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Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by topological abnormalities in large-scale
functional brain networks, which are commonly analyzed using undirected correlations in the activation signals between
brain regions. This approach assumes simultaneous activation of brain regions, despite previous evidence showing that
brain activation entails causality, with signals being typically generated in one region and then propagated to other ones. To
address this limitation, here, we developed a new method to assess whole-brain directed functional connectivity in
participants with PD and healthy controls using antisymmetric delayed correlations, which capture better this underlying
causality. Our results show that whole-brain directed connectivity, computed on functional magnetic resonance imaging
data, identifies widespread differences in the functional networks of PD participants compared with controls, in contrast to
undirected methods. These differences are characterized by increased global efficiency, clustering, and transitivity
combined with lower modularity. Moreover, directed connectivity patterns in the precuneus, thalamus, and cerebellum
were associated with motor, executive, and memory deficits in PD participants. Altogether, these findings suggest that
directional brain connectivity is more sensitive to functional network differences occurring in PD compared with standard
methods, opening new opportunities for brain connectivity analysis and development of new markers to track PD
progression.
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Introduction

Parkinson’s disease (PD) is a complex neurodegenerative dis-
order characterized by a wide range of motor and nonmotor
symptoms such as memory, executive, visuospatial, or olfactory
deficits (Chaudhuri et al. 2006; Jankovic 2008). The presence of
such diverging symptoms suggests that the brain changes occur-
ring in PD cannot be directly linked to the dysfunction of a single
brain region but rather to widespread changes in functional
connectivity between many regions or brain networks (Pievani
et al. 2011).

Functional connectivity can be measured using functional
magnetic resonance imaging (MRI), a noninvasive technique
that detects changes in blood oxygen level-dependent signals,
which are considered to reflect the underlying neuronal brain
activity (Biswal et al. 1995). In participants with PD, several stud-
ies have shown that motor and nonmotor symptoms can arise
due to the loss of integrity in these functional connections (Tah-
masian et al. 2015; Gao and Wu 2016). In particular, abnormal
functional connectivity in the basal ganglia—thalamocortical
network (Blandini et al. 2000; Helmich et al. 2010; Baudrexel et
al. 2011) has been linked to motor symptoms in PD, whereas
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changes in the default mode, dorsal-attention, fronto-parietal,
salience, and associative visual networks (van Eimeren et al.
2009; Tessitore et al. 2012; Amboni et al. 2015; Baggio et al. 2015b;
Gorges et al. 2015; Putcha et al. 2015; Gao and Wu 2016) have been
shown to correlate with cognitive deficits in these participants.

In the past few years, several studies have used functional
MRI to assess the functional brain connectome, a whole-brain
network that summarizes the complete set of pairwise func-
tional connections in the brain (Biswal et al. 2010). This net-
work consists of a set of nodes, or brain regions, connected
by edges, representing the strength of the functional connec-
tions. This connectivity network can then be analyzed using
graph theory by computing several global and local measures
that reflect whether brain regions are efficiently connected by
short network paths (global efficiency) or are well integrated
into their neighborhood (clustering) or community (modularity)
(Rubinov and Sporns 2010). These analyses have shown signifi-
cant changes in the global efficiency, local efficiency, and clus-
tering coefficient in the whole brain (Göttlich et al. 2013; Baggio
et al. 2014) or within specific networks in PD participants (Wei
et al. 2014; Koshimori et al. 2016; Maidan et al. 2019). Changes
in the nodal network topology of prefrontal and supplementary
motor areas as well as the striatum and thalamus (Wu et al. 2009;
Sang et al. 2015; Fang et al. 2017; Lopes et al. 2017) have also been
reported in PD, sometimes in association with clinical measures
(Lebedev et al. 2014; Sreenivasan et al. 2019).

Despite being useful to assess network changes in PD, these
studies were based on the assumption that brain activity in dif-
ferent brain regions occurs simultaneously and, therefore, can
be captured by same-time undirected correlations in the activa-
tion signals between them. As such, they do not convey infor-
mation about the directionality of the interaction between brain
regions (Friston 2011), which is important due to an increasing
number of studies showing that directed brain activity patterns
are altered in PD. These directed patterns have been assessed
using dynamic causal modeling (Rowe et al. 2010; Kahan et al.
2014), structural equation modeling (Rowe et al. 2002; Palmer
et al. 2009), psycho–physiological interactions (Wu et al. 2011),
or Granger causality (Wu et al. 2012; Ghasemi and Mahloojifar
2013) methods. Due to the complex nature and longer com-
putational time required by these methods, their application
is currently limited to the assessment of brain connectivity
between a few regions or to the analysis of functional MRI data
acquired during a specific task, which normally relies on a priori
hypotheses of which brain regions should be tested. Moreover,
several generalizations for the assessment of directed whole-
brain connectivity have also been recently proposed (Razi et
al. 2017; Frässle et al. 2018; Seguin et al. 2019; Gilson et al.
2020; Prando et al. 2020; Frässle et al. 2021). However, these
methods are still constrained by their computational efficiency
and identifiability (Frässle et al. 2021). Moreover, their applica-
tion to study functional networks to assess functional changes
in neurodegenerative diseases has not been systematically
evaluated.

Here, we present an intuitive and computationally light
method to assess resting-state, whole-brain directed functional
networks based on antisymmetric lagged correlations. First,
we obtain a lagged correlation adjacency matrix for each
participant by calculating the pairwise lagged correlations
between all pairs of brain regions. Then, the antisymmetric
correlations are derived as the antisymmetric part of the
lagged correlation adjacency matrix. We demonstrate that the
topological organization of these functional networks is more

sensitive to pathological changes related to PD when compared
with functional networks built by standard undirected methods.

