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Playing the piano with a robotic 
third thumb: assessing constraints 
of human augmentation
Ali Shafti1,2,3,7, Shlomi Haar1,3,4,7, Renato Mio1, Pierre Guilleminot1 & A. Aldo Faisal1,2,3,5,6*

Contemporary robotics gives us mechatronic capabilities for augmenting human bodies with extra 
limbs. However, how our motor control capabilities pose limits on such augmentation is an open 
question. We developed a Supernumerary Robotic 3rd Thumbs (SR3T) with two degrees-of-freedom 
controlled by the user’s body to endow them with an extra contralateral thumb on the hand. We 
demonstrate that a pianist can learn to play the piano with 11 fingers within an hour. We then evaluate 
6 naïve and 6 experienced piano players in their prior motor coordination and their capability in 
piano playing with the robotic augmentation. We show that individuals’ augmented performance 
with the SR3T could be explained by our new custom motor coordination assessment, the Human 
Augmentation Motor Coordination Assessment (HAMCA) performed pre-augmentation. Our work 
demonstrates how supernumerary robotics can augment humans in skilled tasks and that individual 
differences in their augmentation capability are explainable by their individual motor coordination 
abilities.

From ancient myths, such as the many-armed goddess Shiva to modern comic book characters, augmentation 
with supernumerary (i.e. extra) limbs has captured our common imagination. In real life, Human Augmenta-
tion is emerging as the result of the confluence of robotics and neurotechnology. We are mechatronically able to 
augment the human body; from the first myoelectric prosthetic hand developed in the 1940s1 to the mechanical 
design, control and feedback interfaces of modern bionic prosthetic hands e.g.2–5. Robots have been used to 
augment the bodies of disabled humans, restoring some of their original capabilities e.g.6–9. Similar setups can 
augment healthy users beyond their capabilities, e.g. augmenting workers in industrial settings through intelligent 
collaboration e.g.10–12, or equipping them with additional arms to perform several tasks concurrently e.g.13,14. 
The latter fits within a particular area of human augmentation robotics which is referred to as supernumerary 
robotics. These are robotic systems, typically worn by the user, to extend their body and its physical capabili-
ties. However, a major question is, to what extent does human motor control have the capability of adapting and 
learning to use such technologies efficiently15, and can it be predicted from human motor coordination. The 
supernumerary and augmentative nature of this area of research presents an interesting challenge on how to 
map human motor commands to robot control.

Supernumerary robotic limbs e.g.16 are envisioned to assist human factory workers, and adapted for differ-
ent types of applications e.g.14. The introduction of supernumerary robotic fingers developed as a grasp support 
device17 led to further exploration on optimal materials and mechanical designs for supernumerary robotics 
e.g.9,18,19. Supernumerary robotic fingers have been particularly envisioned, and successful in grasp restoration 
for stroke patients e.g.9,20,21. However, regardless of the mechanism, material, and use case, given the presence of 
a human within these devices’ control loops, the control interface is of essential importance.

It was recently shown that for polydactyly subjects who possess six fingers on their hands, the control interface 
involves a cortical representation of the supernumerary finger22. Unlike polydactyly, supernumerary robotic 
limbs and fingers must utilize indirect control interfaces to achieve the same goal—to enable more complex 
movements and better task performance. Abdi et al. investigate the feasibility of controlling a supernumerary 
robotic hand with the foot23. Others have focused on electromyography (EMG) as the control interface—both in 
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supernumerary robotic fingers e.g.9, and supernumerary robotic limbs e.g.24. Other interfaces used for supernu-
merary robotics include inertial measurement units e.g.21, voice e.g.25, pushbuttons e.g.18, and graphical user inter-
faces e.g.26. Researchers have also explored indirect control interfaces, e.g. using the concept of grasp synergies27 
to assume that the supernumerary robotic finger’s posture will be highly correlated with that of natural fingers 
during manipulation, allowing supernumerary robotic finger control through natural movement of existing 
fingers28. Importantly, all these user interfaces focus on the interface and not the user.

While extensive research has been conducted on the mechanical design, interface, and control of supernu-
merary robotics, there is a gap in understanding the role of human motor control in the success and adoption of 
these robotic human augmentation systems. In the rapid development of human augmentation little attention is 
devoted to how humans interact with the technology and learn to control it15. There are clear needs for neurosci-
ence and robotics research to come together in analysing such scenarios e.g.29. Non-invasive control interfaces for 
supernumerary robotics typically rely on substitution, i.e. using the movement of a natural human limb for the 
control of the augmentation robot e.g.30. Learning to control a supernumerary robot limb or finger thus becomes 
a complex process which involves learning to utilize one movement (set muscles activations) to perform a new 
movement. The field of motor neuroscience has extensively studied the control mechanisms and learning pro-
cesses of perturbed movements. Some research paradigms directly address this augmentation challenge as they 
utilize arm movement in one direction to move a cursor on the screen in a different direction, accounting for a 
rotation perturbation31–34 or a mirror reversal perturbation e.g.35–37. In these settings, one can predict subjects’ 
learning from the task-relevant variability in their unperturbed movements e.g.38,39. Nevertheless, these stud-
ies were done on simplistic lab-based tasks and only recently the field is starting to address the complexities of 
real-world movement and to ask to what extent those lab-based findings generalize to real world motor control 
and learning40,41. While the relationship between task-relevant variability and learning performance seems to 
generalize to real-world tasks, defining task relevance is less trivial e.g.40 and the learning mechanism can differ 
between users e.g.42.

In human performance research, such as sports science and rehabilitation, there are significant efforts to 
predict future performance. In sports science, there is an attempt to predict athletes’ future success for talent 
identification purposes. Motor coordination and motor learning are often used as predictors e.g.43–46. Similar 
approaches are used in rehabilitation research to predict skill learning capacity following traumatic brain injury, 
stroke, or neurodegenerative disease e.g.47,48. Here we are looking into the predictability of future performance 
with augmentation technology. We specifically ask which aspect of motor coordination is a better predictor of 
performance in the same task with and without the device.

To address this, we have created an experimental setup to study how different parameters within the remit of 
human motor control contribute to successful control, coordination and usage of a human augmentative robotic 
system, using a set of motor coordination tests that we developed: the Human Augmentation Motor Coordination 
Assessment (HAMCA). We have created a 2 degrees of freedom (DOF) robotic finger, worn on the side of the 
hand, to augment human finger count to 11, effectively giving them a 3rd thumb. We call this the supernumerary 
robotic 3rd thumb (SR3T—engineering and design previously described in49), and we study its usage in a skilled 
human task: playing the piano. The piano is a setting which involves the use of all fingers of the hand, and hence 
a good environment to consider for testing the augmentation of fingers. Furthermore, piano playing is struc-
tured both in spatial and temporal dimensions, allowing for quantification of the performance in both aspects.

Results
We developed a mechanically powerful supernumerary robotic 3rd thumb (SR3T) and means for interfacing 
it with human users, initially through a combination of foot and thumb motions, directly controlling the two 
degrees of freedom of the SR3T. We then tested an experienced piano player in an unconstrained pilot experi-
ment, allowing them to freely play the piano and improvise while wearing the SR3T. We observed that within 
1 h of playing the piano, the participant incorporated the SR3T in their piano playing, effectively playing the 
piano with 11 fingers (see Fig. 1G–H, and supplementary video). Based on this outcome, and feedback from 
the participant, we upgraded the control interface to be solely based on foot motions (see Fig. 1, and Methods), 
for more robust control, and to limit the interface to one limb. We then set out to understand the constraints 
affecting success with the SR3T, by devising protocols and behavioural markers for motor coordination evalua-
tion: the Human Augmentation Motor Coordination Assessment (HAMCA, Fig. 2). We also developed a piano 
sequence playing task as well as measures for assessing the quality of playing. Finally, we systematically evaluated 
the SR3T on human subjects, and predicted how well subjects would be able to perform in playing the piano 
sequence with an augmented additional finger, based on the basic motor coordination assay from the HAMCA. 
Twelve right-handed participants (6 experienced pianists and 6 naïve players), attended 2 experimental sessions 
held on separate days in the lab. In the first session they performed the HAMCA set of 8 tasks to assess their 
hand and foot motor coordination. This set was developed to investigate the possibility of a priori prediction of 
how well each individual human user can learn to use an augmented device. From the HAMCA we extracted 8 
scores as measures of motor coordination within hand and foot motions (see Methods). In the second session 
the subjects learned to play a sequence on the piano and then repeated it with our human augmentation device, 
the supernumerary robotic 3rd thumb (SR3T), operated through foot motions as the interface (Fig. 1).

