

It must be noted that cortical plasticity estimated using interhemispheric connectivity has

potential limitations. First, the stimulation of one region may lead to changes in cortical excit-

ability in other regions, as well as deeper parts of the stimulated region, in the same brain net-

work [22, 27, 40, 43]. Although we only observed faint effects outside the M1,

interhemispheric connectivity changes may detect plasticity induced outside of the stimulated

region. It is also possible that the connectivity changes in the deeper part of the stimulated

region may have been induced indirectly. Second, connectivity in the stimulated region may

not always change after intervention. For example, the interhemispheric connectivity did not

change after 1-Hz stimulation to the inferior parietal lobule (Fig 2 in Eldaief et al., 2011 [22]).

Although we have shown that QPS affected interhemispheric functional connectivity in our

present and previous [33] studies, it is unclear how generally the interhemispheric connectivity

can be changed in various forms of non-invasive brain stimulation. Third, structural and func-

tional asymmetry between the left and right hemispheres exists in some brain regions, and a

high degree of interhemispheric asymmetry may hinder the application of our analyses.

Although it is difficult to validate the visualization in all brain regions, the present study may

present one successful case in M1 with validation of visualization of cortical plasticity using

brain activation during finger movement.

It is known that fatiguing muscles immediately before rTMS can evoke changes in neural

activation. For example, the reductions in MEP caused by continuous TBS (cTBS) are abol-

ished if cTBS is performed after a 2-min period of MVC [66, 67]. However, a 1-min period of

MVC has been shown to not cause any lasting MEP changes [68]. In the present study, MVC

was calculated approximately 10 min before QPS administration and lasted approximately

only 3 sec. Therefore, the effect of MVC in this study, if any, would be excitatory and would

not explain the connectivity changes induced by inhibitory QPS that we observed. However,

one potential limitation would be that repeated stimulation on M1 can create lasting tingling

sensations. As no control comparison was done for the sensation, it is unclear whether cutane-

ous changes caused by the repeated pulses affected the functional connectivity changes seen in

this study.

Previous studies have estimated the electric field elicited by TMS that decays as a function

of the distance from the TMS coil [5–7, 10]. The average distance between the TMS coil and

the brain surface is approximately 15 mm, both in the present study and in previous studies

[62–65], and the average depth of the cluster of connectivity changes was approximately 20

mm in the present study. Based on the data from previous studies on electric field measure-

ments [5–7], the strength of the electric field in the bottom of the cluster (i.e., approximately

35 mm away from the TMS coil) decays approximately by 60 to 70% from the brain surface

(i.e., approximately 15 mm away from the TMS coil), suggesting that connectivity changes can

be induced by at least 30 to 40% of the electric field strength at the brain surface. The previous

data of electric field measurements also suggest that connectivity changes should extend

approximately 100 mm in the brain surface, where the electric field strength is almost equiva-

lent to that at 20 mm below the center of the brain surface [6, 7]. However, connectivity

changes in the gyral surface were almost restricted to 10 mm in radius in the present study,

presumably because the neurons in the gyral surface are relatively less sensitive to stimulation

due to the under-optimal direction of the cortical layer relative to the TMS coil [8–11].

A previous study of electroencephalography applying rTMS to the M1 reported the spatial

distribution of potentiation of cortical evoked potentials outside the M1, primarily in the bilat-

eral premotor cortex [69]. The present study examined cortical plasticity at the stimulated
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region itself, the M1. It is critical to identify the spatial extent of intervention to investigate the

brain-behavior relationship [70]. Visualization of the spatial extent of experimental interven-

tion is commonly employed in animal studies, such as histological inspection of electrolytic

marking for electrophysiological stimulation/recording [71–74] and intracortical virus injec-

tion for optogenetics/chemogenetics [75, 76], and visualization of intracortical drug injection

using an MRI contrast agent [77, 78]. Moreover, recent advances in analyses of resting-state

functional connectivity have allowed us to parcellate brain structures into numerous small

functional regions [48, 79–94], highlighting the importance of accurate spatial estimation of

the intervention site. The present study provides a potential way to visualize the spatial extent

of intervention by rTMS in human subjects.

Supporting information

S1 Fig. Brain activation maps for a single subject and group subjects. (A) A brain activation

map in one representative subject (the same as Figs 4, 5 and 7) shown in a transverse section of

MNI space. Triangles indicate the central sulcus of the subject. The color scale represents t-

value. The activation was present over the precentral hand knob. (B) A brain activation map of

the group result.
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