Materials and Methods
Construction of Directed Functional Networks

Activation signals are typically generated in one brain region
and then propagated to other ones (Hammond 2015), which
entails causality and lags in the activation of various brain
regions. Such temporal lags can also arise, for example, due to
the spatial distribution of brain regions and the finite transmis-
sion speeds between them (Deco et al. 2009). Therefore, captur-
ing the information stored in this complex temporal lag frame-
work is necessary to achieve a coherent characterization of func-
tional connectivity (Lahaye et al. 2003; Jafri et al. 2008; Mijalkov
et al. 2020). In this work, we harvest this additional information
by calculating directed functional connectivity between brain
regions using lagged Pearson’s correlations. In this approach, a
brain region is considered to have a directed interaction with
other brain regions if its activation time series has similar prop-
erties with the time-shifted version of the second brain region’s
activation pattern. Moreover, brain regions that are more closely
connected to each other are expected to activate with a much
shorter delay than regions that are more indirectly connected
(Ghosh et al. 2008; Deco et al. 2009). Building on the assumption
that quasi-simultaneous brain activity primarily occurs between
nodes connected by direct paths, we can interpret the different
lags in the activation patterns between brain regions as an
indicator of the topological connectivity distance between them.
For example, connectivity networks at small temporal lags rep-
resent brain regions connected with direct connections, while
larger temporal lags capture the network of regions connected
via indirect connections of various lengths. Therefore, in order
to explore the functional activation patterns of the brain at these
different scales of topological connectivity, we assessed directed
functional connectivity at multiple temporal lags (“Methods:
Lagged correlation”).

Figure 1 illustrates the different methods we used to calcu-
late the functional connectivity networks for a set of five brain
regions and their activation time series (Fig. 1a). The connec-
tivity matrix and the corresponding network calculated by the
lagged correlation adjacency method for these five brain regions
are shown in Figure 1b: the lagged correlation method evaluates
the directed connection between two regions in both directions;
a pair of elements in the lagged adjacency matrix (namely,
(i, j) and (j, i)) provides an estimate of the directed relation
from brain region i to brain region j and vice versa. As this is
a correlation-based measure, it does not attempt to evaluate the
“effective connectivity”between two brain regions (Friston 2011).
Instead, we use it to quantify the directed functional connectiv-
ity between the two regions, with the direction depending on the
temporal precedence (i.e., the early region is the source, and the
late region is the end of the connection).

As any other square matrix, the lagged correlation adjacency
matrix can be uniquely expressed as the sum of a symmetric and
antisymmetric matrix. Specifically, the antisymmetric matrix
captures the directionality of the functional network, identifying
the relevant directed connections between the couples of brain
regions (Fig. 1c). We call this method “antisymmetric correlation”
(“Methods: Anti-symmetric and symmetric correlations”).

To highlight the effectiveness of the directed networks in
detecting topological changes between controls and participants
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Figure 1. Different methods used to calculate functional networks. (a) For illus-
tration purposes, we show an example of the time activation series of only five
nodes. (b) Lagged correlation functional networks can be estimated by calcu-

lating the lagged Pearson’s correlation coefficient between these time series, at
different lags. Here, the lagged adjacency matrix and corresponding network are
calculated at lag of 1. The lagged adjacency matrix can be written as a sum of
(c) anti-symmetric and (d) symmetric matrices. Finally, for comparison, we show

the commonly used method of zero-lag correlation (e). In all matrices, redder
colors and thicker lines indicate stronger connections.

with PD, we compare our method with two undirected network
approaches. In the first approach, functional connectivity is
evaluated as the symmetric matrix extracted from the lagged
correlation adjacency matrix (Fig. 1d), in which the undirected
connection between two regions is the sum of the weights
of the two corresponding directed connections (“Methods:
Anti-symmetric and symmetric correlations”). Second, we
also compare our method with the conventional approach to
quantify functional connectivity, in which the connectivity
strength between two regions is estimated by calculating
the zero-lag Pearson’s correlation coefficient (Fig. 1e) between
their activation time series (“Methods: Zero-lag correlation”).
While these two methods are identical when the symmetric
correlation is calculated at lag 0 and show a very high correlation
at small lags (Supplementary Fig. 1), the correlation between
the two methods decreases with the increase of the temporal
lag. This indicates that the symmetric correlation captures
different scales of undirected connectivity as a function of
the temporal lag, thus providing an appropriate framework
to compare the behavior of directed and undirected methods
at different temporal lags. Since these different connectivity
scales cannot be efficiently captured by the zero-lag correlation,
the agreement between the two methods decreases for high
temporal lags.

We tested the ability of all four methods to detect topological
changes in 95 participants with PD compared with 15 controls

with functional MRI data from the Parkinson’s Progression Mark-
ers Initiative (“Methods: Participants”) (Marek et al. 2011). For
up-to-date information on the study, visit www.ppmi-info.org.
The nodes in the adjacency matrices corresponded to the 200
brain regions derived from the Craddock atlas (Craddock et al.
2012), while the edges were calculated according to the four
methods described above, yielding four different weighted adja-
cency matrices for each participant. For each adjacency matrix,
we calculated a binary matrix where the correlation coefficient
was considered 1 if it was above a certain threshold, and 0 if it
was below. As there are multiple other thresholding approaches
and, currently, there is no consensus as to which network den-
sity should be used (Fornito et al. 2013), we performed the
thresholding at the complete available range of network den-
sities (D) of the antisymmetric correlation network (Dmin = 1%
to Dmax = 50% in steps of 1%) and we compared the network
topologies across that range. In addition, we also compared our
results with the ones obtained with an alternative weighted
analysis approach, in which the weight of the individual edges
was retained after the binarization of the network. The nega-
tive correlation coefficients and self-connections were excluded
from all analyses by setting them to zero.

Lagged Correlation

The lagged correlation between the activation time series of two
brain regions (j and k) with activation time courses xj and xk,
respectively, is calculated as the Pearson’s correlation coefficient
between xj and lagged versions of xk evaluated as a function of
the temporal lag. The lag is the number of repetition times by
which xk is shifted with respect to xj before calculating the cor-
relation. Therefore, the strength of the functional connectivity
between the brain regions j and k at a given delay d is calculated
as

ρj→k(d) = 1
N − d − 1
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where N is the total number of measurements, x′
j represents

the first N − d measurements of xj, x′
krepresents the last N − d

measurements of xk, μ(x′
j) and σ (x′

j) are the mean and standard

deviation (SD) of x′
j, respectively, and μ(x′

k) and σ (x′
k) are the mean

and SD of x′
k. In this construction, xk is shifted by d time steps

with respect to xj; therefore, the correlation coefficient ρj→k(d)
is an estimation of the directed functional connectivity from
region j to region k due to temporal precedence. By repeating
this calculation for all pairs of nodes, we obtain the weighted
directed lagged correlation functional network. This network
was subsequently binarized at the specified range of densities
in order to compare network topologies between the two groups.
In this matrix, the directed connection between a pair of nodes
j and k is represented by a pair of elements (j, k) and (k, j) that
quantify the estimated directed connection from brain region j
to brain region k and vice versa.