To give a sense of the HAMCA data, distributions of scores, and to highlight any significant differences 
between groups we present a summary of results in Fig. 3. The hand and foot motor-coordination scores from 
the HAMCA, recorded during the first experimental session showed moderate differences between the pianists 
and the naïve players (Fig. 3A). We took a conservative approach to capture even marginally significant group 
differences and thus did not adjust for multiple comparisons. Yet, in a permutation test there were no significant 
group differences in any of the piano-based tasks (Piano Jumping, Piano Timing, and Piano Loudness). The 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21375  | https://doi.org/10.1038/s41598-021-00376-6

www.nature.com/scientificreports/

only measure where the pianists performed marginally significantly different to the naïve players was Hand 
Dimensionality (p = 0.017), which is based on the assembly of toys (see Methods). On the other hand, in the 
Foot Up-Down Spatial measure the naïve players showed higher scores than the pianists (p = 0.013), though we 
believe this difference is possibly the result of a sample bias due to the small N. In both groups the inter-subject 
variabilities were relatively evenly distributed.

The correlation matrix between the subjects’ motor-coordination scores (Fig. 3B) suggests relatively weak 
dependencies, i.e. a subject who showed high coordination in one task did not necessarily show high coordina-
tion in any other task. Even without multiple comparisons correction there were no significant dependencies 
within the foot measures and the only dependency within the hand measures was between the Piano Jumping 
and Piano Timing scores (r = 0.64, p = 0.026). The foot and hand timing scores were correlated (Foot Up-Down 
Temporal and Piano Timing: r = 0.68, p = 0.015; Foot Up-Down Temporal and Piano Jumping: r = 0.66, p = 0.020). 
These three tasks are metronome based, thus measuring rhythmic coordination. Lastly, we found a correlation 
between two movement precision tasks: Foot Balance and Piano Loudness scores (r = 0.61, p = 0.035).

In the second experimental session, all subjects performed 10 trials of the Piano Playing task, using their 
left-hand index finger (LHIF) to play notes further to the right of their right-hand. This was followed by an addi-
tional 10 trials of Piano Playing with the SR3T, where subjects use both degrees of freedom within the SR3T for 
the horizontal reach for the notes to the right and the vertical motion to play the note. Each note is scored as 1 
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Figure 1.   Piano playing task setup. (A) Top view rendering of the SR3T, showing the horizontal motion DOF 
and relevant motor. (B) Side view rendering of the SR3T showing the vertical motion DOF and relevant motor. 
(C) Top view rendering of the SR3T control interface for the 1st degree of freedom (DOF); the participant 
controls the motion of the SR3T using their right foot, captured through an inertial measurement unit (IMU) 
worn on the foot. (D) Side view rendering of the SR3T control interface for the 2nd DOF. (E) Work surface of 
a human thumb end-point projected on a sphere for comparison with (F) the work surface of the SR3T end-
point projected on a sphere—augmenting work surface range for the human (see methods). (G, H) Top and 
side view of the unconstrained pilot experiment: an experienced piano player freely improvising on the piano 
while wearing and making use of the SR3T, effectively playing 11-fingered piano within 1 h of use. (I) Systematic 
experients: playing the piano sequence using 5 fingers of the right hand plus the left-hand index finger (LHIF) 
and (J) Playing the sequence using the SR3T. (K) A participant plays the sequence of notes as displayed on the 
monitors in front of them, using the SR3T.
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Figure 2.   Human Augmentation Motor Coordination Assessment (HAMCA)—a set of simple behavioural 
tasks to predict the ability of human augmentation (see Methods for details). (A) Balance board force 
measurement platform for the Foot-balance task. (B) Foot motion trajectory (curve and arrows) during the 
Foot-tracking task required to move the foot in a figure of 8 in a plane perpendicular to the resting foot’s major 
axis. (Inset) visual feedback to the participant on the computer screen in front of them, showing the desired 
trajectory (green curve), the red dot indicating the desired location of the foot tip for pacing the foot movement 
and the current location of the foot tip (blue dot). (C) See-saw like foot motion in the sagittal plane of the foot 
during the Foot up-down task while seated. (D, E) Measurement of motor coordination complexity in the 
fingers of the right hand by assembly of a toy car and of a toy train in the Toy Assembly Task. (F) Piano jumping 
task: Piano key sequences to be played with individual fingers to capture hand and finger timing acuity when 
jumping between notes. Performance is assessed by timing and key board press down errors movement between 
3 keys (spaced 1 octave apart) labelled “Left”, “Middle” and “Right”.

A B 

Figure 3.   Performance of all subjects in the HAMCA. Showing results for 6 naïve (grey dots) and 6 experienced 
piano players (black dots). (A) Accuracy in HAMCA tasks (foot Balance—FB, foot tracking—FT, foot up down 
spatial—FUDS, foot up down temporal—FUDT, hand dimensionality—HD, piano jumping—PJ, piano timing—
PT, piano loudness—PL). (B) Pearson’s correlations between the accuracies of all HAMCA tasks across subjects. 
The 6 naïve and 6 experienced players were lumped together as individual performances were not different 
between the groups (see main text).
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if played correctly and perfectly on time, with the score linearly decreased to 0 if played half a beat late or early. 
Incorrect notes are also scored as 0. Note scores are averaged to report a final piano playing score (see Fig. 4B, 
and Methods). In both tasks (playing with the LHIF and with the SR3T) subjects showed improvement over the 
first 5 trials after which they plateaued (mean accuracy, and standard error of the mean, shown in Fig. 4, right). 
Thus, for all future analysis we averaged over trials 5 to 10 to have a single piano playing score for each of these 
tasks. Here as well, there were no significant differences between the pianists and the naïve players in any of the 
trials played with their LHIF (t-test p > 0.12) and with the SR3T (t-test p > 0.32). As performance varied randomly 
in each subject over the plateau, we also pulled all plateau trials together and tested again for group differences. 
Testing over all plateau trials (5–10), pianists were significantly better in playing with their LHIF (t-test p = 0.017) 
but there were no group differences in playing with the SR3T (t-test p = 0.9). Therefore, we merged the two groups, 
and all further analysis was done on all 12 subjects together.

The Piano Playing with SR3T score is our metric for performance with the human augmentation device. 
Augmentation here refers not necessarily to improvement in performance, but rather an augmented reach, 
allowing to play notes that are further away, without moving the hand or using another hand (the case in LHIF). 
The fundamental question is to what extent can the SR3T score be explained by motor-coordination measures. 
The correlations between the subjects’ scores in the Piano Playing tasks and the motor-coordination measures 
suggest different dependencies for playing with and without the SR3T (See supplementary Figs. S1 and S2). The 
scores in the Piano Playing task with the LHIF were correlated with Foot Tracking and Foot Up-Down Tempo-
ral scores (r = 0.66, p = 0.019 and r = 0.64, p = 0.026, respectively). The scores in Piano Playing with SR3T were 
correlated only with the Piano Loudness scores (r = 0.59, p = 0.044). We further investigated the correlations 
between Piano Playing with SR3T and the motor-coordination scores with Spearman rank correlation scores 
(Fig. S1). Foot Up-Down Temporal was the only measure which showed marginally significant Spearman cor-
relation with the Piano Playing with SR3T score (r(Spearman) = 0.67, p = 0.02). The Piano Playing scores without 
and with SR3T were correlated (r = 0.63, p = 0.028), and even better correlated with Spearman rank correlation 
(r (Spearman) = 0.71, p = 0.012).