Antisymmetric and Symmetric Correlations

Being a square matrix, the lagged correlation matrix calculated
as outlined above can be written as a sum of univocally defined
symmetric and antisymmetric matrices. Therefore, from the
lagged correlation matrix L, one can calculate the corresponding

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
www.ppmi-info.org


596 Cerebral Cortex, 2022, Vol. 32, No. 3

antisymmetric matrix A as

A = L − LT,

where LT denotes the transpose of L. As described previously,
all negative connections are set to zero. Calculated in this way,
the antisymmetric analysis represents any directed correlation
between two regions j and k with a single entry in the adja-
cency matrix, which summarizes both the direction and the
magnitude of the directed influence.

The symmetric matrix can be calculated as

S = L + LT.

Symmetric matrices do not convey any information about
the direction of the functional connections. The magnitude of a
connection is calculated as the sum of the connection weights in
the directed connections between nodes that run in both direc-
tions. The advantage of this method when compared with the
zero-lag correlation method is that it can be evaluated at various
temporal lags, therefore allowing a more direct comparison with
the corresponding directed methods.

Zero-Lag Correlation

In the standard zero-lag correlation method, the functional con-
nectivity between two nodes j and k with respective activa-
tion time series xj and xk is quantified by the Pearson’s linear
correlation coefficient at lag of 0, calculated as

ρjk = cov
(
xj, xk

)/(
σjσk

) ,

where cov(xj, xk) represents the covariance of the corresponding
activation time series and σj and σk are their respective SDs.
The functional networks are built by calculating the Pearson’s
coefficient between all pairs of nodes in the network.

Granger Causality

To compare the antisymmetric correlation method to alternative
methods of directed functional connectivity, we also calculated
whole-brain functional networks in controls and PD partici-
pants using Granger causality. The Granger causality was eval-
uated using the “Granger causal connectivity analysis” toolbox
as described in Seth (2010). Granger causality is defined within
the context of autoregressive linear models and it assumes that
the behavior of two time series, x1(t) and x2(t), can be fitted to a
bivariate autoregressive model

x1(t) =
p∑

j=1

A11,jx1
(
t − j

) +
p∑

j=1

A12x2
(
t − j

) + ε1(t)

x2(t) =
p∑

j=1

A21,jx1
(
t − j

) +
p∑

j=1

A22x2
(
t − j

) + ε1(t),

where p is the model order (i.e., maximum number of lags that
are included in the model), ε1 and ε2 are the residuals of the
corresponding time series, and A is a matrix of the estimated
coefficients of the model. In this linear regression model, x2(t) is

considered to “cause” x1(t) if the addition of the past values of
x2(t) in the model of x1(t) reduces the variance of the prediction
errorε1, when compared with a model that includes only the
previous observations of x1(t). Then, assuming that x1(t) and
x2(t) are covariance stationary (they have unchanging mean and
variance), the magnitude of the interaction is estimated by

F2→1 = ln
(

var (ε1R)

var (ε1U)

)
,

where ε1R is derived from the model, x1(t) is predicted only
from its past values (i.e., by omitting A12 from the first equation
for all coefficients j), and ε1U is derived from the full model.
We obtained the directed networks by evaluating the pairwise
F-statistic for all pairs of brain regions.

Participants

Demographic and clinical characteristics of the participants
are shown in Table 1. At baseline, participants with PD met
the standard diagnostic criteria for PD, were diagnosed within
2 years of the screening visit, were entirely untreated, had an
Hoehn and Yahr (Hoehn and Yahr 1967) stage of I or II, and were
required to have a dopamine transporter deficit on DaTSCAN
imaging for neurobiological confirmation of a PD diagnosis.
Inclusion criteria for healthy controls consisted of not having
neurologic dysfunction, no first-degree family member with
PD, and a Montreal Cognitive Assessment (MoCA) score > 26.
Motor symptoms were assessed using the unified Parkinson’s
disease rating scale (UPDRS) and olfactory function was eval-
uated using the smell identification test (UPSIT). In addition,
all participants completed several cognitive tests that assessed
visuospatial functions (15-item version of the Benton’s judg-
ment of line orientation test), verbal memory (immediate recall
and delayed recall of the Hopkins verbal learning test-revised,
HVLT-R), executive functions (the letter number sequencing test,
semantic and phonemic fluency tests), and attention (sym-
bol digit modalities test, SDMT). The total levodopa-equivalent
doses were calculated for all participants with PD. The cognitive
and motor assessments were performed by PD participants
while on medication. The classification of MCI was performed
according to the guidelines of the MDS Task Force for the level
II diagnosis of PD-MCI (Litvan et al. 2012). Participants were
classified as having MCI if they showed impairment in 2 or
more tests or items within the same cognitive domain or in
2 or more domains. Impairment was defined as a score below
2.0 SD for the individual continuous tests, or a score below
the maximum for the ordinal and categorical items, based on
previous recommendations made by the MDS Task Force criteria
for PD dementia (Dubois et al. 2007) and similarly to our previous
studies (Pereira et al. 2012, 2014).

Image Acquisition

All participants were scanned on a 3 Tesla Siemens scanner
using an echo planar functional MRI sequence with the follow-
ing parameters: 212 time points, repetition time = 2400 ms, echo
time = 25 ms, field of view = 222 mm, flip angle = 80◦, and 3.3-mm
isotropic voxels. During the scanning session, participants were
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Table 1 Characteristics of the sample

CTR (n = 15) PD (n = 95) CTR versus PD (P-value)

Age (years) 72.1 (8.3) 68.0 (10.5) 0.15
Sex (%male) 86.7% 68.4% 0.13
Education (years) 16.7 (2.3) 15.3 (2.9) 0.06
UPDRS-III scores 1.2 (1.4) 21.3 (10.7) <0.001
HY stage (1–2) — 68–27 —
LEDD (%medicated) — 67.4% —
LEDD (dose) — 405.3 (207.0) —
Cognitive status (%MCI) — 20% —
UPSIT 35.2 (3.14) 21.61 (8.63) <0.001
HVLT-R Immediate Recall 8.8 (2.51) 8.55 (2.95) 0.77
HVLT-R Delayed Recall 11.60 (0.83) 11.20 (1.77) 0.44
Benton’s judgment of line orientation test 12.47 (2.17) 12.80 (1.81) 0.55
LNS 10.47 (2.85) 10.25 (2.71) 0.80
MoCA 27.67 (1.40) 26.88 (2.80) 0.30
SDMT 45.80 (10.35) 40.01 (11.03) 0.07
Semantic fluency 51.80 (10.60) 49.47 (11.01) 0.46

Notes: Means are followed by SD in parenthesis. Permutation tests with 10 000 permutations were used to compare groups for age, sex, education, LEDD dose, Hoehn
and Yahr stage, and different test scores. CTR, controls; UPDRS-III, Unified Parkinson’s disease rating scale–Part III; HY stage, Hoehn and Yahr stage; LEDD, levodopa
equivalent dose; UPSIT, smell identification test; HVLT-R TR and HVLT-R DR, total immediate recall and delayed recall of the Hopkins verbal learning test-revised;
Benton, Benton’s judgment of line orientation test; LNS, letter number sequencing test; SF, semantic fluency tests; MoCA, Montreal Cognitive Assessment.

instructed to keep their eyes open, rest quietly and to not fall
asleep.

Image Preprocessing

All images were preprocessed using the statistical parametric
mapping software (SPM12, https://www.fil.ion.ucl.ac.uk/spm/).
Briefly, after removing the first 5 volumes, all images were
realigned and slice-time corrected. Then, the six rigid motion
parameters as well as the white matter and cerebrospinal fluid
signals were regressed from all images, which were subse-
quently normalized to MNI space and band-pass filtered (0.01–
0.08 Hz). The mean time series of each brain region included in
the 200-node Craddock atlas were extracted for each participant.
Only participants with a functional MRI scan that passed quality
control before and after image preprocessing were included;
in particular, we only included participants whose motion
parameters did not exceed a single voxel size of 3 mm.

Definition of Graph Measures

All graph measures were calculated using the Brain Analysis
using Graph Theory software (http://braph.org/) (Mijalkov et al.
2017). In the case of directed binary networks, the in-degree of
a node is defined as the number of inward edges going into a
node. The out-degree of a node is the number of outward edges
originating from a node. Denoting the network adjacency matrix
with A and its elements as aij, the in- and out-degrees of a node
i are expressed as

din
i =

∑
j�=i

aji,

dout
i =

∑
j�=i

aij.

The degree of a node is expressed as the sum of the node’s
respective in- and out-degrees

di = din
i + dout

i .

A direct path between two nodes i and j is the sequence
of directed edges that need to be traversed in order to reach j
starting from i. The directed distance

−→
Dij is the number of edges

contained in the shortest directed path from i to j. For a given
node i, Dmax(i) can be defined as the maximal distance between i
and any other node. Then, the network diameter, Dntw, is defined
as the largest maximal distance of all nodes, expressed as

Dntw = max
(

Dmax(i), Dmax(j), Dmax(k) . . . . . .
)

,

where the maximization is performed over the maximal dis-
tances of all nodes in the network.

The regional out-global efficiency of a node i, denoted by
eout(i), is defined as the average inverse distance from i to all
other nodes in the network, when considering only directed
paths originating from i. Analogously, the regional in-global
efficiency of node i, ein(i), is the average of the inverse distance to
i from all other nodes in the network over directed paths ending
at i. The global counterparts of these measures in a network with
N nodes can be calculated as the average of the regional out- and
in-efficiency of all nodes

Ein = 1
N

∑
i∈N

ein(i) = 1
N

∑
i∈N

∑
j∈N,j�=i

−−→
D−1

ji

n − 1
,

Eout = 1
N

∑
i∈N

eout(i) = 1
N

∑
i∈N

∑
j∈N,j�=i

−−→
D−1

ij

n − 1
.

We furthermore calculated the regional in- and out- local
efficiency of a node i defined as the corresponding global effi-
ciency measure evaluated on the subgraph consisting of nodes
that are neighbors of i. The in- and out-local efficiency of the
network, LEin and LEout, respectively, is calculated by averaging
the corresponding measures over all nodes in the network. We
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defined the network’s total global efficiency (E) and local effi-
ciency (LE) as the mean of the in- and out-efficiency measures:

E = 1
2

(Ein + Eout) ,

LE = 1
2

(LEin + LEout) .

The clustering coefficient Ci, of node i, reflects the frac-
tion of the neighbors of i that are also connected with each
other. It can be calculated as the fraction of completed trian-
gles that are present around i. In directed networks, we con-
sider a triangle to be completed if its constituent edges form a
cycle in either direction. Therefore, we calculate the clustering
coefficient as

Ci =
(
A3)

ii

dindout −
↔
di

,

where din and dout are the in- and out-degree, respectively, and
↔
di is the number of bilateral edges between i and its neighbors

↔
di =

∑
j�=i

aijaji = A2
ii.

The transitivity indicates the number of triangles present
within the complete network. As such, it is calculated as

T = 3 × total number of triangles
dtot

(
dtot − 1

) − 2 × diag
(
A2

) ,

where again we consider a triangle to be completed only if the
three directed edges form a cycle, and diag(A2) is the sum of the
diagonal elements in the A2 matrix.

The modularity quantifies the degree at which a given net-
work can be subdivided into clearly separated communities that
have large density of within-community edges and small num-
ber of between community edges. Modularity was calculated
using Louvain algorithm, using γ = 1 (Blondel et al. 2008). To
evaluate the topology of the weighted networks, we have used
the generalizations for degree, global efficiency, local efficiency,
clustering coefficient, transitivity, and modularity as outlined by
Rubinov and Sporns (2010).