We then asked which combination of HAMCA motor-coordination scores can better explain the LHIF and 
SR3T scores. We considered all possible combinations of the HAMCA features, and different number of features 
being selected. We fit linear models to all given combinations, trying to explain the piano playing scores with 
the LHIF and SR3T. To compare between these models of different complexity we used the corrected Akaike 
information criterion (AICc) which is modified for small sample sizes. AICc estimates the amount of informa-
tion that is lost while fitting a model and thus can measure the quality of different models relative to each other. 
Results for AICc and the correlation between the real score and the predicted score (r) can be seen in Fig. 5A 
for the LHIF and Fig. 5B for the SR3T, for all combinations up to 5 features (higher number of features result 
in increasingly deteriorated models), with the best models and their selected features highlighted. When the 
sample size is small, information criteria might be biased to select models with more parameters and overfit, the 
AICc was developed to address such potential overfitting. With this correction, the AICc suggests that the best 
model for explaining the LHIF score is a 2-feature one, whereas for the SR3T, a 4-feature model would perform 
better. Looking at the selected features, in the case of the LHIF, both models show similar high performance, 
using Foot Tracking as one feature, with the second feature being Foot Up-Down Temporal in one model 

Figure 4.   Piano playing performance. (A) The note sequence played for the piano playing task. Notes 
exclusively played with the right hand, and those with the SR3T or LHIF are marked, (B) Visualisation of how 
each individual note is scored linearly based on delay from the beat. Incorrect notes and skipped notes are 
assigned a score of 0, full sequence score is the average of all individual scores, (C) Mean accuracy over trials 
with the SR3T (orange) and without, using the LHIF (blue). Shaded region shows standard error of the mean.
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(AICc = − 28.37, r = 0.86, p = 0.0023) and Piano Jumping in the other (AICc = − 27.81, r = 0.85, p = 0.0028). The 
best performing SR3T model uses Foot Up-Down Spatial, Foot Up-Down Temporal, Piano Timing and Piano 
Loudness (AICc = − 16.66, r = 0.95, p = 0.0012).

Discussion
In this study we examined the role of human motor coordination in the successful adoption of human augmen-
tation technology. We had previously described the different neurocognitive barriers to successful embodiment 
and use of robotic augmentation devices15. Here, following the operational definition set out in the same work15 
for the embodiment of robotic augmentation as the ability to use extra limbs in natural tasks, we focused on how 
different parameters within the remit of human motor control contribute to successful control of a supernumer-
ary robotic finger in an augmented piano playing task. We created a supernumerary robotic 3rd thumb (SR3T), 
controlled through substitution, initially with a combination of the natural thumb and the foot wearing differ-
ent sensing modalities. We first demonstrated, in an unconstrained pilot experiment, the feasibility of human 
augmentation with the SR3T, with one experienced piano player using the device to freely play the piano using 
11 fingers, within 1 h of wearing it. We then updated our SR3T interface, so that both degrees of freedom are 
controlled through a single IMU worn on the foot, and developed the HAMCA set to assess the participants’ 
motor coordination prior to piano playing. This is followed by our subjects playing a piano sequence on the piano 
using their natural fingers, and then using the SR3T along with their natural fingers. Our HAMCA metrics can 
be used to predict and explain both the task performance with, and without robotic augmentation. While the 
LHIF task can be explained by two features relating to timing precision, the SR3T task requires four features, 
involving both timing and movement precision. This suggests that performing the task with robotic augmenta-
tion, requires additional levels of complexity.

Our work shows the possibility of humans being able to quickly acquire a skilled behaviour, such as playing 
piano sequences, with a human augmentative robotic system. Both naïve piano players (i.e. without prior expe-
rience) and piano playing experts demonstrated the same ability to integrate the supernumerary robotic limb 
into playing simple piano sequences: We saw no group differences in the performance with the SR3T, suggesting 
that integrating robotic augmentation is primarily driven by a priori motor coordination skills and not affected 
significantly by expert motor domain knowledge. We designed our piano piece to ensure comparability with the 
experimental setup, so that pre-augmentation the participants would play the main notes with their right hand 
and then play the additional notes with the left hand index finger, therefore limiting us to one-handed pieces. The 
structure of the music piece itself also needed to be simple enough so that piano-naïve participant could acquire 
it within a reasonable amount of time and not immediately fail. Further experiments are needed to examine 
whether pianists’ expertise will give them an advantage in the augmented task, for more complex piano sequences.

There were also not many significant differences between the two groups within the HAMCA scores. This 
might be due to the design of the tasks within HAMCA not capturing that difference. Importantly, unlike stud-
ies of piano skills that investigate different motor performance metrics in piano players e.g.50,51, HAMCA was 
developed to capture basic motor control and coordination to explain augmentation. We used the task space 
(piano key presses) and the interface space (foot control) but did not design motor performance metrics in piano 
playing. Hence, perhaps it is not surprising that the task-space metrics were not performing as such, evident by 
the lack of difference between pianists and naive players.

A B 

PJ, FT 
FUDT, FT 

FUDT, FUDS, PT, PL 

Figure 5.   Model selection predicting LHIF and SR3T piano playing. All possible combination of different 
number of features being selected from the HAMCA metrics are considered and used to fit generalised linear 
models, with AICc and r reported. Model performances for all combinations up to 5 features shown, with best 
model and its features highlighted in (A) SR3T score prediction and (B) LHIF score prediction. Selecting more 
than 5 features results in increasingly deteriorating models.
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In the piano playing task, all subjects (naïve players and experienced pianists alike) initially showed improve-
ment in accuracy from trial to trial (i.e. learning). This was a short learning process which plateaued quickly 
after 5 trials. For all subjects the plateau with the SR3T was significantly lower than with their LHIF, which is to 
be expected, particularly in early stage of SR3T use. This fast learning within a session and low plateau (which 
leaves much room for improvement in future sessions) are hallmarks of early motor skill learning. This is in line 
with many evidence of multiple time scales in skill learning where fast improvement in performance occurs in 
the initial training and plateau within a session, and slow improvement develops across sessions e.g.52–55. Accord-
ingly, learning to play the piano, augmented with the SR3T, seems to be a novel motor skill learning task. Further 
support can be found in the group differences while playing the piano with and without the SR3T. When subjects 
played with their own LHIF, across all plateau trials pianists performed significantly better than naïve players, as 
expected based on their piano experience, though there were no significant group differences on a trial by trial 
basis, not during learning nor during plateau. When subjects played with the SR3T there were also no significant 
group differences on a trial by trial basis, but also across all plateau trials pianists did not perform better than 
naïve players. This suggests that playing augmented with the SR3T is not a trivial extension of the regular piano 
sequence playing task with your own finger, but a novel skill that the subjects need to learn.

To further interrogate the novelty and complexity of the augmented task, we explored the differences in the 
way combinations of motor coordination measures from HAMCA can explain performance with the SR3T and 
the LHIF. Our results show that the SR3T score is best explained with twice as many features as required for 
the best model for the LHIF, suggesting a higher complexity in the augmented task. It must be noted however 
that comparing complexity based on HAMCA features might be naïve, as it does not account for differences in 
complexity between the HAMCA features themselves. The HAMCA features selected for the top LHIF models 
mainly measure timing precision (Foot Tracking paired with Foot Up-Down Temporal or Piano Jumping), 
whereas the best SR3T model uses two timing precision features (Foot Up-Down Temporal and Piano Tim-
ing) together with two movement precision ones (Foot Up-Down Spatial and Piano Loudness), see Fig. 5. This 
suggests that the SR3T model, relating to the augmentation task, needs to capture not just task-related features 
through timing precision, but also movement precision features relating to both the interface (Foot Up-Down 
Spatial) and the task (Piano Loudness).

It is important to consider the meaning of these results in the context of prosthetics. Prosthetics replace a 
limb that was lost whereas with the SR3T, and with supernumerary robotics in general, the human is operating a 
new, additional limb—in our case a thumb. Our augmentation is done through substitution, i.e. we use an exist-
ing limb to operate an additional one. While many active upper limb prosthetics with non-invasive interfaces 
rely on EMG from residual muscles56–58, there is still interest in movement-based control due to challenges with 
EMG interfaces59,60. Foot motions in particular, detected through various sensing modalities, have been used 
as prosthetic interfaces61–64. While researchers investigate various important factors in prosthesis choice and 
success, such as cognitive, social, or physical ones e.g. 65–67, in an effort to tackle the ongoing adoption problem 
facing modern prosthetics68,69, there is less focus on the role of the end-user’s motor coordination, which we 
argue is particularly important in substitutional interfaces. Our results show that motor coordination metrics 
are highly predictive of success in substitutional augmentation. We have argued before that not accounting for 
such factors, can lead to barriers in adoption of technology15.

Previous work on interfaces for supernumerary robotics have shown that the foot can generally serve as a 
good interface for robotic limbs working collaboratively with the user’s hands e.g.23,70. Abdi et al.23 study the 
control of a third robotic hand via the foot in virtual reality, for robotic surgery applications, showing similar 
learning trends to what we observe here. Similar learning within a session was also reported with another foot 
interfaced third thumb30. We see similar effects where roboticists have used legs and feet as a multi-DOF control 
interface for successfully teleoperating two71 or four72 robotic arms, albeit in less skilled tasks than what we show 
here. Saraiji et. al. show that subjects significantly increased their self-reported sense of embodiment of the tele-
operated robots over the course of the experiments, i.e. 40 min71. Results obtained with adaptive foot interfaces 
for robot control e.g.73, where data-driven approaches are used to create subject-specific motion mapping, are 
in line with our findings. Huang et al.73 report that inter-subject variability decreases once a subject-specific 
motion mapping is enabled. This confirms the dependency of robot control performance on metrics inherent 
to each subject, which we present here to be a combination of motor coordination metrics relating to the task 
and the robotic interface.