Area under the Curve Analysis

We used AUC analysis to evaluate the differences in the nodal
directed connectivity patterns between PD and control groups.
This analysis takes into account the complete density range and,
therefore, is less sensitive to the thresholding process (Fornito et
al. 2013). Each curve represents the changes in the corresponding
nodal network measure as a function of the network density for
a given brain region. We first obtained an estimate of the AUC by
numerically integrating the nodal values over the whole density
range; this resulted in a single numerical value for each network
measure and each brain region across the range of densities.
Then, the between-group differences in the nodal measures
were assessed by comparing the corresponding AUC values for
all brain regions.

Statistical Analysis

The statistical significance of the differences between PD partic-
ipants and controls was assessed by performing nonparametric
permutation tests with 10 000 permutations, which were con-
sidered significant for a two-tailed test of the null hypothesis
at p < 0.05. Additionally, we assessed the regional network
results by calculating the area under the curve (AUC) for each
regional measure across the whole density range; these results
were adjusted for multiple comparisons by applying false dis-
covery rate (FDR) corrections at q < 0.05 using the Benjamini–
Hochberg procedure (Benjamini and Hochberg 1995) to control
for the number of regions. Nonparametric permutation tests
with 10 000 permutations were also used to assess between-
group differences in demographic and clinical variables. All
analyses included age, sex, and the 6 rigid-body motion param-
eters as covariates.

Results
Average Group Networks Show a Different Behavior
across Different Temporal Lags

We calculated group-representative adjacency matrices at dif-
ferent temporal lags by averaging the weighted, participant-
specific adjacency matrices. The histograms of the connection
weights are shown in Figure 2 for the lagged (Fig. 2a), antisym-
metric (Fig. 2b), and symmetric (Fig. 2c) correlations as a function
of different temporal lags. Figure 2 shows a general decrease of
the strength of directed connectivity in PD participants at all
lags when compared with healthy controls. Furthermore, in PD
participants, we observed that the connectivity strength distri-
bution becomes narrower with increasing temporal lags for all
analyses. This observation indicates that, with higher temporal
lags, more nodes have similar functional connectivity strength.
Therefore, large temporal lags are unsuitable for the analysis
of between-group topological differences because they cannot
capture any variations in the directional flow in the network,
restricting our analysis to small temporal lags in the range
1–7. These results are further supported by the evaluation of
network diameter for all participant-specific adjacency matrices
at different temporal lags (Supplementary Fig. 2).

Differences between Groups in Global Network
Topology

To assess the ability of these methods to detect global network
changes between participants with PD and controls, we
calculated the global efficiency, local efficiency, clustering
coefficient, transitivity, and modularity (Fig. 3, left to right
columns). The antisymmetric correlation method showed
widespread significant differences between PD participants and
controls in network measures; this entails that the differences
are contained in the antisymmetric part of the lagged correlation
matrix. These differences consisted of increases in the cluster-
ing coefficient and transitivity in the PD participants compared
with controls at higher network densities (clustering coefficient:
16–50%; transitivity: 20–50%). The global and local efficiency also
showed differences between PD participants and controls, being
increased in PD participants across most network densities
(global efficiency: 2–50%; local efficiency: 6–50%). Finally, we also
found significant decreases in the modularity in PD participants

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
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Figure 2. Connectivity strength distribution at different temporal lags. Histograms show the distribution of connectivity strengths of the average adjacency matrices

for controls (top row) and PD participants (bottom row) as a function of different temporal lags. The individual connectivity matrices were calculated using (a) lagged
analyses, (b) anti-symmetric analyses, and (c) symmetric analyses. Only the lags used in the analysis are shown in this figure.

compared with controls, which were only present at higher
network densities (21–50%). In contrast, the undirected and
lagged correlation methods did not show significant differences
in any of the global network measures between PD participants
and controls. Figure 3 summarizes the results obtained for
the temporal lag1; the corresponding results for lags 2–7
are shown in Supplementary Figures 3–8. The plots of the
corresponding measures as a function of density, calculated
by the antisymmetric correlation method at various temporal
lags, are shown in Supplementary Figures 9 and 10. They
show similar patterns for both controls and PD participants
and exhibit monotonous changes across the density range,
demonstrating that the above differences reflect changes
in network topology rather than a potential mismatch of
the number of antisymmetric connections in both groups
or changes in the overall functional connectivity strength
(van den Heuvel et al. 2017).

Differences between Groups in Nodal Network
Topology

Furthermore, using the antisymmetric correlation method,
we also identified directed connectivity changes in several
brain regions in PD participants compared with controls (Fig. 4,
see also Supplementary Figures 11–16 and Supplementary
Table 1). Specifically, we found significant increases in the in-
global efficiency in the precuneus (at various temporal lags),
the fusiform and parahippocampal gyrus (lag 7) as well as
significant increases in the global efficiency in the lingual gyrus
(lag 1) in PD participants. Moreover, we found increases in the
out-global efficiency of the frontal orbital gyrus and cerebellum

(lag 1) and in the superior frontal gyrus (lag 5). Finally, we also
found decreases in the overall connectivity of the thalamus
(lags 4 and 5) and in the outflow connectivity of the precuneus
(lag 3) in PD participants. The other three analysis methods
were not able to identify any significant between-group differ-
ences in nodal measures, even before correcting for multiple
comparisons.

Correlation Analysis with Clinical Measures in PD
Participants

All global network measures were significantly associated with
the UPDRS-III motor scores and executive scores (Letter-Number
sequencing test) across all lags. In addition, the clustering and
transitivity also correlated with executive scores (SDMT) at lag
1, whereas global efficiency correlated with memory (Hopkins
verbal learning test) at lag 5. Global and local efficiency, cluster-
ing and transitivity correlated with visuospatial scores (Benton’s
judgment of line orientation test) at lag 7. The best results that
remained significant after adjusting for multiple comparisons
to control for the different densities (FDR, q = 0.05) are summa-
rized in Supplementary Material (Supplementary Figs 17–21 and
Supplementary Tables 2–18).

Regarding the nodal network measures, we only assessed
the correlation between regions showing significant between-
group differences (AUC analysis) with clinical measures. After
correcting the results for the number of cognitive tests, the out-
global efficiency of the cerebellum was significantly associated
with UPDRS-III motor scores at lag 1 (P − value = 0.001; r =
−0.32) in PD participants. The out-degree of the precuneus was
significantly associated with olfactory function (UPSIT smell

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
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https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
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Figure 3. Differences between controls and PD participants in global network measures. Plots showing the differences between controls and participants with PD

(calculated as PD group—control group) in the global efficiency, local efficiency, clustering coefficient, transitivity, and modularity using (a) lagged correlation, (b) anti-
symmetric correlation, (c) symmetric correlation, and (d) zero-lag correlation methods. The plots show the upper and lower bounds of the 95% confidence intervals (CI)
in blue, and the differences in the network measures between groups in orange circles as a function of network density. The differences are considered statistically
significant if they fall outside the CIs. The results shown were obtained for temporal lag1.

Figure 4. Differences between controls and PD participants in nodal network measures. Visual display of the nodes that show significant differences between controls
and participants with PD in network measures using the anti-symmetric correlation method. Differences between groups were evaluated using nonparametric
permutation tests. Only regions that show significant differences after correcting for multiple comparisons (FDR at q = 0.05) are plotted. See also Supplementary
Figures 11–16.

identification test) at lag 2 (P − value = 0.004; r = −0.30) and
the degree of the thalamus correlated with visuospatial scores
(Benton’s judgment of line orientation test) at lag 4 (P − value <

0.001; r = −0.36) in PD. No correlations were found between
global and nodal network measures with clinical measures in
the control group.

Effect of Dopaminergic Medication on Functional
Network Topology

To evaluate the effect of levodopa-equivalent doses on func-
tional network organization, we compared the networks of med-
icated participants to those who were not receiving medication

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
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Figure 5. Differences between medicated and nonmedicated participants with PD in nodal network measures. Plots showing the differences between medicated and
nonmedicated participants with PD in nodal network measures evaluated using AUC analysis, at different temporal lags, in the case of antisymmetric correlation.

Differences between groups were evaluated using nonparametric permutation test. Only regions that show significant differences after correcting for multiple
comparisons (FDR at q = 0.05) are plotted.

(details about the two subgroups are shown in Supplementary
Table 19). We did not find any differences in the global net-
work topology between these groups. Regarding nodal topology,
there were significant increases in medicated participants ver-
sus nonmedicated ones in the out-global efficiency of precuneus
and superior occipital gyrus at lag 1, and in the in-global effi-
ciency and in-degree of thalamus at lags 2 and 3, respectively
(Fig. 5). Of note, none of these results overlapped with the results
of the main analyses.

Influence of Mild Cognitive Impairment on Functional
Network Topology

Due to previous evidence showing that PD participants with
MCI show more widespread network changes compared with
cognitively normal participants (Baggio et al. 2014, Gorges et al.
2015), we performed an additional analysis to compare these
two groups (participant characteristics for both subgroups are
shown in Supplementary Table 20). Only one significant differ-
ence was found in the cerebellum, which showed significant
degree decreases in participants with MCI at lag 3 compared
with cognitively normal participants.

Alternative Thresholding Approaches Reveal Similar
Between-Group Differences in Global and Nodal
Network Measures

We also assessed whether similar results could be obtained
in the comparisons of PD and control groups using an alter-
native thresholding method. In this method, we retained the
weights of the individual edges after binarizing the individual
participant directed networks across the density range 1–50%.
Regarding global network topology, the weighted analysis con-
firmed our earlier results by identifying significant increases in
the global and local efficiency, clustering and transitivity in the
participants with PD across a wide range of densities and at
different temporal lags (Supplementary Figs 22 and 23). Regard-
ing the nodal measures, we found that all regions identified
with our earlier analysis showed similar significant increases
or decreases at the same temporal lags. However, only a sub-
set of them remained significant after controlling for multiple
comparisons (FDR, q = 0.05), as shown in Supplementary Figs
24–29. The other three analysis methods did not identify any
significant differences between groups.

Alternative Methods of Directed Functional
Connectivity Do Not Show Differences between PD
Participants and Controls

We also calculated the whole-brain directed functional net-
works using the Granger causality method (“Methods: Granger
causality”) and assessed the between-group differences in
global and regional topology. Granger causality is an alternative
approach that has been used to estimate the casual relation
between the brain regions and directed information flow in the
network based on temporal lags (Ghasemi and Mahloojifar 2013;
Seth 2005; Wu et al. 2012). These analyses did not show any
significant between-group differences in the global measures
for the different model parameters (Supplementary Figs 30 and
31). Similarly, no significant nodal differences between groups
were found at any density.

Discussion
In this study, we propose a new method to analyze directed
functional connectivity that uses the information stored in
the temporal lags between the activation of brain regions. To
our knowledge, there are currently no methods that allow
assessing directed functional connectivity across the entire
brain and studying the corresponding topological changes at
multiple temporal lags. Our antisymmetric correlation method
was developed to address this gap, showing that whole-brain
directed connectivity is useful to characterize the connectomes
of participants with PD by detecting widespread functional
alterations that were not identifiable by conventional zero-
lag methods or alternative methods of directed connectivity.
In addition, we found that the changes identified by the
antisymmetric correlation method remained significant with
different tresholding methods and were associated with motor,
executive, and memory deficits in PD participants, suggesting
that they are clinically meaningful. Altogether, our findings
indicate that the directional flow in brain activation signals
contains exclusive information that is not captured by other
methods, and could potentially be used as a new marker of
functional network changes in PD.