We show here that substitutional interfaces make the system reliant on human motor coordination skills. We 
also demonstrate the possibility of applying substitution across different levels of the biomechanical hierarchy. 
The foot, which in terms of the biomechanical hierarchy is equivalent of the entire hand, is used here as the 
interface-space controlling a thumb, which is further down the biomechanical hierarchy. These results sit at one 
end of the spectrum of solutions for controlling an augmentative device, which goes from substitution all the way 
to direct augmentation via higher level control, either brain-machine-interfacing or cognitive interfaces such as 
eye gaze decoding. We previously showed that the end-point of visual attention (where one looks) can control 
the spatial end-point of a robotic actuator with centimetre-level precision8,74,75. This direct control modality is 
more effective from a user perspective than voice or neuromuscular signals as a natural control interface76. We 
showed that such direct augmentation can be used to control a supernumerary robotic arm to draw or paint, 
freeing up the two natural arms to do other activities such as eating and drinking at the same time13. But such 
direct augmentation has to date not achieved augmenting fine motor skills such as playing the piano, as playing 
this instrument requires not just the execution of a note: it is not a simple button-press exercise but requires fine 
grade expression of temporal and spatial motor coordination across robotic and natural fingers. We show that 
we can explain the degree to which subjects can integrate supernumerary limbs into their natural body move-
ments, as a function of their basic motor skills. Thus, our work shows that we can achieve effective augmenta-
tion but also predict the capability of individuals to embody supernumerary robotic limbs in real-world tasks, 
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which has impact for robotic augmentation from healthcare to agriculture and industrial assembly e.g. in the 
aerospace industry.

Materials and methods
Experimental design.  For our unconstrained pilot experiment, a right-handed piano player was selected 
to wear the SR3T and freely improvise. For our systematic follow-up experiments we developed a set of meas-
urement protocols and behavioural biomarkers, the Human Augmentation Motor Coordination Assessment 
(HAMCA), and ran this set of tests to assess hand and foot coordination (due to the foot being the control inter-
face for our robotic system, described below under Setup) and piano-related skills. As opposed to existing motor 
assessments such as the Purdue pegboard77, the motor domain of the NIH Toolbox78, the Jebsen-Taylor hand 
function test79 or the Action Research Arm Test (ARAT)80 among others, which tend to be focused on dexterity, 
and are mainly used to quantify the extent or progress of motor disabilities, here we are interested in assessing 
specific human motor coordination aspects which relate to the interface-space (foot) and task-space (hand use 
over the piano) of our piano playing task. The HACMA set includes both spatial and temporal evaluations. From 
these coordination tasks we extracted 8 hand and foot motor-coordination scores. Finally, the participants were 
given specific melodies to play on the piano with and without the SR3T. The melody was designed to require 6 
fingers, forcing the participant to either use their left-hand index finger (LHIF), or the SR3T if they are wearing 
it. Table 1 summarises the experimental setup procedure and how they map to results.

Subjects.  Twelve right-handed participants took part in our systematic experiments (mean age 
23.3 ± 2.8 years). Six of the participants had played the piano for several years (pianists group) and the other 
six did not have any piano playing experience (naïve group). All of the participants from the pianists group had 
at least 5 years of piano training (range 5–21 years, mean 10.6 ± 5.4 years). Two participants of the naïve group 
had over 5 years’ experience of guitar playing. All participants gave informed consent prior to participating in 
the study and all experimental procedures were approved by Imperial College Research Ethics Committee and 
performed in accordance with the declaration of Helsinki.

Setup.  We created an experimental setup to investigate how individual motor skills contribute to the per-
formance of a human user of a supernumerary robotic thumb; i.e. a robotic augmented human. To this end, we 
have created a 2 degrees of freedom (DoF) robotic finger that users can wear on the side of their hand, effectively 
augmenting them with a third thumb. The design, creation and initial testing of the supernumerary robotic third 
thumb (SR3T) was reported in49, and is the same setup used for our unconstrained pilot experiment with a single 
piano player participant. The design specifications for the SR3T were derived from the design requirements of 
a fully spherical operating thumb81 and the natural eigenmotions of human thumbs in daily life activities82. The 
SR3T is attached to the user’s right hand and is controlled through the user’s right foot. In our original imple-
mentation, used for the pilot experiment, the vertical motion of the foot was measured using an accelerometer, 
together with horizontal motion data obtained with a flex sensor worn on the natural thumb on the augmented 
hand, to control the vertical and horizontal DoFs of the SR3T, respectively49. For our main experiments, we 
updated the interface, using a 9DoF inertial measurement unit (IMU—Bosch BNO055, breakout board by Ada-
fruit) for increased stability, and to limit the interface to a single limb, i.e. the foot. The unit can provide abso-
lute orientation measurements (with respect to the earth’s magnetic field) thanks to an onboard sensor fusion 
algorithm. Absolute orientation can then be extracted as Euler vectors, at 100 Hz. In this setup, the SR3T’s two 
DoFs correspond to horizontal and vertical movements of the robotic fingertip. These are mapped to horizontal 
and vertical movements of the foot, i.e. yaw and pitch, respectively. Once the subject is wearing the SR3T on 
their hand, and the IMU on their foot, they are asked to sit with their foot on the ground facing the piano. The 
SR3T is moved horizontally for the fingertip to face the forward position as well. The values read by the IMU for 
the orientation of the foot, and by the motor encoders for the position of the SR3T are recorded. The subject is 
then asked to rotate their foot clockwise, with the heel as the centre of rotation, to their maximum comfortable 
reach (typically 45 degrees from the forward-facing pose). The SR3T fingertip is also moved accordingly, to the 
maximum horizontal position on the right, and values recorded as before. These are used to map the horizontal 
motion of the foot to that of the SR3T, with a similar process for vertical motions. The setup can be seen in Fig. 1.

In order to investigate the workspace augmentation achieved by the SR3T optical markers were placed at 
the tip and base of the SR3T, with the SR3T then activated by the subject to move in its full range of motion. 

Table 1.   Experimental procedure.

First session—2 h Second session—1 h

Foot balance (15 trials)—20 min Piano playing with LHIF—25 min

Foot up-down (15 trials)—15 min
5 Practice trials 10 trials recorded at 80 bpm (last 5 count for score)

Foot tracking (6 trials)—10 min

Piano timing (25 trials)—15 min SR3T setup and calibration—10 min

Piano jumping (15 trials)—10 min Piano Playing with SR3T—25 min

Piano loudness (25 trials)—15 min
5 Practice trials 10 trials recorded at 80 bpm (last 5 count for score)

Hand dimensionality (2 × toy tasks)—35 min
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Similarly, optical markers were placed at the tip and base of the subject’s left-hand thumb with them perform-
ing the maximum range of thumb movement while the motion was optically tracked. We used three OptiTrack 
Prime 13 W cameras with the Motive software for motion capture (NaturalPoint, Inc. DBA OptiTrack, Oregon, 
USA). The results can be seen in Fig. 1E and F; the thumbs’ end-point surface is mapped onto a sphere, assum-
ing the base of the thumbs are situated at the centre. Based on these measurements, the SR3T has an end-point 
work surface that is 4 times that of the human thumb. Furthermore, we used the same camera system to measure 
delay between motor intention and action, by placing markers on the user’s foot as well as the SR3T; the mean 
delay is measured as 85 ms. This delay does not affect our piano playing scoring scheme (see below for details).

For the piano playing tasks and piano related hand coordination tasks we used a digital piano (Roland 
RP501R-CB, Roland Corp., Osaka, Japan). The piano was connected to a PC with a MATLAB script establishing 
communication through its MIDI interface. Each keystroke on the piano was received by the MATLAB script 
as a MIDI message which comprised data regarding the note played, time of keystroke (with a 1 ms resolution) 
and the keystroke velocity, which leads to proportional loudness of the note played.

HAMCA foot coordination tasks.  Foot balance task.  A Wii Balance Board (Nintendo Co. Ltd., Kyoto, 
Japan) together with the BrainBloX software83 was used. The board (Fig. 2A) is made of four pressure plates and 
the software interface displays the real-time centre of pressure computed by the Wii Balance Board across all four 
plates, and relative to the board’s coordinate system.