Functional connectivity describes the statistical dependen-
cies in the activation patterns between brain regions and is
closely associated with behavior and cognitive functions (van
den Heuvel and Pol 2010). Such statistical dependencies can be
quantified using measures derived from graph theory, which
typically consider two regions to be connected if the Pearson

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab237#supplementary-data
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correlation between their activation signals is strong. However,
this method is hindered by the fact that it only captures lin-
ear, simultaneous, and undirected dependencies between brain
regions. There is evidence showing that brain activity is orga-
nized within multiple temporal functional modes (Mitra et al.
2014, 2015a). Therefore, the relationship between brain regions
is not always linear and there are often delays between their
activation signals (Ghosh et al. 2008; Jafri et al. 2008; Mijalkov
et al. 2020), which results in directed activation patterns, with
some regions being sources of activation, whereas others are
destinations of activations (Mitra et al. 2014, 2015a). This lag
organization is highly reproducible (Mitra et al. 2015a; Raut et
al. 2020) and it can be altered in some disorders such as autism
(Mitra et al. 2015b; Raatikainen et al. 2020), epilepsy (Bandt et
al. 2019), schizophrenia (Jafri et al. 2008; White et al. 2010), or
narcolepsy (Järvelä et al. 2020). Thus, capturing the information
stored in these temporal delays or lags is crucial to obtain a more
accurate characterization of the brain’s functional connectivity.
While dynamic variations in these lagged patterns have been
examined using ultrafast magnetic resonance encephalography
scans, the lag structure in functional connectivity derived from
functional MRI scans has been mainly assessed by interpolating
a single temporal lag of maximal correlation over the course of
the complete scan. In contrast to this approach, our antisym-
metric correlation method evaluates the whole-brain functional
connectivity at multiple temporal lags. This can provide new
insights on the communication pathways between different
brain areas and allows assessing the pathways derived from
different temporal lags, which can change in the presence of
neurodegenerative pathologies.

To demonstrate that the antisymmetric correlation method
is useful to characterize functional connectivity, we tested its
performance on a cohort of participants with PD and healthy
controls. Our method detected an abnormal global topology in
the functional connectomes of the PD group, characterized by
increases in global efficiency, local efficiency, clustering, and
transitivity, as well as decreases in the modularity when com-
pared with healthy controls. The increases in global efficiency
can be interpreted in light of previous studies showing that
brain networks with a random organization have shorter net-
work paths and greater global efficiency (Stam 2014). In addi-
tion to PD (Fang et al. 2017; Lopes et al. 2017; Tuovinen et
al. 2018), this phenomenon has been shown to also occur in
the networks of participants with schizophrenia (Fornito et al.
2012; van den Heuvel and Fornito 2014; Ganella et al. 2017) and
Alzheimer’s disease (Tijms et al. 2013), being associated with
executive impairment and other cognitive deficits (Stam 2014).
On the other hand, the increases of clustering and transitivity in
the networks of PD participants indicate an increase in the num-
ber of directed cyclic connections within local neighborhoods.
This formation of closed triangles between neighboring regions
increases the segregation and fragmentation of the functional
networks, which has also been reported in some studies in par-
ticipants with PD (Göttlich et al. 2013; Baggio et al. 2014). These
changes were accompanied by lower modularity, suggesting that
the fragmentation occurring in the networks of PD participants
did not result in well-defined communities, which is normally
regarded as a sign of brain pathology (Meunier et al. 2010). Thus,
our findings show that the changes occurring in participants
with PD reflect both increased integration and segregation in
the directed functional networks. These changes were associ-
ated with worse performance on various clinical and cognitive
tests measuring motor function, executive abilities, memory,

attention, and visuospatial functions, suggesting that changes in
global directed activation patterns can be an indicator of worse
clinical progression in PD.

In addition to global network changes, we also observed
alterations in the topology of specific brain regions. For instance,
the precuneus showed an increase in the in-global efficiency
and a decrease in the out-degree, which were associated with
olfactory deficits. These findings are in line with previous evi-
dence showing that the precuneus is a brain hub that plays
an important role in memory, attention, and other cognitive
functions (Cavanna and Trimble 2006). Several studies have
shown changes in the functional connectivity patterns of the
precuneus in PD participants (Delaveau et al. 2010; van Eimeren
et al. 2009; Göttlich et al. 2013; Fang et al. 2017). Our findings
offer an additional insight into the nature of these alterations. In
particular, they indicate a specific shift to an increased number
of in-coming connections accompanied by a decrease in the
number of outgoing connections. This imbalance between in-
and out-connectivity could possibly alter the role of the pre-
cuneus in the PD participants’ networks, making it an inefficient
hub. Furthermore, this abnormal local topology could result in
changes in the connectivity patterns within DMN and its strong
connections with the olfactory system (Karunanayaka et al.
2017), leading to deficits in memory and loss of smell commonly
experienced by PD participants.

Moreover, an increase of the in-global efficiency was
observed in the fusiform gyrus. Similar changes have been
previously observed in the connectivity of the fusiform gyrus
in PD, which could lead to deficits in visual processing functions
and decreased performance in verbal fluency tasks (Birn et al.
2010; Cardoso et al. 2010). We also observed an increase in the
in-global efficiency in the parahippocampal gyrus and increase
in the global efficiency of the lingual gyrus. Both regions have
previously been shown to exhibit altered functional connectivity
in PD participants (Sheng et al. 2014; Wen et al. 2016; Zhang et
al. 2019).

Furthermore, the cerebellum showed an increase of the out-
global efficiency in PD participants, which was significantly
associated with motor scores. The cerebellum can affect motor
and cognitive functions through its connections to cortical areas
and the basal ganglia (Middleton and Strick 2000). Many studies
have found an increase in the functional connectivity of the
cerebellum in PD participants as a potentially compensatory
mechanism, (Wu and Hallett 2005, 2013; Yang et al. 2013; Wen
et al. 2016), in agreement with our results.

Finally, in our study, the superior frontal gyrus also showed
an increased outflow connectivity in PD participants, while the
thalamus displayed a decreased overall connectivity, which cor-
related with visuospatial deficits. Such changes in the functional
activity of the frontal cortex have been associated with deficits
in executive functions in participants with PD, for example,
working memory, cognitive flexibility, and problem solving. Due
to its strong connections with the striatum, these deficits have
also been linked with dysfunction in the frontostriatal networks
(Owen 2004; Parker et al. 2013). Being a part of the basal gan-
glia thalamo-cortical network, the thalamus carries information
from the basal ganglia to the cerebral cortex, making it an impor-
tant hub in functional brain networks (Hwang et al. 2017). As
such, the thalamus plays an important role in many functions,
such as motor abilities, visually guided actions, learning, and
memory (Saalmann and Kastner 2011; Wolff and Vann 2019).
Thus, our results provide further support to the role of the thala-
mus in contributing to functional abnormalities in the networks
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of PD participants and the various motor and nonmotor deficits
they present.