Weight plates (70 N) were placed on the left side of the board, moving the centre of pressure away from the 
system origin. Subjects were seated on a chair, placing their right foot on the Wii Board, and then had to move 
the centre of pressure back towards the origin by applying pressure on the right side of the board with their right 
foot. The plates were placed in three positions (Fig. 2A), with five trials per position, resulting in a total of 15 
trials, performed in random order. Before the beginning of each trial, participants were asked to place the centre 
of pressure as close as possible to the origin. Once they stated their readiness and after a 3-s countdown, a 15-s 
recording was started. Samples were recorded at 85 Hz. The resulting motor-coordination score is computed 
according to Eq. (1):

where error corresponds to the mean Euclidean distance of the centre of pressure from the origin of the coordi-
nate system across all recorded samples. The maximum error corresponds to the error computed if the subject 
was not acting on the platform.

Foot up‑down task.  The same setup as in the Foot Balance Task was used, without the weights. A steady beat 
was played with a metronome, which the subjects had to match while sitting on a chair with their right foot 
placed on the Wii Board, by moving their feet from a toe-lifted (dorsiflexion) to a heel-lifted (plantarflexion) 
pose and vice versa (see Fig. 2C). The pressure exerted by the foot had to match an upper and lower target value 
marked on the screen. Ideally, the output should resemble a square signal with a period equivalent to that of 
the beat on the metronome. Subjects performed 15 trials in random order, five at each selected tempi: 40 bpm, 
60 bpm and 80 bpm.

Two types of motor-coordination scores are computed from this task: spatial and temporal, both using Eq. (1). 
For the spatial measure, the error is calculated as the absolute distance between the target pressure position and 
the measured position of the centre of pressure. The maximum error corresponds to the total distance between 
the upper and lower pressure targets. The temporal measure’s error is based on how precise in time the change 
between target positions occurs. This is specifically measured at the time of zero-crossing, respective to the beats 
of the metronome. Maximum error is the time corresponding to one full period. Both the spatial and temporal 
absolute errors had skewed distributions; therefore, the median of the error was utilised instead of the mean.

Foot tracking task.  The subjects controlled the 2D position of a dot on a screen through rotations of their ankle, 
captured with an inertial measurement unit (IMU) attached to their shoe (see Fig. 2B)—the same setup used as 
the control interface of the SR3T. The subjects were directed to use ankle rotations only, the result of which they 
could see as a blue dot on a screen. They had to make the blue dot follow the position of a red dot moving along 
a figure-of-eight path, as shown in Fig. 2B, capturing both the pitch and yaw degrees of freedom of our control 
interface. The path, the red and blue dots were shown to subjects on a monitor screen in front of them. Each 
trial is composed of 6 laps around the figure-of-eight path, lasting 35 s total. The subjects sat at a height to have 
their foot freely moving in space (see Fig. 2B). The motor-coordination score for this task follows Eq. (1), with 
the error defined as the Euclidean distance between the blue and red dots. The maximum error is taken as the 
maximum recorded error across all time points in all trials of all subjects. Once again, due to the skewness in the 
absolute error distribution, the median of the error was used in the accuracy calculation.

HAMCA hand coordination tasks.  Hand dimensionality.  Subjects performed two toy assembly tasks 
while wearing a Cyberglove II (CyberGlove Systems LLC, San Jose, CA) to capture the motion of their hand and 
fingers, with 22 degrees of freedom. The tasks involved assembling a LEGO DUPLO toy train (LEGO 10,874), 
and assembling a toy car (Take Apart, F1 Racing Car Kit) using a toy drill and screws (see Fig. 2D and E). To 
ensure the appropriate fit of Cyberglove II we made sure all participants had a minimum hand length of 18 cm, 
measured from the wrist to the tip of the middle finger.

Principal Component Analysis (PCA) was performed on the collected data. We relate a greater number of 
principal components needed to explain the variance of the motion, to greater hand coordination84. The resulting 

(1)Accuracy = 1−
error

maxError
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motor-coordination score is defined as the number of principal components required to explain 99% of the 
recorded motion’s variance, normalised by the number of degrees of freedom recorded: 22.

Piano timing.  The subjects used their right-hand index finger to press the same piano key at varying tempi 
(40 bpm, 60 bpm, 80 bpm, 100 bpm and 120 bpm) played by a metronome. In total, subjects performed 25 trials 
in random order (5 at each tempo) composed of 10 keystrokes.

The relevant motor-coordination score follows the same concept as that of Eq. (1); for further clarity we 
present it in more detail, in Eq. (2). The normalised error is the absolute time deviation from the correct tempo 
divided by its period; that is, the time between keystrokes (inter-onset intervals or IOI) minus the period of each 
tempo in seconds, as shown in Eq. (2).

where tempo is the beats per minute value, hence making 60/tempo the beat period in seconds. Nine samples 
were generated in each trial (given that nine IOI are generated by ten keystrokes); hence, there were 45 samples 
generated at each tempo, which had a skewed distribution. The median of these values was taken as the score at 
each tempo and then the five tempi’s scores were averaged to obtain a single value for their motor-coordination 
score in the task.

Piano jumping.  The right-hand index finger was used to move back and forth between two keys and press 
them at a rate given by the metronome (fixed tempo of 60 bpm)—reminiscent of the note and chord jumping 
technique that pianists train for. Three piano keys were selected, one positioned in the middle of the piano and 
the other two spaced 7 whole notes to the left and right of it. Three combinations of two keys were to be followed: 
left and middle, middle and right, left and right (see Fig. 2F). In total, subjects performed 15 trials in random 
order (5 at each key combination) composed of 12 keystrokes each. The relevant motor-coordination score is 
defined the same way as in the piano timing task. Timings are measured between two consecutive and correct 
key presses—timings relating to incorrect keypresses were discarded. The latter is done automatically as the note 
values will be different to what is expected. In order to make up for cases where participants might have pressed 
the incorrect key, or missed a beat, we consider a window of size of the tempo period (1 s) centred on the correct 
beat time. If notes are played outside of this window, we assume that the first keystroke of the interval is a wrong 
one. As the incorrect notes are already removed, a time before the window would mean that the same key was 
pressed twice consecutively and a time after it would mean that a keystroke was missed. Most of the subjects had 
no misses or 1 miss out of 165 samples.

Piano loudness.  On the digital piano, the loudness of a note depends on the velocity with which the relevant 
key is pressed. A fast press will produce a louder sound and vice versa. This is a skill pianists train for to be able 
to control the loudness of individual notes and is included as a task-related metric. Subjects were instructed to 
press a single key at a target level of loudness, with both the target level and the level at which they pressed shown 
to them visually. Before starting the experiment, participants were instructed on how to set their minimum (0%) 
and maximum (100%) keystroke loudness values. The piano’s recorded loudness values range from 0 to 127. A 
very slow key press corresponds to values around 2–8, whereas fast presses fall within values of 120–127. Partici-
pants were allowed to familiarise themselves with the visual interface by the experiment runner doing one block 
of trials on themselves, with the participant watching the interface. Then, they are given up to 5 unrecorded tri-
als to familiarise themselves with how the key presses relate to numerical values, and for the experiment runner 
to ensure that they cover the full range of values in their key presses. They are then asked each to define their 
own range, by pressing the key at 0% and 100%. These values are recorded and used to define their range for the 
experiment. The loudness values for levels 25%, 50% and 75% are obtained by linear interpolation between the 
0% and 100% values defined for each participant.

In total, subjects performed 25 trials, 5 at each loudness level (randomised): 0%, 25%, 50%, 75% and 100%, 
composed of 10 keystrokes each. The motor-coordination score is calculated following Eq. (1), with the error 
defined as the deviation from the target values (in percentage loudness) and maximum error as the maximum 
committed among all the trials of all of the participants for each loudness level (these are as follows, Level 0: 
34.0833, Level 25: 42.6250, Level 50: 34.6667, Level 75: 28.4583 and Level 100: 24.4167). After analysing the 
results, the average motor-coordination score was calculated using only the results at the 25%, 50% and 75% 
loudness levels given that these targets required more skilled velocity control than the 0% and 100% levels. Thus, 
their use would enhance individual differences between participants.

Piano playing.  To assess the participants’ performance on actual piano playing, a sequence with 38 notes 
played at a constant tempo (isochronous) of 80 bpm was devised. Subjects were able to learn and follow the 
sequence while playing, aided by the software Synthesia (Synthesia LLC). Synthesia showed the notes of the 
sequence as coloured blocks scrolling on-screen. The participants had to press the keys corresponding to the 
positions on the keyboard with which the Synthesia blocks were aligned in time to the music in order to score 
points (see Fig. 1). The sequence of notes was designed to be played mainly with the right hand, plus one finger 
for notes that were too far to the right side of the right hand. These notes could then be reached either using the 
index finger of the left hand, or, if wearing the SR3T, by activating the robotic finger. On Synthesia, the notes to 

(2)TimingAccuracy = 1−
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be played by the right-hand fingers were coloured in green, and the notes to be reached with the extra finger were 
coloured blue. Similarly, the relevant keys on the keyboard were marked with the same colours (see Fig. 2F).

Subjects played the sequence first without and then with the SR3T for 15 trials in each block. The first five 
trials were considered as practice trials (not recorded), the next ten were recorded but only the last 5 are used 
for computing the mean piano playing scores per subject due to the fact that subjects were still learning the 
sequence, especially the ones with no piano playing experience. For the first block of trials, without the SR3T, 
subjects played using their right hand for green coloured notes while blue coloured ones were played with the left-
hand index finger. To achieve this, subjects had to cross their left hand over the right one. For the second block 
of trials, the left index finger was replaced by the SR3T. We score each individual keypress’s timing as follows:

where ΔT is the absolute time difference between the keypress and metronome beat, and IOI is the correspond-
ing beat time period. Therefore, the participants receive a full score for each correct keypress at the exact correct 
time, with the score linearly decreasing for time deviations, up to half the beat period on each side, at which 
point the score is 0. Incorrect notes within this window are obviously marked as 0 too. We then average the note 
scores for the entire sequence.

In some trials, recordings were stopped prematurely due to technical errors. In all such cases, the score is 
calculated with respect to the recorded section only. However, if less than 50% of the notes are recorded, then the 
trial is discarded. This happened only in two trials from the same subject which were removed. No other trials 
for any subjects had any missed recordings. There were also cases where participants missed one initial beat, 
leading to them being off-beat for the entire sequence. To adjust for this, we calculate the scores for the sequence 
as originally timed, plus if it were started one beat early, or one beat late. We then take the highest score of the 
three cases to represent the piano playing score for that trial. This only occurred twice.

Statistical analysis.  We first tested for statistically significant differences between the pianists and the 
naïve players in each of the HAMCA motor-coordination scores, using permutation test. We then calculated the 
correlation matrix between the motor-coordination scores of all subjects, looking for dependencies between the 
HAMCA tasks and scores.

For the analysis of the piano playing performance with the LHIF and with the SR3T we addressed trials 5 to 
10, after the initial fast learning plateau. Using t test, we looked for significant differences between the pianists 
and the naïve players in the scores of the trials played with their LHIF and with the SR3T. We then averaged over 
trials 5 to 10 to get a single piano playing score for each subject in each task to be used in all following analy-
sis. We also merged the two groups (pianists and the naïve players) so that all test of interactions between the 
HAMCA motor-coordination scores and the piano playing scores were across all subjects. We then calculated 
the correlations between the subjects’ scores in the piano playing tasks and the HAMCA motor-coordination 
scores. We further investigated the correlations with Spearman rank correlation scores.

We then fitted linear regression models to explain the piano playing scores using all different sets of HAMCA 
motor-coordination measures. We fitted models best on single feature, all possible combinations of multiple 
features, from 2 to all 8. To compare between these models of different complexity we used the corrected Akaike 
information criterion (AICc) which is modified for small sample sizes.

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary 
Materials. Our full dataset will be made available on FigShare upon publication. We can also make these avail-
able to reviewers upon request.

Received: 22 February 2021; Accepted: 5 October 2021

References
	 1.	 Reiter, R. Eine neue elektrokunsthand. Grenzgeb. Med. 1, 133–135 (1948).
	 2.	 Zollo, L., Roccella, S., Guglielmelli, E., Carrozza, M. C. & Dario, P. Biomechatronic design and control of an anthropomorphic 

artificial hand for prosthetic and robotic applications. IEEE/ASME Trans. Mechatron. 12, 418–429 (2007).
	 3.	 Farina, D. et al. The extraction of neural information from the surface EMG for the control of upper-limb prostheses: Emerging 

avenues and challenges. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 797–809 (2014).
	 4.	 Bensmaia, S. J. Biological and bionic hands: Natural neural coding and artificial perception. Philos. Trans. R. Soc. B Biol. Sci. 370, 

20140209 (2015).
	 5.	 Godfrey, S. B. et al. The SoftHand Pro: Functional evaluation of a novel, flexible, and robust myoelectric prosthesis. PLoS One 13, 

(2018).
	 6.	 Aszmann, O. C. et al. Elective amputation and bionic substitution restore functional hand use after critical soft tissue injuries. Sci. 

Rep. 6, (2016).
	 7.	 Benabid, A. L. et al. An exoskeleton controlled by an epidural wireless brain–machine interface in a tetraplegic patient: A proof-

of-concept demonstration. Lancet Neurol. 18, 1112–1122 (2019).
	 8.	 Shafti, A., Orlov, P. & Faisal, A. A. Gaze-based, context-aware robotic system for assisted reaching and grasping. in Proceedings - 

IEEE International Conference on Robotics and Automation vols 2019-May 863–869 (Institute of Electrical and Electronics Engineers 
Inc., 2019).

	 9.	 Hussain, I., Salvietti, G., Spagnoletti, G. & Prattichizzo, D. The soft-SixthFinger: A wearable EMG controlled robotic extra-finger 
for grasp compensation in chronic stroke patients. IEEE Robot. Autom. Lett. 1, 1000–1006 (2016).

(3)Score = max

(

1−
�T

IOI/2
, 0

)



12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21375  | https://doi.org/10.1038/s41598-021-00376-6

www.nature.com/scientificreports/

	10.	 Haddadin, S. & Croft, E. Physical human-robot interaction. in Springer Handbook of Robotics 1835–1874 (Springer International 
Publishing, 2016). https://​doi.​org/​10.​1007/​978-3-​319-​32552-1_​69.

	11.	 Maurtua, I. et al. FourByThree: Imagine humans and robots working hand in hand. in IEEE International Conference on Emerging 
Technologies and Factory Automation, ETFA vols 2016-November (Institute of Electrical and Electronics Engineers Inc., 2016).

	12.	 Shafti, A. et al. Real-time robot-assisted ergonomics. in 2019 International Conference on Robotics and Automation (ICRA) 1975–
1981 (IEEE, 2019).

	13.	 Dziemian, S., Abbott, W. W. & Faisal, A. A. Gaze-based teleprosthetic enables intuitive continuous control of complex robot arm 
use: Writing & drawing. Proc. IEEE RAS EMBS Int. Conf. Biomed. Robot. Biomechatronics 2016-July, 1277–1282 (2016).

	14.	 Parietti, F. & Asada, H. Supernumerary robotic limbs for human body support. IEEE Trans. Robot. 32, 301–311 (2016).
	15.	 Makin, T. R., De Vignemont, F. & Faisal, A. A. Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng. 1, 1–3 

(2017).
	16.	 Llorens-Bonilla, B., Parietti, F. & Asada, H. H. Demonstration-based control of supernumerary robotic limbs. in IEEE International 

Conference on Intelligent Robots and Systems 3936–3942 (2012). https://​doi.​org/​10.​1109/​IROS.​2012.​63860​55.
	17.	 Wu, F. & Asada, H. Supernumerary robotic fingers: An alternative Upper-limb prosthesis. in ASME 2014 Dynamic Systems and 

Control Conference, DSCC 2014 vol. 2 (American Society of Mechanical Engineers, 2014).
	18.	 Hussain, I. et al. Design and prototype of supernumerary robotic finger (SRF) inspired by fin ray® effect for patients suffering 

from sensorimotor hand impairment. in RoboSoft 2019 - 2019 IEEE International Conference on Soft Robotics 398–403 (Institute 
of Electrical and Electronics Engineers Inc., 2019). https://​doi.​org/​10.​1109/​ROBOS​OFT.​2019.​87227​48.

	19.	 Tiziani, L. et al. Empirical characterization of modular variable stiffness inflatable structures for supernumerary grasp-assist 
devices. Int. J. Rob. Res. 36, 1391–1413 (2017).