There is ample evidence showing the existence of temporal
lags in the activation signals between connected brain regions,
which reflect the topological connectivity distance between
them (Ghosh et al. 2008; Deco et al. 2009). An advantage of
the antisymmetric correlation method is its ability to calculate
functional connectomes at different temporal lags and, there-
fore, analyze functional connectivity at multiple connectivity
scales. This allows investigating the topology of the network
from regions connected by direct connections (small lags) to
regions connected by indirect connections (large lags). Although
we found a uniform global topology across all lags, the changes
in regional topology varied substantially between different con-
nectivity scales. These results suggest that, in participants with
PD, the general efficiency in information transfer is maintained
at multiple scales by conserving the global topological properties
of the functional network. However, as different sets of brain
regions co-activate at different temporal lags, the local topology
of the regions varies with the value of the lags. As a result,
abnormal regional changes are shown in distinct regions at dif-
ferent temporal lags in PD participants compared with controls,
suggesting a high lag dependence on the nodal connectivity
patterns in PD participants. The connectivity values of these
different regions were associated with worse performance in
motor and cognitive tests, suggesting that motor and cogni-
tive deficits in participants with PD may be associated with
brain connectivity changes occurring at different connectivity
scales.

In order to assess which temporal scales were most rele-
vant for our analysis, we plotted the connectivity weight pro-
files of the average connectivity matrices for both control and
PD groups. For large delays, the connection weight histograms
of both groups were narrow. This shows that large temporal
lags are unable to capture variations in the directed activation
flow in the network, instead assigning similar weights to a
large number of connections. Therefore, in order to be able to
capture this functional variation, we restricted our analysis to
small temporal lags in the range 1–7. These conclusions were
supported by the values calculated for the network diameter
and in agreement with previous studies that showed that an
optimum autoregressive model to analyze directed functional
connectivity in PD is the one that includes seven time points
(Ghasemi and Mahloojifar 2013).

While our findings demonstrate widespread functional
connectivity changes in PD that can only be identified by
the directed antisymmetric correlation networks, several
studies have shown functional changes in undirected net-
works in PD participants from the PPMI database. While
this apparent disagreement could stem from the inherent
functional heterogeneity in participants with PD (Badea et al.
2017), such differences could be due to the use of different
subsamples (Baggio et al. 2015b) which have different degrees of
cognitive impairment (Lebedev et al. 2014; Chen et al. 2020) and
medication (Sreenivasan et al. 2019) or evaluation of different
network measures as well as different thresholding procedures
(Prajapati and Emerson 2021).

Although the current study has several strengths, some lim-
itations should also be recognized, which present opportunities
for future work. First of all, our sample size was small, partic-
ularly the control group, which only included 15 individuals.
Unfortunately, the PPMI cohort did not have a larger number of
control participants with functional MRI data that we could use

for the data analyses at the time we downloaded the functional
MRI images. Another limitation is the fact that we did not apply
multiple comparison corrections across the different temporal
lags. This is due to the fact that our study was exploratory and
our sample was relatively small so correcting the results across
all lags would have led to a very stringent P-value (the correc-
tions across 200 regions and 7 lags would require correcting for
1400 tests). Therefore, although we tested the antisymmetric
correlations on a well-characterized sample of participants with
PD, our results should be interpreted with caution, and they
should be replicated in larger and independent cohorts that
would allow applying more stringent corrections. Furthermore,
several participants in the current cohort underwent functional
MRI while on medication, which has previously been shown
to influence brain connectivity (Palmer et al. 2009; Wu et al.
2009; Delaveau et al. 2010). In this study, we assessed the effects
of medication on our results by performing correlation analy-
ses between the levodopa-equivalent doses and the topological
graph measures, as well as comparing the networks of medi-
cated and nonmedicated PD groups. Our analyses showed that
there was no association between medication doses and topo-
logical measures, and there were no differences in the global
measures between the medicated and nonmedicated partici-
pants. The only significant results that were observed in med-
icated compared with nonedicated groups were an increase of
the out-global efficiency in the superior occipital gyrus, superior
parietal lobule, and precuneus at lag of 1, a decrease in the
in-degree of precuneus at lag 2, and increases in the in-global
efficiency and the in-degree of thalamus at lags 2 and 3. Since
these regions did not overlap with the measures or regions
that showed differences between PD and controls group in our
main analysis, most likely they did not influence our results.
In addition, it has also been demonstrated that PD participants
with mild cognitive impairment have a different functional
connectivity pattern when compared with cognitively normal
participants (Baggio et al. 2014; Amboni et al. 2015; Baggio et
al. 2015a; Lopes et al. 2017). As 20% of the PD participants in
our study were diagnosed with MCI, we also performed an addi-
tional analysis to compare them with the cognitively normal
participants with PD. We found no topological differences in
the directed functional connectomes between the two groups,
suggesting that the presence of MCI also did not affect the main
results. This result is in contrast with previous studies showing
that the presence of MCI has an effect on network topology
in participants with PD (Baggio et al. 2014; Lopes et al. 2017).
This discrepancy is probably associated with the differences
in clinical characteristics between our sample and the cohorts
used in previous studies.

Despite these limitations, in this study, we show that the
information stored in the temporal activation lags can be used
to assess the directed connections between all the brain regions
of the functional connectome. Our findings show that these
directed connections can detect specific topological changes
in participants with PD at multiple connectivity scales, offer-
ing increased sensitivity to PD-related changes compared with
undirected methods. These findings suggest that our method
could potentially be used to improve the diagnosis of PD or
identify participants with worse disease progression.

Supplementary Material
Supplementary material can be found at Cerebral Cortex online.
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