	20.	 Hussain, I., Spagnoletti, G., Salvietti, G. & Prattichizzo, D. Toward wearable supernumerary robotic fingers to compensate missing 
grasping abilities in hemiparetic upper limb. Int. J. Rob. Res. 36, 1414–1436 (2017).

	21.	 Wu, F. & Asada, H. ‘Hold-and-manipulate’ with a single hand being assisted by wearable extra fingers. in Proceedings - IEEE 
International Conference on Robotics and Automation vols 2015-June 6205–6212 (Institute of Electrical and Electronics Engineers 
Inc., 2015).

	22.	 Mehring, C. et al. Augmented manipulation ability in humans with six-fingered hands. Nat. Commun. 10, 2401 (2019).
	23.	 Abdi, E., Burdet, E., Bouri, M. & Bleuler, H. Control of a supernumerary robotic hand by foot: An experimental study in virtual 

reality. PLoS One 10, (2015).
	24.	 Parietti, F. & Asada, H. Independent, voluntary control of extra robotic limbs. in Proceedings - IEEE International Conference on 

Robotics and Automation 5954–5961 (Institute of Electrical and Electronics Engineers Inc., 2017). https://​doi.​org/​10.​1109/​ICRA.​
2017.​79897​02.

	25.	 Liang, X., Cheong, H., Chui, C. K. & Yeow, C. H. A fabric-based wearable soft robotic limb. J. Mech. Robot. 11, (2019).
	26.	 Al-Sada, M., Höglund, T., Khamis, M., Urbani, J. & Nakajima, T. Orochi: investigating requirements and expectations for multi-

purpose daily used supernumerary robotic limbs. in ACM International Conference Proceeding Series (Association for Computing 
Machinery, 2019). https://​doi.​org/​10.​1145/​33118​23.​33118​50.

	27.	 Santello, M. et al. Hand synergies: Integration of robotics and neuroscience for understanding the control of biological and artificial 
hands. Phys. Life Rev. 17, 1–23 (2016).

	28.	 Wu, F. & Asada, H. Implicit and intuitive grasp posture control for wearable robotic fingers: A data-driven method using partial 
least squares. IEEE Trans. Robot. 32, 176–186 (2016).

	29.	 Valero-Cuevas, F. J. & Santello, M. On neuromechanical approaches for the study of biological and robotic grasp and manipulation. 
J. Neuroeng. Rehabil. 14, 101 (2017).

	30.	 Kieliba, P., Clode, D., Maimon-Mor, R. O. & Makin, T. R. Robotic hand augmentation drives changes in neural body representa-
tion. Sci. Robot. 6, 7935 (2021).

	31.	 Bromberg, Z., Donchin, O. & Haar, S. Eye movements during visuomotor adaptation represent only part of the explicit learning. 
eNeuro 6, (2019).

	32.	 Haar, S., Donchin, O. & Dinstein, I. Dissociating visual and motor directional selectivity using visuomotor adaptation. J. Neurosci. 
35, 6813–6821 (2015).

	33.	 Krakauer, J. W., Pine, Z. M., Ghilardi, M. F. & Ghez, C. Learning of visuomotor transformations for vectorial planning of reaching 
trajectories. J. Neurosci. 20, 8916–8924 (2000).

	34.	 Taylor, J. A., Krakauer, J. W. & Ivry, R. B. Explicit and implicit contributions to learning in a sensorimotor adaptation task. J. 
Neurosci. 34, 3023–3032 (2014).

	35.	 Telgen, S., Parvin, D. & Diedrichsen, J. Mirror reversal and visual rotation are learned and consolidated via separate mechanisms: 
Recalibrating or learning de novo?. J. Neurosci. 34, 13768–13779 (2014).

	36.	 Wilterson, S. A. & Taylor, J. A. Implicit visuomotor adaptation remains limited after several days of training. bioRxiv 711598 (2019). 
https://​doi.​org/​10.​1101/​711598.

	37.	 Yang, C. S., Cowan, N. J. & Haith, A. M. De novo learning versus adaptation of continuous control in a manual tracking task. 
bioRxiv 2020.01.15.906545 (2020). https://​doi.​org/​10.​1101/​2020.​01.​15.​906545.

	38.	 Van Der Vliet, R. et al. Individual differences in motor noise and adaptation rate are optimally related. eNeuro 5, (2018).
	39.	 Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P. & Smith, M. A. Temporal structure of motor variability is dynamically 

regulated and predicts motor learning ability. Nat. Neurosci. 17, 312–321 (2014).
	40.	 Haar, S., van Assel, C. M. & Faisal, A. A. Motor learning in real-world pool billiards. Sci. Rep. 10, 20046 (2020).
	41.	 Maselli, A. et al. Where are you throwing the ball? I better watch your body, not just your arm!. Front Hum. Neurosci. 11, 505 

(2017).
	42.	 Haar, S. & Faisal, A. A. Brain Activity Reveals Multiple Motor-Learning Mechanisms in a Real-World Task. Front. Hum. Neurosci. 

14, (2020).
	43.	 Di Cagno, A. et al. Motor learning as young gymnast’s talent indicator. J. Sport. Sci. Med. 13, 767–773 (2014).
	44.	 Johnston, K., Wattie, N., Schorer, J. & Baker, J. Talent identification in sport: A systematic review. Sports Med. 48, 97–109 (2018).
	45.	 Lopes, V. P., Rodrigues, L. P., Maia, J. A. R. & Malina, R. M. Motor coordination as predictor of physical activity in childhood. 

Scand. J. Med. Sci. Sport. 21, 663–669 (2011).
	46.	 Vandorpe, B. et al. The value of a non-sport-specific motor test battery in predicting performance in young female gymnasts. J. 

Sports Sci. 30, 497–505 (2012).
	47.	 Olivier, G. N. et al. Predicting motor sequence learning in people with Parkinson disease. J. Neurol. Phys. Ther. 43, 33–41 (2019).
	48.	 Wadden, K. P. et al. Predicting motor sequence learning in individuals with chronic stroke. Neurorehabil. Neural Repair. 31, 95–104 

(2017).
	49.	 Cunningham, J., Hapsari, A., Guilleminot, P., Shafti, A. & Faisal, A. A. The supernumerary robotic 3rd thumb for skilled music 

tasks. BioRob https://​doi.​org/​10.​1109/​BIOROB.​2018.​84876​09 (2018).
	50.	 Winges, S. A. & Furuya, S. Distinct digit kinematics by professional and amateur pianists. Neuroscience 284, 643–652 (2015).
	51.	 Oku, T. & Furuya, S. Skilful force control in expert pianists. Exp. Brain Res. 235, 1603–1615 (2017).
	52.	 Karni, A. et al. The acquisition of skilled motor performance: Fast and slow experience-driven changes in primary motor cortex. 

Proc. Natl. Acad. Sci. USA 95, 861–868 (1998).
	53.	 Dayan, E. & Cohen, L. G. Neuroplasticity subserving motor skill learning. Neuron 72, 443–454 (2011).

https://doi.org/10.1007/978-3-319-32552-1_69
https://doi.org/10.1109/IROS.2012.6386055
https://doi.org/10.1109/ROBOSOFT.2019.8722748
https://doi.org/10.1109/ICRA.2017.7989702
https://doi.org/10.1109/ICRA.2017.7989702
https://doi.org/10.1145/3311823.3311850
https://doi.org/10.1101/711598
https://doi.org/10.1101/2020.01.15.906545
https://doi.org/10.1109/BIOROB.2018.8487609


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:21375  | https://doi.org/10.1038/s41598-021-00376-6

www.nature.com/scientificreports/

	54.	 Costa, R. M., Cohen, D. & Nicolelis, M. A. L. Differential corticostriatal plasticity during fast and slow motor skill learning in mice. 
Curr. Biol. 14, 1124–1134 (2004).

	55.	 Papale, A. E. & Hooks, B. M. Circuit changes in motor cortex during motor skill learning. Neuroscience 368, 283–297 (2018).
	56.	 Carey, S. L. & Lura, D. J. Differences in myoelectric and body-powered upper-limb prostheses: Systematic literature review. Artic. 

J. Rehabil. Res. Dev. https://​doi.​org/​10.​1682/​JRRD.​2014.​08.​0192 (2015).
	57.	 Pitou, S. et al. Embroidered electrodes for control of affordable myoelectric prostheses. Proc. - IEEE Int. Conf. Robot. Autom. 

1812–1817 (2018). https://​doi.​org/​10.​1109/​ICRA.​2018.​84610​66.
	58.	 Ribeiro, J. et al. Analysis of man-machine interfaces in upper-limb prosthesis: A review. Robotic 8, 16 (2019).
	59.	 Engdahl, S. M. et al. Surveying the interest of individuals with upper limb loss in novel prosthetic control techniques. J. NeuroEn‑

gineering Rehabil. 12, 1–11 (2015).
	60.	 Legrand, M., Merad, M., de Montalivet, E., Roby-Brami, A. & Jarrassé, N. Movement-based control for upper-limb prosthetics: is 

the regression technique the key to a robust and accurate control? Front. Neurorobot. 0, 41 (2018).
	61.	 Luzzio, C. C. Controlling an artificial arm with foot movements. Neurorehabilit. Neural Rep. 14, 207–212. https://​doi.​org/​10.​1177/​

15459​68300​01400​30614 (2000).
	62.	 Carrozza, M. C. et al. A wearable biomechatronic interface for controlling robots with voluntary foot movements. IEEE/ASME 

Trans. Mechatron. 12, 1–11 (2007).
	63.	 Resnik, L., Klinger, S. L. & Etter, K. The DEKA arm: Its features, functionality, and evolution during the veterans affairs study to 

optimize the DEKA arm. Prosthetics Orthot. Int. 38, 492–504. https://​doi.​org/​10.​1177/​03093​64613​506913 (2013).
	64.	 Lee, S., Sung, M. & Choi, Y. Wearable fabric sensor for controlling myoelectric hand prosthesis via classification of foot postures. 

Smart Mater. Struct. 29, 035004 (2020).
	65.	 Hancock, L., Correia, S., Ahern, D., Barredo, J. & Resnik, L. Cognitive predictors of skilled performance with an advanced upper 

limb multifunction prosthesis: A preliminary analysis. Disabil. Rehabilitat. Assist. Technol. https://​doi.​org/​10.​3109/​17483​107.​2016.​
11583​2612,504-​511 (2016).

	66.	 Lafo, J., Correia, S., Borgia, M., Acluche, F. & Resnik, L. Cognitive characteristics associated with device adoption, skill retention, 
and early withdrawal from a study of an advanced upper limb prosthesis. Am. J. Phys. Med. Rehabil. 98, 879 (2019).

	67.	 Kerver, N., Twillert, S., van Maas, B. & van der Sluis, C. K. User-relevant factors determining prosthesis choice in persons with 
major unilateral upper limb defects: A meta-synthesis of qualitative literature and focus group results. PLoS ONE 15, e0234342 
(2020).

	68.	 Ea, B. & Tt, C. Upper limb prosthesis use and abandonment: A survey of the last 25 years. Prosthet. Orthot. Int. 31, 236–257 (2007).
	69.	 Walker, M. J., Goddard, E., Stephens-Fripp, B. & Alici, G. Towards including end-users in the design of prosthetic hands: Ethical 

analysis of a survey of australians with upper-limb difference. Sci. Eng. Ethics 26, 981–1007 (2019).
	70.	 Dougherty, Z. & Winck, R. C. Evaluating the performance of foot control of a supernumerary robotic limb. in ASME 2019 Dynamic 

Systems and Control Conference, DSCC 2019 vol. 3 (American Society of Mechanical Engineers (ASME), 2019).
	71.	 Yamen Saraiji, M. H. D., Sasaki, T., Kunze, K., Minamizawa, K. & Inami, M. MetaArms: Body remapping using feet-controlled 

artificial arms. in UIST 2018 - Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology 65–74 
(Association for Computing Machinery, Inc, 2018). doi:https://​doi.​org/​10.​1145/​32425​87.​32426​65.

	72.	 Sanchez, J. H. et al. Four-Arm Manipulation via Feet Interfaces. (2019).
	73.	 Huang, Y. et al. A subject-specific four-degree-of-freedom foot interface to control a surgical robot. IEEE/ASME Trans. Mechatronics 

1–1 (2020). https://​doi.​org/​10.​1109/​tmech.​2020.​29642​95.
	74.	 Maimon-Mor, R. O. et al. Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking. 

in Rehabilitation Robotics (ICORR), 2017 International Conference on 1049–1054 (IEEE, 2017).
	75.	 Tostado, P. M., Abbott, W. W. & Faisal, A. A. 3D gaze cursor: Continuous calibration and end-point grasp control of robotic actua-

tors. Proc. - IEEE Int. Conf. Robot. Autom. 2016-June, 3295–3300 (2016).
	76.	 Noronha, B., Dziemian, S., Zito, G. A., Konnaris, C. & Faisal, A. A. “Wink to grasp”—comparing eye, voice & EMG gesture control 

of grasp with soft-robotic gloves. in Rehabilitation Robotics (ICORR), 2017 International Conference on 1043–1048 (IEEE, 2017).
	77.	 Tiffin, J. & Asher, E. J. The Purdue Pegboard: Norms and studies of reliability and validity. J. Appl. Psychol. 32, 234–247 (1948).
	78.	 Reuben, D. B. et al. Motor assessment using the NIH Toolbox. Neurology 80, S65–S75 (2013).
	79.	 Jebsen, R. H., Taylor, N., Trieschmann, R. B., Trotter, M. J. & Howard, L. A. An objective and standardized test of hand function. 

Arch. Phys. Med. Rehabil. 50, 311–319 (1969).
	80.	 Lyle, R. C. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int. J. 

Rehabil. Res. 4, (1981).
	81.	 Konnaris, C., Gavriel, C., Thomik, A. A. C. & Faisal, A. A. Ethohand: A dexterous robotic hand with ball-joint thumb enables 

complex in-hand object manipulation. in Biomedical Robotics and Biomechatronics (BioRob), 2016 6th IEEE International Confer‑
ence on 1154–1159 (IEEE, 2016).

	82.	 Konnaris, C., Thomik, A. A. C. & Faisal, A. A. Sparse eigenmotions derived from daily life kinematics implemented on a dextrous 
robotic hand. in 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob) 1358–1363 (IEEE, 
2016).

	83.	 Cooper, J., Siegfried, K. & Ahmed, A. BrainBLoX: Brain and Biomechanics Lab in a Box Software. (2014).
	84.	 Belic, J. J. & Faisal, A. A. Decoding of human hand actions to handle missing limbs in neuroprosthetics. Front. Comput. Neurosci. 

9, 1–11 (2015).

Acknowledgements
The authors thank James Cunningham and Anita Hapsari for their contribution to the SR3T platform (see Cun-
ningham et al., 2018).

Author contributions
A.S., P.G. and A.A.F. did the initial conception of this work; A.S., P.G., R.M. and A.A.F. developed the experi-
mental protocol and hardware/software requirements for it; R.M. ran the experiments; A.S., S.H., R.M., A.A.F. 
analysed and interpreted the data; A.S., S.H. wrote the manuscript; A.S., S.H. and A.A.F. revised the manuscript.

Funding
This research was supported by eNHANCE (http://​www.​enhan​ce-​motion.​eu) under the European Union’s Hori-
zon 2020 research and innovation programme grant agreement No. 644000 and a UKRI Turing AI Fellowship 
Grant EP/V025449/1 (AAF).

Competing interests 
AS, SH, RM and PG declare no competing financial interests. AAF has consulted for Airbus.

https://doi.org/10.1682/JRRD.2014.08.0192
https://doi.org/10.1109/ICRA.2018.8461066
https://doi.org/10.1177/15459683000140030614
https://doi.org/10.1177/15459683000140030614
https://doi.org/10.1177/0309364613506913
https://doi.org/10.3109/17483107.2016.115832612,504-511
https://doi.org/10.3109/17483107.2016.115832612,504-511
https://doi.org/10.1145/3242587.3242665
https://doi.org/10.1109/tmech.2020.2964295
http://www.enhance-motion.eu


14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:21375  | https://doi.org/10.1038/s41598-021-00376-6

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​00376-6.

Correspondence and requests for materials should be addressed to A.A.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-00376-6
https://doi.org/10.1038/s41598-021-00376-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Playing the piano with a robotic third thumb: assessing constraints of human augmentation
	Results
	Discussion
	Materials and methods
	Experimental design. 
	Subjects. 
	Setup. 
	HAMCA foot coordination tasks. 
	Foot balance task. 
	Foot up-down task. 
	Foot tracking task. 

	HAMCA hand coordination tasks. 
	Hand dimensionality. 
	Piano timing. 
	Piano jumping. 
	Piano loudness. 

	Piano playing. 
	Statistical analysis. 

	References
	Acknowledgements


